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Abstract 
 

This paper presents an objective evaluation of various 

eye movement-based biometric features and their ability to 

accurately and precisely distinguish unique individuals. 

Eye movements are uniquely counterfeit resistant due to the 

complex neurological interactions and extraocular muscle 

properties involved in their generation. Considered 

biometric candidates cover a number of basic eye 

movements and their aggregated scanpath characteristics, 

including: fixation count, average fixation duration, 

average saccade amplitudes, average saccade velocities, 

average saccade peak velocities, the velocity waveform, 

scanpath length, scanpath area, regions of interest, 

scanpath inflections, the amplitude-duration relationship, 

the main sequence relationship, and the pairwise distance 

between fixations. As well, an information fusion method 

for combining these metrics into a single identification 

algorithm is presented. With limited testing this method 

was able to identify subjects with an equal error rate (EER) 

of 27%. These results indicate that scanpath-based 

biometric identification holds promise as a behavioral 

biometric technique. 

 

1. Introduction 

Biometric identification refers to the automated process 

of extracting, processing, and comparing certain distinctive 

physical or behavioral characteristics, for the purposes of 

uniquely identifying a given individual [7]. Biometrics has 

and continues to maintain a crucial role in the fields of law 

enforcement, criminal justice, and corporate and personal 

security. Suspect identification, criminal conviction, access 

restriction, and personalized interfaces constitute only a 

small subset of the many and varied applications of 

biometrics in modern society. 

As technology advances, however, biometric traits are 

becoming easier to reproduce, circumventing the purposes 

of biometric identification techniques and leaving gaps in 

the efficacy of the systems that use them [18]. To combat 

this, improvements must continue to be made to existing 

biometric systems to increase the accuracy and specificity 

of biometric identification techniques. 

There are a wide range of physical and behavioral traits 

that can be used to identify an individual, often involving 

the hands [3], face [13], eyes [4], or ears [1]. The eyes in 

particular offer a variety of physical (iris) and behavioral 

(eye movements) properties that make them ideal for the 

purposes of biometric identification, due to their high 

specificity and the complex mechanical logistics of 

reproduction [11]. 

Eye movements are highly counterfeit resistant, as they 

depend largely on the brain activity and extraocular muscle 

properties of an individual. As a result, with our current 

knowledge of the human brain and extraocular muscle 

structure, it is not possible to accurately replicate eye 

movements outside of a living human. 

While there has been some research into the general 

applicability of eye movements as a behavioral biometric 

[8, 23], the error rates produced by current methods of eye 

movement analysis tend to be much higher than those of 

accepted biometric systems. For this reason, more research 

is required to identify eye movement features, and methods 

of extraction, that are able to provide a higher level of 

specificity and noise tolerance. In this paper we consider 

various methods of eye movement pattern (scanpath) 

analysis and their ability to accurately distinguish between 

unique individuals in the context of biometric 

identification. 

2. Background 

The term scanpath refers to the spatial path formed by a 

sequence of fixations and saccades. Fixations occur when 

the eye is held in a relatively stable position, allowing 

heightened visual acuity on an object of interest. Saccades 

occur when the eye rotates quickly (with velocities 

reaching as high as 700°/s) between points of fixation, with 

almost no visual acuity maintained during rotation [12]. 

Scanpath theory is the idea that individuals tend to repeat 

certain scanpath trajectories during repeated viewings of a 

given pattern. This phenomenon was first investigated by 

Noton and Stark [14], where it was found that the general 

scanpath displayed by a subject during the first viewing of a 

pattern was repeated in the initial eye movements of 

roughly 65% of subsequent viewings. 
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As well, it has been noted by various sources [14, 16, 22] 

that the scanpaths produced for a given stimulus pattern 

tend to vary for different subjects. The hypothesized 

explanation being that these scanpaths are formed in 

memory during the initial viewing of a pattern. 

These inherent properties of scanpaths – subconscious 

reproduction, variation by subject, variation by stimulus – 

make them promising candidates as a behavioral biometric. 

In this paper, we investigate specifically the scanpaths 

formed during reading. 

The reading process presents an instance of high 

usability, as it is a fairly common activity which should be 

familiar to most subjects. For an unfamiliar text, reading is 

also an active cognitive process whose pace and direction 

are set by the individual subject’s knowledge and 

experience with similar texts [15, 16]. This cognitive nature 

of reading forces the subject to concentrate on the material 

rather than the task, producing more realistic and natural 

eye movements. 

3. Biometrics via Scanpath Analysis 

 
Figure 1: Biometrics via scanpath analysis. 

 

Figure 1 provides an overview of our approach to 

biometrics via scanpath analysis. The raw Eye Movement 

Data produced during various recordings is supplied to the 

Eye Movement Classification module which identifies, 

filters, and merges the data points that describe the unique 

fixations/saccades present in each. Merged fixation and 

saccade groups are then sent to the Feature Extraction 

module for analysis, where scanpath features are 

calculated. In comparing two scanpaths, the scanpath 

features and fixation groups of each recording are sent to 

the Feature Comparison module, in which similarity scores 

are calculated for the various scanpath features, and a 

pairwise distance comparison is performed on opposing 

fixation points. The various similarity scores are then 

supplied to the Information Fusion module to combine 

them into a single similarity score that can be used for 

Biometric Identification. 

3.1. Eye Movement Classification 

The raw eye movement signal, shown in Figure 2, 

produced by an eye tracker presents a great deal of 

information, much more in fact than is practically 

necessary during scanpath analysis. It would not be 

practical, for instance, to compare 100,000+ unique data 

points when the number of fixations/saccades represented 

by that data does not exceed 500. As well, this data often 

contains extraneous noise caused by blinks and the inherent 

inaccuracy of the eye tracking system. As a result, this 

signal must be processed and filtered to provide accurate 

and useful information. 

 

 
 

Figure 2: Raw eye movement signal. 

 

To reduce the data set to the basic fixations and saccades 

that form the scanpath, a velocity threshold algorithm [10] 

was employed to classify individual points with a velocity 

greater than 50°/sec as saccades, where all remaining points 

were assumed to be fixations. Following the classification 

process, a micro-saccade filter re-classified saccades with 

amplitude less than 0.5° as fixations, and a micro-fixation 

filter re-classified fixations with a duration less than 100 

milliseconds as saccades. 

Eye Movement Data 

Eye Movement Classification 

Feature Extraction 

Feature Comparison 

Information Fusion 

Biometric Identification 
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Fixation and saccade groups, shown in Figure 3, were 

then merged. Fixation data included: start time, duration, 

and positional centroid. Saccade data included: start time, 

duration, amplitude, velocity, and peak velocity. 

 

 
 

Figure 3: Example reading scanpath. 

 

As a side-note, in all recordings produced in the current 

experiment the number of fixations and saccades was less 

than the square root of the total number of data points; this 

information was useful for improving the performance of 

processing algorithms. For example, an eye movement 

recording containing 60,000 data points often contained 

less than 245 fixations and 245 saccades. Note also that this 

relation is heavily dependent on the frequency of data 

collection. 

3.2. Feature Extraction 

The processed fixation and saccade groups essentially 

describe the scanpath of a recording. By considering the 

properties of the scanpath, we hope to identify scanpath 

features that hold promise as biometric indicators. To this 

end, a number of eye movement metrics were calculated for 

each recording based on the properties of its unique 

scanpath. 

Basic eye movement metrics considered include: 

fixation count, average fixation duration, average vectorial 

saccade amplitude, average horizontal saccade amplitude, 

average vertical saccade amplitude, average vectorial 

saccade velocity, average vectorial saccade peak velocity, 

and the velocity waveform indicator (Q). 

More complex metrics, resulting from the aggregated 

scanpath data, include: scanpath length, scanpath area, 

regions of interest, inflection count, and slope coefficients 

of the amplitude-duration and main sequence relationships. 

 

Fixation Count. Fixation count is indicative of the number 

of objects processed by the subject [5], and was measured 

simply as the total number of fixations contained within the 

scanpath. 

 

Average Fixation Duration. Average fixation duration is 

indicative of the amount of time a subject spends 

interpreting an object [5], and was measured as the sum of 

fixation durations over the fixation count. 

 

Average Vectorial Saccade Amplitude. There is a noted 

tendency for saccades to maintain similar amplitudes 

during reading [22], average saccade amplitude was 

considered as a candidate biometric feature under the 

assumption that differences in amplitude may be apparent 

between subjects. Average vectorial saccade amplitude was 

measured as the sum of vectorial saccade amplitudes over 

the total number of saccades, where the vectorial amplitude 

of a saccade was defined as the Euclidean norm of the 

horizontal and vertical amplitudes, according to the 

equation: 

                  

∑ √  
    

  
   

 
 

(1) 

 

Average Horizontal Saccade Amplitude. Horizontal 

saccade amplitude was considered separately as these are 

more indicative of between-word saccades. Average 

horizontal saccade amplitude was measured as the sum of 

horizontal saccade amplitudes greater than 0.5° over the 

total number of horizontal saccades with amplitude greater 

than 0.5°. 

 

Average Vertical Saccade Amplitude. Vertical saccade 

amplitude was considered separately as these are more 

indicative of between-line saccades. Average vertical 

saccade amplitude was measured as the sum of vertical 

saccade amplitudes greater than 0.5° over the total number 

of vertical saccades with amplitude greater than 0.5°. 

 

Average Vectorial Saccade Velocity. Average vectorial 

saccade velocity as measured as the sum of vectorial 

saccade velocities over the total number of saccades, where 

the vectorial velocity of a saccade was defined as the 

Euclidean norm of the horizontal and vertical velocities. 

 

Average Vectorial Saccade Peak Velocity. Average 

vectorial saccade peak velocity was measured as the sum of 

vectorial saccade peak velocities over the total number of 

saccades, where the vectorial peak velocity of a saccade 

was defined as the Euclidean norm of the horizontal and 

vertical peak velocities. 
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Velocity Waveform Indicator (Q). We use the term 

velocity waveform indicator (Q) to refer to the ratio of peak 

velocity to average velocity of a given saccade [12]. In 

normal human saccades this value is roughly constant at 

1.6, though it is assumed that this is subject to some amount 

of variation similar to the amplitude-duration and main 

sequence relationships. A rough estimate of this value was 

obtained from the ratio of the average vectorial peak 

velocity over the average vectorial velocity. 

 

Scanpath Length. Scanpath length is indicative of the 

efficiency of visual search [5], and was considered as a 

candidate biometric feature under the assumption that 

visual search is dependent on the subject’s familiarity with 

similar patterns/content. Scanpath length was measured as 

the sum of absolute distances between the vectorial 

centroid of fixation points, where the vectorial centroid was 

defined as the Euclidean norm of the horizontal and vertical 

centroid positions, according to the equation: 

                ∑  √  
    

  √    
      

  
 

   
 (2) 

 

Scanpath Area. Scanpath area was measured as the area of 

the convex hull formed by fixation points, as described by 

Goldberg and Kotval [5]. Scanpath area is similar to 

scanpath length in its indication of visual search efficiency, 

but is less sensitive to localized searching. That is, a 

scanpath may have a large length while only covering a 

small area.  

 

Regions of Interest. Regions of interest was measured as 

the total number of spatially unique regions identified after 

applying a spatial mean shift clustering algorithm [20] to 

the fixation points of the scanpath, using a sigma value of 

2° and convergence resolution of 0.1°. 

 

Inflection Count. Inflections occur when the scanpath 

changes direction, in reading there are a certain amount of 

“forced” inflections that are necessary to progress through 

the text, but general differences in inflection count are 

indicative of attentional shifts. Inflection count was 

measured as the number of saccades in which the horizontal 

and/or vertical velocity changes signs, according to the 

following algorithm: 

 

1. Inflections = 0 

2. i = 2 

3. While i < Saccade Count: 

4. If sign(Velocityi) != sign(Velocityi–1): 

5.     Inflections = Inflections + 1 

6.   End if 

7.   i = i + 1 

8. End while 

 

Coefficient of the Amplitude-Duration Relationship. The 

amplitude-duration relationship varies from person to 

person, and describes the tendency for saccade duration to 

increase linearly with amplitude [12], according to the 

equation: 

                                   (3) 

To calculate the slope coefficient of this relationship, a 

data set was constructed from the saccade groups such that 

x-column data contained the larger absolute component 

(horizontal or vertical) amplitude and y-column data 

contained the respective saccade duration. 

The slope coefficient of the amplitude-duration 

relationship was obtained from a linear regression of this 

data set. 

 

Coefficient of the Main Sequence Relationship. The main 

sequence relationship varies from person to person, and 

describes the tendency for saccade peak velocity to increase 

exponentially with amplitude [2], according to the 

equation: 

                              
           

   (4) 

This relationship has shown to be roughly linear for 

small saccades in the range of 0-10° amplitude. As a result, 

we have assumed that a linear approximation is acceptable 

in the current context, as the saccades produced during 

reading are often on the order of 0-3° amplitude, with very 

few over 10° amplitude. 

To calculate the slope coefficient of this relationship, a 

data set was constructed from the saccade groups such that 

x-column data contained absolute component (horizontal or 

vertical) amplitude and y-column data contained the 

respective absolute component peak velocity. 

The slope coefficient of the main sequence relationship 

was obtained from a linear regression of this data set. 

3.3. Feature Comparison 

Analysis of Scanpath Components. While the previously 

discussed metrics proved a means of quantifying certain 

features of individual scanpaths, additional calculations are 

necessary to compare the similarity of the metrics produced 

by different scanpaths. 

To determine a relative measure of similarity between 

metrics, a Gaussian cumulative distribution function (CDF) 

was applied as follows, were x and µ are the metric values 

being compared and σ is the metric-specific standard 

deviation: 

  
 

 √  
∫  

 
   
      

 

  

 (5) 

Metric-specific standard deviations were determined 

empirically, details are given in the Experimental Setup 

section. 
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The Gaussian CDF comparison produces a probability 

value between 0 and 1, where a value of 0.5 indicates an 

exact match and a value of 0 or 1 indicates no match. This 

probability is converted into a more intuitive similarity 

score, where a value of 0 indicates no match and values of 1 

indicates an exact match, with the following equation: 

                    (6) 

From the similarity score, a simple acceptance threshold 

may be used to indicate the level of similarity which 

constitutes a biometric match. 

 

Pairwise Distance Comparison. In addition to similarity 

calculations for the various scanpath metrics, a method of 

scanpath analysis similar to that described by Grindinger et 

al. [6] was developed to estimate the spatial similarity of 

two distinct scanpaths. 

In comparing two scanpaths, the Euclidean pairwise 

distance was calculated between the centroid positions of 

fixations. Following this, a tally was made of the total 

number of fixation points in each set that could be matched 

to within 1° of at least one point in the opposing set. The 

similarity of scanpaths was assessed by the proportion of 

tallied fixation points to the total number of fixation points, 

to produce a similarity score similar to those generated for 

the various eye movement metrics. 

3.4. Information Fusion 

Information fusion combines the information obtained 

from different biometric traits to improve the overall 

accuracy of a biometric system [19]. 

The previously discussed similarity calculations produce 

a total of 15 different similarity scores based on varying 

aspects of scanpath analysis. To consolidate these results 

into a single representative biometric, we employed the use 

of a weighted mean formula, to improve the overall 

accuracy of identification while making allowance for the 

relative accuracy of individual features: 

           
∑                    

 
   

∑        
 
   

 (7) 

Metric-specific weighting values were determined 

empirically, details are given in the Experimental Setup 

section. 

4. Experimental Setup 

4.1. Participants 

Eye movement data was collected for a total of 32 

subjects (26 males / 6 females), ages 18 – 40 with an 

average age of 23 (SD = 5.4). Mean positional accuracy of 

the recordings averaged between all calibration points was 

0.74° (SD = 0.54°). 29 of the subjects performed 4 

recordings each, and 3 of the subjects performed 2 

recordings each, generating a total of 122 unique eye 

movement records. 

The first two recordings for each subject were conducted 

during the same session with a 20 minute break between 

recordings; the second two recordings were performed a 

week later, again with a 20 minute break between 

recordings. 

4.2. Apparatus & Software 

Eye movements were recorded using an EyeLink II eye 

tracker [17] running at 1000 Hz. Stimuli were presented on 

a flat screen monitor positioned at a distance of roughly 685 

millimeters from the subject, with screen dimensions of 

640 × 400 millimeters, and resolution of 2560 × 1600 

pixels. 

All algorithms and data analysis were implemented and 

performed in MATLAB, and run using a 3.1 GHz 

quad-core CPU with 16 GB memory (DDR3 RAM). 

4.3. Procedure 

Eye movement records were generated for participants’ 

readings of various excerpts from Lewis Carroll’s “The 

Hunting of the Snark.” This poem was chosen for its 

difficult and nonsensical content, forcing readers to 

progress slowly and carefully through the text. 

For each recording, the participant was given 1 minute to 

read, and text excerpts were chosen to require roughly 1 

minute to complete. To reduce learning effects, participants 

were given different excerpts for each recording session, 

each of which maintained similar line lengths throughout 

multiple reading sessions. 

The raw eye movement records were then processed and 

classified into the fixations and saccades that describe their 

unique scanpaths. To determine the metric-specific 

standard deviation values to be used in similarity 

calculations, the various eye movement metrics were 

calculated for each recording, the standard deviation of 

each metric for recordings produced by each subject were 

calculated separately, and the average within-subject 

standard deviation (α) for each metric was calculated. 

Then, the standard deviation value used for metric-specific 

similarity calculations was twice the metric-specific 

average within-subject standard deviation: 

     (8) 

To examine the relative accuracy of individual metrics as 

biometric features, similarity calculations were run for each 

metric across all possible combinations of eye movement 

records. For example, considering 3 eye movement records 

(A, B, and C) produced by unique subjects, similarity 

scores were produced for the combinations: A + B, A + C, 

B + C. For the 122 eye movement records, this resulted in: 

(
   

 
)                    (9) 
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From these similarity scores, the receiver operating 

characteristic curves of individual metrics were plotted and 

equal error rates were determined to assess their relative 

accuracies and assign appropriate weighting values to the 

identification algorithm: 

 

Weight Similarity Metric 

25 Fixation count 

75 Average fixation duration 

1 Average vectorial amplitude 

10 Average horizontal amplitude 

1 Average vertical amplitude 

10 Average vectorial velocity 

1 Average vectorial peak velocity 

1 Velocity waveform indicator 

1 Scanpath length 

10 Scanpath area 

1 Regions of interest 

10 Inflection count 

1 Amplitude-duration coefficient 

1 Main sequence coefficient 

1 Pairwise distance comparison 

Table 1: Metric-specific weighting values. 

 

The accuracy of the final identification algorithm was 

then calculated similar to metric-specific accuracy, 

followed by performance assessments of the various 

identification stages. 

5. Results 

5.1. Identification Accuracy 

False acceptance rate (FAR) is defined as the percentage 

of erroneously matched similarity scores, and false 

rejection rate (FRR) is defined as the percentage of 

erroneously unmatched similarity scores. The receiver 

operating characteristic (ROC) curves, shown in Figure 4, 

plot false rejection rate against false acceptance rate at 

various acceptance thresholds. The equal error rate (EER), 

shown in Table 2, is the error rate at which false acceptance 

rate and false rejection rate are equal. 

 

EER Similarity Metric 

34% Fixation count 

30% Average fixation duration 

42% Average vectorial amplitude 

36% Average horizontal amplitude 

46% Average vertical amplitude 

37% Average vectorial velocity 

43% Average vectorial peak velocity 

42% Velocity waveform indicator 

43% Scanpath length 

48% Scanpath area 

49% Regions of interest 

38% Inflection count 

45% Amplitude-duration coefficient 

49% Main sequence coefficient 

43% Pairwise distance comparison 

27% Weighted mean 

Table 2: Equal error rates. 

 

Of the considered metrics, average fixation duration 

(30% EER), fixation count (34% EER), average horizontal 

saccade amplitude (36% EER), average vectorial saccade 

velocity (37% EER), and inflection count (38% EER) 

displayed the most accuracy as biometric indicators. 

The main sequence coefficient (49% EER), regions of 

interest (49% EER), scanpath area (48% EER), and 

amplitude-duration coefficient (45% EER) provided the 

least accuracy, often reaching their best half total error rate 

(HTER) at an acceptance threshold of 1.0, indicating a very 

poor trade-off of FAR to FRR. It seems likely that this is 

due in part to the higher level of abstraction inherent in 

these metrics. While further refinement of thresholds and 

comparison techniques may yield better results, as 

presented these metrics do not provide adequate accuracy 

to justify their use as biometrics. 

As well, the weighted mean fusion of scanpath features 

provides a clear and noticeable benefit in comparison to the 

individual metrics, as can be seen from the comparative 

ROC curves, achieving an EER of 27%. 

5.2. Identification Performance 

Averaged over 10 independent runs, the full process 

from eye movement classification to biometric 

identification for comparing the eye movement data 

supplied by two unique recordings (roughly 3 MB each) 

took less than 2.30 seconds (SD = 0.01). Of this, eye 

movement classification took 1.92 seconds (SD = 0.01), 

feature extraction took 0.35 seconds (SD = 0.01), feature 

comparison took 0.03 seconds (SD = 0.00), and 

information fusion took 0.00 seconds (SD = 0.00). Note 

that eye movement classification may be performed in real 

time as eye movement data is collected [9], removing this 

potential bottleneck from performance considerations. 
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6. Limitations 

The experiments presented in this paper were conducted 

under very controlled conditions with the use of high 

accuracy eye tracking equipment. In practice it would be 

difficult to replicate such ideal conditions. As well, the 

relatively small amount of tested subjects and data sets per 

subject increases the possibility of skewed accuracy results 

caused by random variation/similarity between recordings. 

7. Future Research 

There are a number of areas in which the accuracy of 

these metrics may be improved, including: adjustments to 

the way analysis is performed, content related analysis, and 

the implications towards high level brain activity. While we 

have not addressed these issues in the current paper, 

focusing instead on the general applicability of scanpath 

metrics to biometric identification, they are worth noting as 

the possible subjects of continued research in this area. 

7.1. Statistical Analysis Adjustments 

Selection of more appropriate standard deviation values 

and comparison of different probability distributions (e.g. 

Gamma, Chi-square, etc.) for metric-specific similarity 

calculations may improve their respective error rates, while 

a thorough examination of the individual metrics and their 

relations may allow for increased accuracy through 
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Figure 4: Receiver operating characteristics. 
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information fusion as the metric-specific weighting values 

are optimized. 

7.2. Content Related Analysis 

In addition to the considered scanpath metrics, the eye 

movements produced during reading also exhibit certain 

traits that are not readily apparent in less structured 

patterns, allowing further metrics for scanpath comparison 

[21, 22]. These metrics include: the distribution of fixation 

positions within a word, which are often Gaussian with a 

center dependent on the word length; the relative amount of 

regressions (fixations on previously visited words); and the 

relative amount of skipped words (words not directly 

fixated on). 

7.3. High Level Brain Activity 

This work investigated the biometric potential of a set of 

basic measurements related to individual eye movements 

and aggregated scanpath characteristics. It is also important 

to understand if it is possible to categorize the motor 

control strategies employed by the brain for visual search 

and learning, and employ such information for 

identification purposes. 

8. Conclusion 

As technology advances, biometric traits are becoming 

easier to reproduce, circumventing the purposes of existing 

biometric identification techniques and leaving gaps in the 

efficacy of the systems that use them. Scanpath theory 

presents a unique solution, as eye movements are uniquely 

counterfeit resistant due to the complex neurological 

interactions and extraocular muscle properties involved in 

their generation. 

This paper has presented an objective evaluation of a 

number of scanpath-based biometric features and their 

ability to accurately and precisely distinguish unique 

individuals, with equal error rates ranging from 30%–49%. 

As well, we have presented an information fusion method 

which allows for the combination of multiple metrics to 

produce more stable/accurate identification, which we have 

shown to be capable of producing an equal error rate of 

27% with near real-time performance, allowing for the 

comparison of two pre-classified eye movement records in 

less than 0.5 seconds. 
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