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Abstract—Allocating cyber-security analysts to incoming cyber
alerts is an important task in any organization employing
cyber-defense mechanisms. Alerts are typically generated when
intrusion detection software on computer systems (e.g., servers,
routers) detect abnormal or suspicious activity. Based on the
respective significance level of the alerts, some are assigned
to cyber-security analysts for further investigation. Due to the
wide range of potential attacks coupled with high degrees of
attack sophistication, identifying what constitutes a true attack
is a challenging problem, especially for organizations performing
critical operations (e.g., military bases, financial institutions, etc.)
that are constantly being subjected to cyber attacks every day. In
this paper, we develop a game-theoretical framework that assigns
cyber-security analysts to cyber alerts to minimize the overall
risk faced by an organization. Our approach considers a series
of games between the attacker and the defender in which a state
is maintained between sub-games. The state captures the avail-
ability of analysts as well as an attack budget metric that enables
us to model the level of risk an attacker is willing to undertake.
Through dynamic programming and Q-maximin value iteration-
based algorithms, we identify optimal allocation strategies that
take into account the current availability of analysts, the risk
faced by the attacker, the incoming alerts, and the future outlook
of the system. We assess the effectiveness of our allocation
strategies by comparing them to other sensible heuristics (e.g.,
random, greedy and myopic). Our results show that our approach
outperforms these other strategies in minimizing risk.

I. INTRODUCTION

Motivation and Scope: The current state of cyber-defense
is dire [8]. On one hand, new trends of more sophisticated,
economically-driven, state-sponsored cyber attacks are on the
rise; evidenced by the recent security breaches at both public
and private institutions (e.g., the Pentagon [2], Sony [4], Target
[14]). On the other hand, the emergence (and deployment) of
Cyber-Physical Systems have enabled cyber attacks to cross
from the cyber realm into our physical infrastructure, making
them appealing vehicles for terrorism and terrorism-related
activities [5]. Various organizations – in both the public and
private sectors – are constantly being subjected to attacks that
seek to disable, disrupt and/or breach their cyber infrastructure,
especially during times of critical operations (e.g., before
missions, political statements, software releases, etc.). The
authors in [8] report an average of 17,000 alerts every week
at surveyed organizations. Of these, roughly 19% (3,218)
are estimated to be legitimate alerts, with only 4% (705)
eventually being investigated.

One critical component of any institution’s cyber-defense in-
frastructure is maintaining the appropriate workforce of cyber-

security analysts who handle the investigations of incoming
alerts. When an attack is launched against an organization,
sensors (e.g., Intrusion Detection Systems, Anti-malware tools,
etc.) deployed on various systems or machines (e.g., comput-
ers, servers, routers, etc.) typically generate cyber alerts with
varying levels of severity. At the same time legitimate network
activity can generate false-positive alerts. This typically high
volume of false positives can drown out relevant alerts, as seen
in the Target attack wherein malware alerts were repeatedly
generated but not addressed [14]. To determine if an alert is a
false positive it must first be assigned to a security analyst for
investigation. Some of these alerts (e.g., those in a high risk
level) have a higher probability of representing an ongoing
attack and hence, must be prioritized when being assigned for
investigation. As such, an allocation of cyber-security analysts
to cyber alerts may depend on various factors, namely: (1) the
expertise of the analysts, (2) the current availability of analysts,
(3) the value of the machine from which the alerts originate,
and (4) the associated threat level of the alerts.

Sophisticated adversaries can gain critical knowledge
through probing attacks that observe the response time of
the analysts in handling the attacks, and thus can choose
the best attack method, along with the correct time to strike
(e.g., when all the analysts are busy investigating other alerts).
Unlike previous work that considered a one-shot game with a
deterministic alert arrival [11], [12], in this paper we consider
a Markov game model in which the defender and the adversary
play a series of games with a state maintained between games.
The stochastic nature of the Markov game is manifested in
not knowing the exact numbers/levels of alerts that will arrive
in the future, which impacts how allocations are made at
the current time as well as the mixed strategy nature of the
players’ policies. We consider two variants of the problem, one
with a finite horizon and one with an infinite horizon. In the
finite horizon case, we develop optimal strategies via dynamic
programming whereby optimal policies are not just based on
the current state, but on the time that state is encountered. In
the infinite horizon case, we use Q-maximin value iteration
based approaches to obtain invariant optimal policies based
on the state.

Contributions: In this paper, we develop a Markov game
model that (1) captures the uncertainty in the alert arrival
process, (2) accounts for analysts that spend more than one
time step investigating an alert leading to stateful models,



(3) considers the adversarial nature of the network security
domain from both attacker and defender perspectives, and (4)
employs an attacker budget metric that captures their will-
ingness to exposure. Through dynamic programming and Q-
maximin value iteration approaches we obtain optimal worst-
case allocation strategies that succeed in minimizing risk while
still outperforming other allocation strategies such as random,
greedy, and myopic.
Paper organization: In Section II, we put our work in context
to other existing work. In Section III, we describe our models
for both the finite and infinite horizon cases and present our
solution methods for obtaining optimal worst-case policies. We
present our evaluation in Section IV and conclude the paper
with a summary of our contributions and future directions in
Section V.

II. RELATED WORK

There has been some work that focused on scheduling and
improving the efficiency of cyber-security analysts [1], [6],
[7], [18]. The authors in [1] model the problem as a two-
stage stochastic shift scheduling problem in which the first
stage allocates the security experts and in the second stage,
additional experts are allocated. The problem is discretized and
solved using a column generation based heuristic. The authors
in [6] study optimal allocation of alerts to analysts under a
static workforce size with a fixed alert generation mechanism.
In [7], the authors develop a reinforcement learning-based
dynamic programming model to schedule cyber-security an-
alysts, with the model based on a Markov Decision Process
framework with stochastic load demands. In [18], the author
describes different strategies for managing security incidents in
a cyber-security operation center. The authors in [13] propose a
queuing model to determine the readiness of a Cyber-Security
Operations Center (CSOC). In our work, we depart from this
previous research by explicitly considering the presence of a
strategic adversary.

The use of game theory has been instrumental in advancing
the state-of-the-art in security games and their wide range
of applications [3], [15], [17], [9], [11], [12]. Some of the
most recent and relevant lines of work involving analyst alert
allocation are studied in [11] & [12]. Here the authors intro-
duce a game-theoretic model to determine the best allocation
of incoming cyber alerts to analysts. Their model, however,
assumes a one shot-game in which both the alert resolution
time and the arriving alert distribution are deterministically
known.

III. MARKOV GAME MODEL

We consider a two-player zero-sum Markov game in which
the Defender (D) and the Attacker (A) play a series of sub-
games over some time horizon T . At each time step t ∈ T ,
a new batch of alerts θ ∈ Θ arrives in which A chooses
some alert level(s) to attack in and D attempts to detect and
thwart the incoming attack(s) by assigning available analysts
to the incoming alerts. Without loss of generality a time step
may represent any period of elapsed time, however for the

remainder of the paper we will assume a time step of one hour.
We let s ∈ S denote the current state of the player resources
(e.g., availability of analysts as well as the budget available
to the attacker). We also let Da and Aa denote the actions
available to D and A, respectively. We define a transition
function T : S×Da×Aa → Π(S) which maps each state and
player action pair to a probability distribution over possible
next states. We let T (s, a, d, s′) denote the probability that,
after taking actions a ∈ Aa and d ∈ Da in state s, the system
will make a transition into s′. In general, the system can be
described as follows:

• Alerts: At every time step t, a batch of alerts θ ∈ Θ
arrives according to some probability distribution Π(Θ),
where Θ = {θ1, θ2, . . . , θ|Θ|}. Each alert σ ∈ θ belongs
to one of three categories: High (h), Medium (m), or
Low (l). Resolving an alert requires a certain number
of time steps based on its category. The set holding
each category’s work-time (i.e., the number of time
steps needed by an analyst to investigate and resolve
an alert) is defined as W = {wh, wm, wl} where
wh > wm > wl and wh, wm, wl ∈ N. A similar reward
structure U = {uh, um, ul}, where uh > um > ul
and uh, um, ul ∈ N, is defined for each category as
well. If the alert σh is legitimate and is assigned to an
analyst, D will receive a positive utility uh. Whereas
not assigning the legitimate alert results in a negative
utility −uh for D. If an alert is illegitimate (i.e., a false
positive) then it awards no utility to A and D, regardless
of whether or not it is assigned. Since our model is
zero-sum the corresponding utilities for A are simply
the additive inverse of those awarded to D. We assume
that both players are aware of the set of possible alert
batches Θ, as well as the respective probability of each
batch. For example, a possible arrival set may be as
follows: Θ = {θ1, θ2} where Pr(θ1) = 0.4 with θ1 =
{σh1 , σm2 , σm3 }, and Pr(θ2) = 0.6 with θ2 = {σm1 , σl2}.
At the beginning of a particular game, both players are
aware of the exact alert batch that has arrived (with future
alert arrivals remaining probabilistic, which impacts the
current resource allocations made by the players). It is
important to note that not every alert may be assigned to
an expert, and not every alert may represent a legitimate
attack (i.e., alerts can be false positives).

• The Defender: D has n homogeneous cyber-security
analysts available to handle incoming alerts. We define
Rs as a vector of length n that describes the load of
each analyst in state s. For example, Rs = [0 2 1] means
that D has 3 analysts on their team in which analyst 1
is free (has load 0), analyst 2 will be free after two time
steps, and analyst 3 will be available after 1 time step. We
also define the function F(Rs) as the number of analysts
currently available for allocation in state s. In every time
step t, D receives a batch of alerts θ and determines their
allocation strategy based upon the current availability of
analysts and the incoming alerts σ ∈ θ. Once the set



of possible alert batches Θ and each alert category’s
respective work-timesW are known, we can construct the
set of all possible analyst states, denoted R̂. In general,
|R̂| is bounded above by the following:

|R̂| ≤ (wh + 1)n (1)

• The Attacker: A has an attack budget B ∈ N and
decides when to attack and in what category. We assume
A knows the alert level that would be generated due
to their attack. The set C = {ch, cm, cl} defines the
respective cost to the adversary given the alert level their
attack generates, where ch > cm > cl and ch, cm, cl ∈ N.
A can attack in as many alerts as they wish as long as
the sum of their costs is affordable given their current
budget. The attacker’s budget enables us to model the
amount of risk they are willing to undertake. Attacking
more frequently with attacks that generate high level
alerts would likely expose A. To capture this behavior,
in the finite horizon variant, A starts with a full budget
in the first time step and once it falls below cl, A can no
longer attack and the game can be considered finished. In
the infinite horizon domain, if A chooses to abstain from
attacking in a state s with budget Bs, A will be credited
with some unit of budget in the subsequent state.

• State Representation: At the beginning of a time step,
we assume that the system state is known to both players.
Our state space is defined as follows:

s = [Rs|Bs] (2)

Given the state s and alert arrival θ, both the action space
of the defender Da(s, θ) and the action space of the attacker
Aa(s, θ) can be generated. The respective sizes of these action
spaces are given in Equations 3 and 4. Da(s, θ), in Equation 3,
describes all possible combinations of assigning/not assigning
the incoming alerts σ ∈ θ to the available analysts. Since
we consider all analysts to be homogeneous we do not need
to consider which particular analyst an alert is assigned to,
but only whether or not the alert is assigned. Equation 4
enumerates all the ways A could hijack the alerts in θ based
on the current budget in s as captured by the indicator function
1{.} (while also allowing them to abstain from attacking
altogether)

|Da(s, θ)| =
F(Rs)∑
i=0

(
|θ|
i

)
(3)

|Aa(s, θ)| =
2|θ|∑
i=1

1{Bs≥Bin(i−1).Cθ} (4)

where Bin(i) is the binary representation of i and Cθ is the
cost vector for the alerts in θ according to W . For example,
an alert arrival θ = {σm1 , σl2, σl3} yields a cost vector
Cθ = [3 1 1]. Thus, given an attacker budget Bs = 1,
Aa = {[0 0 0], [0 1 0], [0 0 1]}.

Based on the alert arrival and system state we can formulate
a zero-sum game as described below for both the infinite and
finite horizon variants.

A. Infinite Horizon Markov Game Formulation

To formulate the Markov game in the infinite horizon
domain, we consider every state s along with every batch
of alerts θ. Every state-arrival pair constitutes a sub-game
where the defender attempts to detect an attack through an
assignment of alerts and the attacker chooses an attack that
would result in an alert at a chosen category. This game
can be represented as a matrix Ms of instantaneous rewards
where Ms(a, d) denotes the utility awarded if A chooses
action a ∈ Aa(s, θ) and D chooses action d ∈ Da(s, θ).
Players in a Markov game follow a policy π (i.e. a probability
distribution over available actions in each state) where π(s, d)
is the probability of taking action d ∈ Da(s, θ). Given the
current state s and alert batch θ, we can formulate a zero-
sum game over the payoff matrix Ms and solve it with the
following linear program:

max
π(s,d)∈Π(Da)

u (5)

u ≤
∑

a∈Aa(s,θ)

π(s, d)Ms(a, d) (6)

∑
d∈Da(s,θ)

π(s, d) = 1 (7)

0 ≤ π(s, d) ≤ 1 ∀d ∈ Da(s, θ) (8)

Objective 5 is the value of the game, constraint 6 guarantees
the worst-case over the actions available to the attacker and
constraints 7 and 8 ensure that we have a valid probability
distribution. The solution to this linear program yields some
mixed strategy π(s, ·) which when sampled from produces
an expected value of playing the game in that state. Once
players have chosen their actions they are awarded some
utility according to Ms and the system evolves into some new
state according to the transition function, wherein the process
repeats.

B. Infinite Horizon Solution

To solve a given Markov game, we seek to obtain some
optimal policy π∗ which will maximize our worst-case ex-
pected utility over an infinite horizon. To do this we must
first notice that every state’s payoff matrix is incomplete,
in that it only reflects the immediate rewards each action
pair may lead to. If we wish to find π∗, we need every
state’s expected value to not just include immediate rewards
but also the future rewards available from that state. This is
accomplished by replacing each action pair utility in the state’s
payoff matrix with the quality function Q(s, a, d). This quality
function includes the immediate reward Ms(a, d), as well as
the expected discounted rewards obtainable from the future
states the current action pair may lead to.

Once Ms is updated with the Q-values that reflect future
rewards, we can re-solve it with our linear program and obtain



Algorithm 1 Infinite Horizon Maximin Value Iteration

Initialize:
for all s in S do
V0(s) ← max(π′(s, ·), min(a′, sum(d′, π(s, d′)

∗ Ms(a′, d′))))
end for
δ ← 0.95

Learn:
for i = 1 to iterations do

for all s in S, θ in Θ, a in Aa(s, θ), and d in Da(s, θ)
do
Qi(s, a, d) ← Ms(a, d) + δ ∗ sum(s′, sum(θ′, Pr(θ′)

∗ T (s, a, d, s′) * Vi(s′))

Vi(s) ← max(π′(s, ·), min(a′, sum(d′, π(s, d′)
∗ Qi(s, a′, d′))))

end for
end for

a new estimate for that state’s value Vi(s), where i corresponds
to the number of iterations we have performed on the value
function (e.g., V2(s) represents the value of state s considering
the possible rewards an agent could accrue two steps from s).

In general, the value and quality functions are defined as
follows:

V0(s) = max
π∈Π(Da)

min
a∈Aa

∑
d∈Da

π(s, d) Ms(a, d), i = 0 (9)

Vi(s) = max
π∈Π(Da)

min
a∈Aa

∑
d∈Da

π(s, d) Qi(s, a, d), i > 0 (10)

Qi(s, a, d) =Ms(a, d) +

δ
∑
s′∈S

∑
θ′∈Θ

Pr(θ′)T (s, a, d, s′)Vi−1(s
′), i > 0 (11)

where δ is the discount factor such that 0 < δ < 1.
Thus, starting with i = 0, and the state values initialized
in Equation 9, we begin to iterate over our value function
(Equations 10 and 11) where in each iteration an additional
time step is included in the estimation of each state’s value.
The zero-sum nature of our game formulation means that an
adversarial equilibrium is present in every sub-game [16]. As
such, by adopting the Q-maximin value iteration methodology
for Markov games, convergence of the value function is
guaranteed [10]. Due to the discount factor, as the number
of iterations approach infinity our value function continues to
converge until we arrive at the true value function V ∗(·). The
infinite horizon algorithm to solve for the defender’s optimal
policy is presented in Algorithm 1.

C. Finite Horizon Markov Game Formulation

The finite horizon formulation may be more desirable than
its infinite horizon counterpart in situations where a defender is
aware of an imminent attack bound to occur in some time span
T (e.g., during a military operation or a software update). In
situations like this it may not be useful to maximize the utility
over an infinite horizon as the defender is more concerned with

Algorithm 2 Finite Horizon Dynamic Programming

Initialize:
for all s in S|T | do
V|T | ← max(π′(s, ·), min(a′, sum(d′, π(s, d′)

∗ Ms(a′, d′) + trm(s, a′, d′))))
end for

Learn:
for t = |T | − 1 to 1 do

for all s in St, θ in Θ, a in Aa(s, θ), and d in Da(s, θ)
do
Qt(s, a, d) ← Ms(a, d) + sum(s′, sum(θ′, Pr(θ′)

∗ T (s, a, d, s′) ∗ Vt+1(s′)))

Vt(s) ← max(π′(s, ·), min(a′, sum(d′, π(s, d′)
∗ Qt(s, a′, d′)))

end for
end for

immediate defenses. In this formulation, we consider a Markov
game which is played over some predefined time horizon T =
{1, 2, . . . , |T |}. It is important to note that not every state
can occur in every time step t ∈ T . For example, if B > ch
for all states s at time t, then it is impossible for the attacker
to have a budget of zero in the next time step. As such we
define time partitions on S such that S = S1∩S2∩ . . .∩S |T |,
where St denotes the set of all states occurring at time t.

D. Finite horizon solution

Similar to the infinite domain, we seek to find some optimal
policy π∗ which maximizes our worst-case expected utility. To
do this our states’ payoff matrices must not only represent the
immediate payoffs available in that state, but also the expected
value of the future states that current actions may lead to. The
main difference in the finite domain is that a state’s value not
only depends on its current parameters and alert arrival batch,
but also the time in which this state is occurring. To illustrate
this, consider the state s = [Rs = [5 5 5] | Bs = 10]. If s
occurs in the first time step the defender will be unable to
allocate experts for 5 time steps, likely incurring a large loss
of utility if the attacker chooses to take advantage of this.
However, if this state occurs in the last time step |T |, the
defender will only be left vulnerable for one time step.

We can take advantage of this by observing that we can
obtain π∗(s) for every state s ∈ S |T | because these states’
payoff matrices reflect the true value of the state. This is due to
the fact that we know S |T | contains all the possible last states
we could inhabit and therefore need not consider the value of
the future states when evaluating s ∈ S |T |. This means we
can solve time partition S |T | optimally by considering each
game we play in S |T | as a one-shot game. This observation
serves as the starting point for our finite horizon’s dynamic
programming approach.

As every s ∈ S |T | is solved, its expected value is stored
in the value function V|T |(s) (notice here that the subscript of



V denotes the time partition and not the iteration number as
in the infinite domain). Once we have exhausted all states in
the last time partition, we move to S |T |−1 and begin solving
for V|T |−1(·). In general, the value and quality functions are
defined as follows:

V|T |(s) = max
π∈Π(Da)

min
a∈Aa

∑
d∈Da

πdMs(a, d) + trmD(s, a, d) (12)

Vt(s) = max
π∈Π(Da)

min
a∈Aa

∑
d∈Da

πd Qt(s, a, d), 0 < t < |T | (13)

Qt(s, a, d) =Ms(a, d) +∑
s′∈St+1

∑
θ′∈Θ

Pr(θ′)T (s, a, d, s′)Vt+1(s
′), 0 < t < |T | (14)

where trmD(·) describes the value function at the terminal
state for the defender. Thus, starting with t = |T | (Equation
12), we then begin decrementing t in each iteration, thereby
performing backward induction (Equations 13 and 14) until
the value function has been computed in every time partition.
Due to the finite horizon nature of the problem, we no longer
need a discount factor to guarantee convergence of the Q
functions and consider Vt(·) to be the optimal value ∀t ∈ T . A
complete version of the finite horizon algorithm is presented
in Algorithm 2.

It is worth noting that we employ a terminal-state value
function trm(·) that evaluates the goodness of the final state in
time step |T | for both players. Since there is no reason for an
agent to try and preserve their resources (e.g., security analysts
or attack budget) in the last time window, trm(·) captures the
additional rewards to agents who act greedily in the last time
step |T |. One particular instantiation of the terminal functions
can be described by the following two equations where s′

represents the terminal state:

trmD(s, a, d) = Ms(a, d)
n−F(Rs′)

n
(15)

trmA(s, a, d) = Ms(a, d)
B −Bs′

B
. (16)

where in Equation 15, the ratio of busy analysts is used to
award an additional fraction of the Ms(a, d) utility to the
defender and in Equation 16, the ratio of exhausted budget
is used to award an additional fraction of the Ms(a, d) utility
to the attacker.

IV. EXPERIMENTAL EVALUATION

In this section we present simulation experiments to as-
sess the effectiveness of our game-theoretic approaches at
minimizing risk in comparison to other allocation strategies.
Various attacker and defender strategies are implemented in
these simulations. A random strategy simply chooses from a
player’s action space at random with each action having an
equal probability. The greedy defender strategy is modeled
after a simple yet intuitive heuristic wherein the highest alert
categories are always given the most attention. The greedy
attacker strategy is similar in that the attacker will always

attack in the highest alert category available, and will continue
to attack in every time step until their budget is depleted.
The linear program strategy simply solves the current state’s
payoff matrix with a linear program to obtain a mixed strategy
and can be thought of as a completely myopic version of the
dynamic programming strategy.

We start off by instantiating our model and obtaining the
value of the states through the dynamic programming ap-
proaches described in the previous section (Q-maximin value
iteration for the infinite horizon case and backward induction
with terminal state values in the finite horizon case). Upon
the conclusion of the dynamic programming we obtain the
optimal worst-case allocation policies for all states and run 500
independent simulations of both the infinite and finite horizon
Markov games, starting from the same initial state.

Parameter Value
Number of experts |R| 5
Attack budget B 20
Discount factor δ 0.99
Utilities U uh = 100, um = 20, ul = 5
Attack cost C ch = 8, cm = 4, cl = 2
Work times W wh = 6, wm = 3, wl = 1
Alert batches Θ θ1, θ2, θ3, θ4, θ5, θ6

Alerts in θ1 σm1 , σm2 , σl3, σl4
Alerts in θ2 σh1 , σm2 , σm3 , σl4, σl5
Alerts in θ3 σm1 , σm2 , σm3 , σl4, σl5, σl6
Alerts in θ4 σh1 , σm2 , σl3, σl4, σl5, σl6
Alerts in θ5 σh1 , σh2 , σm3 , σm4 , σl5, σl6, σl7

Alerts in θ6
σh1 , σh2 , σh3 , σm4 , σm5 , σm6
σl7, σl8, σl9

Arrival prob. Π(Θ)
θ1 = 0.15, θ2 = 0.21, θ3 = 0.21
θ4 = 0.18, θ5 = 0.20, θ6 = 0.05

TABLE I: Infinite horizon parameters.

A. Infinite Horizon Results

In the infinite horizon case, we instantiate our model using
the parameters shown in Table I – which yield a game space
of 58,212 state-arrival pairs. Here, the attacker will regenerate
one unit of their budget if they choose to abstain from
attacking (i.e., Bs′ = Bs + 1 where s′ is the successor state
of s).
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Fig. 1: Convergence of the change in the Defender’s value
function within the infinite horizon domain.
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Fig. 2: Average cumulative utility accrued by the defender over 500 runs of the infinite horizon case.

Figure 1 shows the convergence of our dynamic program-
ming algorithm’s value function. The average percent change
in state value is plotted on the y-axis with respect to the
iteration number on the x-axis. Due to the zero-sum nature
of the game, each player’s value function is simply the
additive inverse of the other, thus only the Defender’s has
been provided.

Figure 2 compares the four defender strategies against each
attacker strategy in terms of the average cumulative utility
over the 500 simulations – each for 100 rounds. Table II
summarizes the end-game utilities where the rows correspond
to the defender strategies and the columns to the attacker
strategies. We underline the worst-case utility obtainable under
each defender strategy.

A

D L G R

D

D -223.13 -78.8 82.94 52.77

L -364.27 -110.78 9.45 -9.61

G -330.03 -164.4 66.74 12.76

R -374.58 -138.6 -60.53 -71.9

TABLE II: End-game utility in the infinite horizon case. D:
Dynamic programming, L: Linear Program (myopic), G:

Greedy and R: Random.

Comparing the worst-case utility amongst every defender
strategy (i.e. the underlined values of Table II), we can
see that the dynamic programming approach has the highest
worst-case utility. This is a product of the game theoretic
formulation wherein the presence of the max-min in our value
functions (Equations 9 - 11) leads to finding a policy that

maximizes a player’s utility given that their opponent will seek
to minimize that utility (recall here that the games are zero
sum, so maximizing one’s own utility equates to minimizing
the opponent’s).

As previously mentioned in [8], alert numbers typically
always vastly outnumber defensive resources. As such the
problem becomes one of damage control rather than damage
prevention. So while a greedy defender may incur early gains
against a greedy attacker (Figure 2 (b)), their over-allocation
of resources to higher alert levels leads to steep loses against
rational attackers who may utilize less serious vulnerabilities
to orchestrate attacks (Figure 2 (d)).

Parameter Value
Time horizon |T | 10
Number of experts |R| 5
Attack budget B 24
Utilities U uh = 100, um = 20, ul = 5
Attack cost C ch = 8, cm = 4, cl = 2
Work times W wh = 6, wm = 3, wl = 1
Alert batches Θ θ1, θ2, θ3, θ4, θ5, θ6

Alerts in θ1 σm1 , σm2 , σl3, σl4
Alerts in θ2 σh1 , σm2 , σm3 , σl4, σl5
Alerts in θ3 σm1 , σm2 , σm3 , σl4, σl5, σl6
Alerts in θ4 σh1 , σm2 , σl3, σl4, σl5, σl6
Alerts in θ5 σh1 , σh2 , σm3 , σm4 , σl5, σl6, σl7

Alerts in θ6
σh1 , σh2 , σh3 , σm4 , σm5 , σm6
σl7, σl8, σl9

Arrival prob. Π(Θ)
θ1 = 0.15, θ2 = 0.21, θ3 = 0.21
θ4 = 0.18, θ5 = 0.20, θ6 = 0.05

TABLE III: Finite horizon parameters.
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(a) RandomAttacker
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(b) GreedyAttacker
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(c) LinProgAttacker
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(d) DynProgAttacker

Fig. 3: Average cumulative utility accrued by the defender in finite horizon case.

B. Finite Horizon Results

In the finite horizon case, we instantiate our model using
the parameters shown in table III – yielding a game space of
665,280 state-arrival pairs.

Figure 3 compares the four defender strategies against each
attacker strategy in terms of the average cumulative utility
obtained over the 500 simulation runs. These utilities can be
seen to remain constant once the attacker has depleted their
budget.

Table IV summarizes the end-game utilities where the rows
correspond to the defender strategies and the columns to the
attacker strategies. Once again, we can see that the dynamic
programming strategy has the highest worst-case utility among
all defender strategies.

A

D L G R

D

D -72.30 -41.17 -48.87 -47.03

L -127.02 -74.77 17.74 0.28

G -184.57 -153.57 127.01 24.98

R -123.14 -72.77 -21.03 -33.57

TABLE IV: End-game utility in the finite horizon case. D:
Dynamic programming, L: Linear Program (myopic), G:

Greedy and R: Random.

Compared to the other strategies our dynamic program per-
forms best when facing a rational opponent (i.e. an opponent
who attempts to optimize the expected utility via some mixed
strategy). While the greedy defender strategy may out-perform

it when the attacker is irrational (Figure 3 (a) and Figure
3 (b)), it suffers a large loss of utility when the Attacker
does play rationally (Figure 2 (c) and 2 (d)). This exemplifies
the usefulness of the game-theoretic formulation which finds
the optimal worst-case policy. This policy guarantees that an
agent will value safe and consistent strategies over more bold
ones which may perform well against some opponents while
accruing high losses against others.

V. CONCLUSIONS

In this paper we address the resource allocation problem
faced by cyber-security teams attempting to screen incom-
ing alerts for possible attacks. We present a Markov game
formulation of the problem in both the finite and infinite
horizon domains and evaluate the viability of various defender
strategies therein. Our formulation considers a stateful repre-
sentation of the resources available to the players and captures
the uncertainty in the alert arrival process. A maximin value
iteration algorithm is defined and is shown to converge to a
policy guaranteeing worst-case optimality. The Markov game
formulation presented in this paper offers a sensible definition
of optimal behavior within the cyber-security resource alloca-
tion domain and results in a policy that successfully minimizes
risk when faced with a large degree of uncertainty over future
states. Overall this paper demonstrates the usefulness of a
game-theoretic approach to security, as it is often considered
good practice for cyber-security teams to operate under the
expectation of the worst-case scenario (which is exactly what
our maximin strategy optimizes for).

We were able to obtain optimal worst-case policies, how-
ever, how these policies should be implemented in a real-
life setting requires some additional work. In particular, often
times the derived policy requires the defender to keep some
resources unassigned in a time slot – so as to be ready in the



case of a high volume (or high severity) of alerts arriving in the
next time slot. In practice, all analysts should be assigned at
all times to ensure the widest coverage possible. One solution
could be for an organization to view these types of game
theoretic policies as security thresholds, wherein as long as the
specified number of alerts are assigned, worst-case optimality
can be maintained. Any temporary assignment of otherwise
“free” analysts could only be beneficial as long as they could
be subjected to reassignment in the next time slot if necessary.
Such mappings of game theoretic solutions to real-world
settings could be an interesting subject for further research.
Furthermore, as we consider scenarios with larger numbers
of resources, alerts, and actions, the curse of dimensionality
begins to make obtaining optimal policies intractable. As
such, one of our ongoing works is developing approximation
techniques to obtain potent game theoretic policies for larger
scale problems.
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