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Abstract 

Ternary eye movement classification, which separates fixations, 
saccades, and smooth pursuit from the raw eye positional data, is 
extremely challenging. This paper develops new and modifies 
existing eye tracking algorithms to perform meaningful ternary 
classification. To aid the purpose of meaningful automated ternary 
classification a set of qualitative and quantitative scores is intro-
duced to facilitate the assessment of classification performance. 
Experimental evaluation of the proposed methods is conducted 
using eye movement records recorded from 11 subjects at 1000Hz 
in response to a step and ramp stimuli eliciting fixations, sac-
cades, and smooth pursuit. Performance results for the automated 
and manual classification are reported. 

CR Categories: I.6.4 [Simulation and Modeling]: Model Valida-
tion and Analysis; J.7 [Computers in Other Systems]: Process 
control, Real time. 

Keywords: Eye movements, classification, algorithm, analysis, 
scoring, metrics, smooth-pursuit. 

1 Introduction 

The identification of the basic eye movement types from a noisy 
and frequently inaccurate raw eye positional signal is of utmost 
importance to the researchers and practitioners that employ eye 
trackers in their studies. Human Visual System (HVS) primarily 
exhibits six eye movement types: fixations, saccades, smooth 
pursuits, optokinetic reflex, vestibulo-ocular reflex, and vergence 
[1]. Among those eye movement types fixations, saccades, and 
smooth pursuit are most frequently studied. The following brief 
definitions can be provided for these eye movement types: eye 
fixation is an eye movement that keeps an eye gaze stable on se-
lected stationary target, saccade is a very rapid eye rotation mov-
ing the eye from one fixation point to the next, smooth pursuit 
(SP) is eye movement that follows a moving object with a purpose 
of keeping the object on a high acuity vision zone called the fovea 
[1]. Eye fixations are frequently employed for human computer 
interaction as an input modality [2], saccades and smooth pursuits 
are frequently employed to diagnose pathologies of the HVS or 
assessing HVS performance in clinical populations [3]. 

Accurate automated eye movement classification is exceedingly 
difficult due to the noise and inaccuracies inherited from the eye 

tracking equipment, dynamics of the HVS behavior, and variabil-
ity between- and within- eye movement classification algorithms. 
Variation of single threshold value, in cases when only fixations 
and saccades are classified, is reported to substantially affect met-
rics such as number of detected saccades and fixations, average 
fixation duration and saccade amplitude [4-6]. Frequently re-
searchers perform manual classification to avoid miss-
identification issues associated with automated algorithms. How-
ever in such cases classification becomes a very long and tedious 
process. Selection of the thresholds that provide meaningful clas-
sification is frequently done empirically with default values sug-
gested by either eye tracking vendors or related literature. Given 
rapid developments of the eye tracking technologies that vary in 
hardware, sampling frequencies, and calibration algorithms [7] it 
is easy to “copy and paste” suggested thresholds; however it is 
hard to validate classification accuracy. During empirical thresh-
old selection by “eye balling” small part of the classified data it is 
easy to misclassify some of recordings or misidentify corrective 
behavior such as corrected undershoots, overshoots, dynamic 
saccades etc. [1].  

It is hard to define meaningfulness of the automated classification 
given a threshold value. For example it is possible to assume that 
quality of saccade detection can be ultimately judged by such 
properties as amplitude-duration relationship, main-sequence 
relationship, and saccades’ waveform [1]. However such charac-
teristics are well established only for horizontal rightward sac-
cades starting from the primary eye position [8] and are not well 
researched for other saccade groups. Recently Komogortsev and 
colleagues have proposed a set of behavioral scores with a pur-
pose of selecting a meaningful classification threshold using a 
fixed stimulus [5]. Behavioral scores assume that amount of sac-
cadic and fixational behavior encoded in a simple step-stimulus is 
matched by the HVS of a normal person therefore providing an 
opportunity to find a threshold value that ensures such perfor-
mance. Researchers reported that thresholds selected according to 
these criteria provided meaningful classification results [5].  

The goal of automated threshold selection for a fixed stimulus 
with subsequent employment of the same threshold for dynamic 
stimuli is particularly attractive because fixed stimulus is already 
presented as a part of the calibration procedure. Recording 
equipment’s performance for a given setup and subject is unlikely 
to change from calibration to the actual recording. Therefore, it is 
possible to assume that selected thresholds would continue to 
provide meaningful classification performance even during 
presentation of the stimuli that is different from the calibration. 

Automated classification of SP in the presence of fixations and 
saccades is even more difficult task and continues to be a topic of 
an active research [9, 10]. Most difficult part of ternary eye 
movement classification is separation between fixations and SP. 
Two main factors contribute to the challenge: a) a fixation con-
sists of the three sub-movement types such as tremor, drift, and 
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microsaccades. As a result a velocity range during a fixation (ve-
locities up to 30º/s are possible during micro-saccades as comput-
ed by the main sequence relationship [1]) and SP (velocity up to 
90º/s is reported in [11]) overlap. b) eye tracking noise further 
blurs quantitative boundaries between fixation and pursuit.  

Given the importance of ternary eye movement classification and 
its challenges it is necessary to find out what degree of meaning-
ful classification can be obtained and if such meaningful classifi-
cation performance can be verified by a set of objective behavior-
al scores.   

To start answering these questions this work: 1) introduces behav-
ior scores related to SP, 2) proposes an algorithm for ternary eye 
movement classification 3) evaluates automated and manual ter-
nary classification based on the proposed scores. 

2 Overview 

2.1 Classification of Fixations and Saccades 
In general eye movement classification algorithms consider dif-
ferent properties of the signal that is captured by an eye tracker. In 
case when fixations have to be separated from saccades classifica-
tion algorithms can be broken into the following groups: 1) posi-
tion-based – Dispersion Threshold Identification (I-DT), Mini-
mum Spanning Tree Identification (I-MST), 2) velocity-based - 
Velocity Threshold Identification (I-VT), Hidden Markov Model 
Identification (I-HMM), Kalman Filter Identification (I-KF), 3) 
acceleration-based – Finite Input Response Filter Identification (I-
FIR) [5, 12, 13].   To the best of our knowledge these algorithms 
have not been “successfully” applied to the ternary classification. 

2.2 Human Visual System Performance during Pur-
suit Stimuli 

An SP is done via three phases [14]: 1) SP latency when the brain 
programs the movement for approximately 120ms, 2) corrective 
saccade that brings the target to the fovea, 3) a final SP move-
ment.  

Considering the description above it might appear that derivation 
of a SP classification algorithm is relatively simple. Such intuition 
would be based on a notion that SP is something average between 
very fast saccades and stationary fixations. Subsequently, it is 
possible to think that the use of a second threshold in I-VT algo-
rithm to separate sandwiched SP signal between the fixations and 
saccades would be enough to ensure meaningful SP classification. 
However, there are several factors that prevent this simple thresh-
olding scheme from being successful.  

The first factor is jitter during fixations. Jitter is frequently caused 
by the inaccuracies in the eye tracker’s gaze position estimation. 
Good accuracy performance is varied in the range of 0.25º-1º. The 
second factor is presence of miniature eye movements such as 
drift, micro-saccades, and tremor [15] which all contribute to the 
jitter. Such conditions provide a high spread of the amplitudes for 
the positional (e.g., up to 1.5º) and velocity (e.g., up to 40º/s) 
signal. This spread does not greatly impact classification accuracy 
if only fixations and saccade are present, however in cases of SP 
of low velocity (e.g. 20-40º/s) the results of classification might 
be poor. The third factor is variation of the SP behavior between 
people. After beginning of the target’s motion some delay in the 
HVS response may occur. For example SP latency (the time dif-

ference between the onset of SP stimuli and actual SP movement 
that defines programming phase) can reach up to tens of millisec-
onds [16-19] and is dependent on such factors as fatigue or/and 
lack of concentration. To match target’s and eyes’ locations in 
case of a lagging performance HVS exhibits series of corrective 
saccades interspersed by the short periods of SP [1]. The frequen-
cies and amplitudes of corrective saccades are subject dependent 
[20]. In general humans are capable of matching velocities of up 
to 90º/s during SP [11], however for some people saturation limit 
occurs for velocities of 30-40º/s with higher velocities being com-
pensated by a series of corrective saccades and fixations [18]. 

2.3 Previous Algorithms for Automated Classifica-
tion of Smooth Pursuit 

In the previous research the separation of SP was done in cases 
when only SP and saccades were present. For example a single 
threshold-based algorithm was employed by [21]. The researchers 
used a velocity threshold of 50º/s to separate saccades from SP. 
All sequences of samples with velocity greater than threshold 
were checked upon matching main-sequence relationships. If a 
sequence of points met these criteria than all its samples were 
marked as a saccade. Otherwise the samples were discarded. Ba-
hill was able to use main sequence relationship as a criterion for 
meaningful classification because only horizontal saccades were 
considered.  

For ternary classification an interesting approach was proposed by 
San Agustin [9] and further enhanced by Larsson [10]. The ap-
proach monitors the direction of movement and rate of movement 
to separate fixations from SP. More details are provided in Sec-
tion 4. 

3 Behavior Scores for SP Classification 

Considering the multitude of factors affecting SP performance 
and especially between-subject variability, it is important to de-
velop simple metrics that can assess automated eye movement 
classification performance signaling the cases of classification 
success or failures with an ultimate goal of suggesting parame-
ters/thresholds for meaningful classification. 

Previously Komogortsev and colleagues [5] created a set of be-
havior scores that allowed assessment of classification quality or 
or even determining the optimal threshold values when only fixa-
tions and saccades were present. This work continues in the same 
direction fine-tuning already existing scores and creating addi-
tional scores to assess meaningfulness of ternary classification. 
For the purposes of the initial assessment behavioral scores as-
sume that the amount of fixational, saccadic, and SP behavior 
encoded in step and ramp stimuli is matched by the HVS in a 
normal subject. 

3.1 Scores for fixation and saccades only 

Komogortsev et al. [5] originally proposed three behavior scores 
namely Fixation Quantitative Score (FQnS), Fixation Qualitative 
Score (FQlS), and Saccade Quantitative Score (SQnS). The scores 
were originally designed to measure classification quality if only 
fixations and saccades are present in the raw eye positional trace. 
We perform following additions and modifications that allow 
extending the utility of behavior scores for ternary classification.  
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3.2 Modified Saccade Quantitative Score 

The SQnS ss the ratio of all detected saccade amplitudes to all 
saccade amplitudes encoded in the stimuli. To avoid counting 
corrective saccades during SP stimuli the SQnS is modified to 
consider saccades that directly correspond to the stimuli-saccade 
represented by the instantaneous jump of the target’s location. To 
attain this goal a temporal window is introduced which considers 
saccades in the interval [Dsac_lat, Dsac_lat+Dsac_dur]. Dsac_lat is sac-
cadic latency defined as a difference in time between the stimulus 
onset and the onset of the corresponding saccade. Saccadic laten-
cy for normal people is 200 ms. [1], same value is employed in 
our work.  Dsac_dur is a duration of a saccade given its amplitude 
Asac. Dsac_dur is measured as 2.2Asac+21 [15]. In case of our work 
Asac is the amplitude of the stimulus-saccade.  

Ideal SQnS score, which is only achieved if the HVS perfectly 
executes a saccade within the temporal window and classifier 
accurately detects it, is 100%. In practice the SQnS value might 
be significantly lower because of the anticipatory and corrective 
saccadic behavior that falls outside of the temporal window as a 
result of the initial undershoots or overshoots. 

3.3 Smooth Pursuit Qualitative Scores 

The intuitive idea behind the Smooth Pursuit Qualitative Scores 
(PQlS) is to compare the proximity of the detected SP signal to 
the signal presented in the stimuli. Two scores are indicative of 
the positional (PQlS_P) and the velocity (PQlS_V) accuracy. 

The PQlS_P and PQlS_V calculations are similar to the FQnS [5], 
i.e. for every SP point (xs,ys) of the presented stimuli, the check is 
made for the point in the eye position trace (xe,ye). If such point is 
classified as part of SP, the Euclidean distance between these two 
points and the difference between their speeds are computed. 
Then the sum of such distances and speed differences are normal-
ized by the amount of points compared. 

PQlS_P =
1
𝑁
∙ 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑁

𝑖=1

 1 

PQlS_V =
1
𝑁
∙ 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑠𝑝𝑒𝑒𝑑_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖

𝑁

𝑖=1

 2 

N is the amount of stimuli position points where stimuli pursuit 
state is matched with corresponding eye position sample detected 
as SP. 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒! = 𝑥!! − 𝑥!! ! + 𝑦!! − 𝑦!! ! and represents 
the distance between stimuli position and the corresponding SP 
point. 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑠𝑝𝑒𝑒𝑑_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒! = 𝜐!! − 𝜐!!  and represent the 
difference between speeds in i-th stimuli point and corresponding 
point in the raw eye positional sequence. 

Ideal PQlS scores, which can only be achieved if HVS perfectly 
matches positional/velocity characteristics of the moving target 
and no calibration errors are present, are PQlS_P=0º and 
PQlS_V=0º/s. In practice ideal scores might not be achieved due 
to calibration errors, corrective behavior, and classification inac-
curacies. 

3.4 Smooth Pursuit Quantitative Score 

Smooth Pursuit Quantitative Score (PQnS) measures the amount 
of detected SP behavior given the SP behavior encoded in the 
stimuli. It is computed similarly to the FQnS score. Every coordi-
nate tuple (xs,ys,t) of SP stimulus is compared to the correspond-
ing tuple (xe,ye,t) of the eye position signal. If the recorded eye 
positional tuple is classified as a SP than the SP detection counter 
is incremented by one.  The PQnS is calculated by normalizing 
the resulting SP behavior detection counter by the total amount of 
SP positional points encoded in the stimulus.   

PQnS = 100 ∙
𝑆𝑃_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑠𝑡𝑖𝑚𝑢𝑙𝑖_𝑆𝑃_𝑝𝑜𝑖𝑛𝑡𝑠  4 

 

The computation of the ideal PQnS is performed as: 

Ideal_PQnS = 100 · 1 −
𝑛 ∙ 𝑆! + 𝐷!"#_!"#_!"#!

!
!!!

𝐷!"#$_!"#_!"# !
!
!!!

 3 

where n is the number of stimulus-pursuits, 𝐷!"#$_!"#_!"# !
 is dura-

tion of the ith stimulus-pursuit, 𝑆!  is pursuit’s latency prior to the 
onset of the corrective saccade that brings the fovea to the target, 
and  𝐷!"#_!"#_!"#!  is the expected duration of the corrective sac-
cade.  The Ideal_PQnS assumes that the HVS exhibits the SP for 
the duration of the target’s movement immediately after the initial 
corrective saccade. Subsequently, accurate SP classification has to 
be performed for the duration of the movement. In practice ideal 

Onset 
time, ms 

Length, 
ms 

Stimulus 
onset coordi-

nates 

Stimulus Signal 

X Y A V 
1000 709 0 0.00 14.2° 20.1º/s 
2709 606 -10 10.15 14.2° 23.5º/s 
4314 - 0 0.00 14.2° - 
5314 - -10 10.15 14.2° - 
6315 531 0 0.00 14.2° 26.8º/s 
7846 471 -10 -10.16 14.2° 30.2º/s 
9316 - 0 0.00 14.2° - 

10316 - -10 -10.16 14.2° - 
11317 425 0 0.00 14.2° 33.5º/s 
12742 386 10 -10.16 14.2° 36.9º/s 
14127 - 0 0.00 14.2° - 
15127 - 10 -10.16 14.2° - 
16128 353 0 0.00 14.2° 40.3º/s 
17481 653 10 10.15 28.5° 43.6º/s 
19134 607 -10 -10.16 28.5° 46.9º/s 
20740 - 10 10.15 28.5° - 
21740 - -10 -10.16 28.5° - 
22741 400 10 10.15 20.0° 50.0º/s 
24141 566 -10 10.15 28.5° 50.3º/s 
25707 531 10 -10.16 28.5° 53.6º/s 
27237 - -10 10.15 28.5° - 
28237 - 10 -10.16 28.5° - 
29237 - -10 10.15 28.5° - 
31237 - 10 -10.16 20.3° - 
32237 - 10 10.15 20.0° - 
33237 - -10 10.15 14.2° - 

Table 1. Stimulus characteristics. Ramp stimulus invoking SP is 
highlighted with grey. Remaining rows describe step stimuli 
characteristics that invoke saccades.  Value A presents the am-
plitude of the target’s jump for saccades and magnitude of the 
target movements for SP. Value V represents the velocity of 
target’s movement during for SP. Within each single time inter-
val velocity value was a constant. Target was stationary between 
step and ramp signal therefore invoking fixations. 



Technical report TR2011-11-23, 2011, HCI Lab, Texas State University  
 

 4 

score might not be achieved due to the classification errors or 
additional corrective saccades occurring during the SP-stimulus. 

3.5 Mismatch Scores 

It is important to quantifiably assess misclassification of SP when 
only fixation or saccade stimulus is presented. For this purpose 
two mismatch scores are introduced Misclassified Fixation (Mis-
Fix) and Saccade (MisSac). The similar scores that describe SP 
misclassified as saccades or fixations cannot be introduced be-
cause during SP stimulus HVS can actually exhibit both fixations 
and saccades. Therefore, it is impossible to say if fixations and 

saccades during SP stimuli are detected because of the HVS be-
havior or misclassification caused by the classification algorithm.  

To calculate MisFix, two separate quantities are calculated. 
SP_fixation_points is the number of points in eye position trace 
that were classified as SP but the corresponding stimuli point for 
them is fixation. total_stimuli_fixation_points is the total number 
of fixation points in stimuli 

MisFix = 100 ∙
𝑆𝑃_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑖𝑚𝑢𝑙𝑖_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛_𝑝𝑜𝑖𝑛𝑡𝑠
 5 

Ideal MisFix is 0% indicating that no SP was detected during 
fixational stimulus. In practice ideal scores might not be achieved 
due to the classification errors or when the HVS stats exhibiting 
movements that resemble SP during fixational stimuli. 

To calculate MisSac, two separate quantities are calculated. 
SP_saccade_points is the number of points in eye position trace 
classified as SP. To compute the SP_saccade_points value a tem-
poral window is introduced that considers the misclassification in 
the interval [Dsac_lat, Dsac_lat+Dsac_dur] that was introduced in Sec-
tion 3.2. The use of such temporal window allows considering 
misclassification events that directly relate to the saccadic stimuli.  
The second value is the total_saccades_points. This is the number 
of the total eye position sample points that fit in the above men-
tioned interval.  

MisSac = 100   ∙
𝑆𝑃_𝑠𝑎𝑐𝑐𝑎𝑑𝑒_𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑐𝑐𝑎𝑑𝑒𝑠_𝑝𝑜𝑖𝑛𝑡𝑠
 6 

Ideal MisSac is 0% indicating that no SP was detected during 
exhibited saccades. In practice ideal scores might not be achieved 
due to the classification errors or in presence of express saccades 
which are interspersed by miniature fixations which sometimes 
might resemble SP. 

4 Algorithms for Smooth Pursuits Detection 

I-VVT: We modify the I-VT algorithm to perform ternary classi-
fication. For the purposes of separating SP from fixations a se-
cond velocity threshold is introduced. To highlight such modifica-
tion the algorithm’s name is changed to the (Velocity and Veloci-
ty Threshold Identification) I-VVT. Such algorithm is capable of 
real-time performance, however does not provide accurate classi-
fication as shown in Section 6. 

I-VMP: We call the approach proposed by San Agustin [9] and 
enhanced by Larsson [10] Velocity and Movement Pattern Identi-
fication (I-VMP), because it employs velocity threshold to first 
identify saccades similarly to I-VVT. Subsequently, it analyses 
the movement patterns to separate SP from fixations. The move-
ment pattern is analyzed in a temporal window with a size Tw. In 
that window the direction of movement is computed by a set of 
angles that comprise the trajectory of raw eye positional samples 
in the window.  The magnitude of movement is determined by the 
amount of angles pointing in specific direction. In our implemen-
tation we normalize the magnitude of movement to the interval 
[0,1] and separate the values in this interval with a threshold Tm. 
Values above the threshold are marked as SP and below the 
threshold are marked as fixations. Detailed description of the 
algorithm is provided elsewhere [9].  

I-VDT: In this work we propose a ternary classification algorithm 
called Velocity and Dispersion Threshold Identification (I-VDT). 
It performs the initial separation of saccades similarly to the I-
VVT and the I-VMP. Subsequently, it separates SP from fixations 

Figure 1. Pseudocode for the I-VDT algorithm 

Algorithm:  Smooth Pursuit Classification ( I-VDT) 
Input: array of eye position points, velocity threshold, 
dispersion threshold, temporal window size 
Output: array of fixations, saccades, and smooth pursuits 
 
Calculate point-to-point velocities for each point in the 
eye position array 

Mark all valid points as unclassified. 

Mark  all invalid points as noise 

Mark all unclassified points above the velocity threshold 
as saccades 

Filter Function(array of pre classified saccades) 

 

 

 

Initialize temporal window over first points in the 
remaining eye movement trace 
While temporal window does not reach the end of array 
  Calculate dispersion of points in window 
  If (dispersion < dispersion threshold) 
     While dispersion < dispersion threshold 
          Add one more unclassified point to window  
          Calculate dispersion of points in window 
     End while 
     Mark the points inside of the window as fixations  
     Clear window 
  Else 
     Remove first point from window 
     Mark first point as a smooth pursuit 
  End if 
End while 
Merge Function(array of pre classified smooth pursuits, 
fixations, and saccades) 
Return saccades, fixations, and smooth pursuits 
 

 

Check all saccades for their amplitude and 
duration. All points from saccades with amplitude 
lesser then minimal allowed or with duration lesser 
than 4 ms should be mark as unclassified. 
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by employing a modified dispersion threshold identification 
method, which within a temporal window of the size Tw monitors 
dispersion of the points (corresponding threshold is Td). Figure 1 
presents the pseudocode. Dispersion of the points is computed in 
the same way as presented in [12].  

5 Experimental Setup  

Apparatus: The data was recorded using the EyeLink II eye 
tracker [22] at 1000Hz on a 21 inch CRT monitor. To ensure high 
accuracy of the eye movement recording a chin rest was em-
ployed. The chin rest was positioned at 70cm in front of the moni-
tor.  

Stimulus signal: Step and ramp stimulus was represented by a 
moving target. Target’s behavior is described in table 1 and sup-
plied as an additional video file attached to this submission. The 
target was presented as a white dot with a size of approximately 1º 
in diameter and the center marked with a small black dot to facili-
tate higher targeting accuracy for HVS. Remaining screen’s back-
ground was black.  

Participants: The test data consisted of a heterogeneous subject 
pool, age 18-25, with normal or corrected-to-normal vision. A 
total of 11 participants volunteered for the evaluation test. None 
of the participants had prior experience with eye tracking. The 
mean percentage of invalid data was 1.24% with maximum 
7.61%. All recordings were employed during automated classifi-
cation assessment (Figures 2-4). Only three recordings selected by 
criteria described next were employed during manual assessment. 

Manual Classification: Manual classification was performed by 
a post-doctoral researcher to establish performance baseline and 
was done by visual inspection of the recorded data. Saccades were 
separated when the signal’s positional change was large. Fixations 
were separated when the signal stayed within a certain positional 
proximity with jitter, tremor and micro saccades present in the 
signal. Smooth pursuit was characterized as a signal with very low 
jitter and continuous directional change of the eye-gaze position. 
Initial corrective saccades in response to the onset of pursuit stim-
ulus were classified as saccades 

Due to considerable time necessary to classify signal manually 
(approximately 2.5 hours per recording) only three records were 
classified and were labeled as “good”, “medium”, and “bad”. 
“Bad” was selected because of the extremely high jitter during 
fixational signal. “Good” was selected due to low jitter, lack of 
large saccade overshoots and undershoots, and close match of SP 
to the stimulus position. “Medium” recording had lower jitter, 
however the ramp signal was not well matched by the HVS. It is 

understood that the process of manual classification and categori-
zation is subjective. 

Ideal Scores: The Ideal_FQnS was computed by the eq. (4) in [5] 
for the stimulus characteristics described by Table 1 and was 90% 
. The Ideal_PQnS was computed by the eq. (1) and was 52%. 
Following assumptions were made for the SP latency: SP latency 
for stimulus-pursuits with velocity <20°/s is 0 ms, <30 °/s is 
230ms, <40 °/s is 210ms, <50 °/s is 180, and >50 °/s is 210ms. 

6 Results ternary 

6.1 Manual Classification 

Table 2 present the behavior scores that were computed after 
manual classification was done. Results indicate that the HVS 
performance was far from the ideal. The FQnS had the closest 
value to the ideal score of 84%. The SQnS was very far from the 
ideal value of 100%, possibly indicating that the selected perfor-
mance interval of [Dsac_lat, Dsac_lat+Dsac_dur] was not realistically 
matched by the HVS to effectively reach target’s location. In real-
ity undershoots, overshoots, and express saccades pushed correc-
tive saccadic behavior out of considered boundaries. The PQnS 
value was far from the ideal because frequently HVS exhibited 
corrective saccade interspersed by fixations to follow ramp stimu-
li. Mismatch scores were not 0% as ideal numbers would suggest, 
because HVS exhibited movements that resemble SP after the 
ramp stimulus disappeared. All qualitative scores present reason-
able values indicating relatively small positional and velocity 
errors between presented stimulus and position exhibited by the 
HVS. 

In subsequent analysis of automated classification we employ the 
score ranges received as a result of manual classification to judge 
“meaningfulness” of the automated classification. 

6.2 Automated Classification  

Velocity threshold that separates saccades from fixations and SP 
was set to 70º/s for all classification algorithms considered in this 
work. Such threshold was selected following the recommenda-
tions presented in [5] allowing fixing the saccade classification 
performance and investigating the performance of the most chal-
lenging part of the classification, i.e., separation of SP from fixa-
tions. 

I-VVT: Figure 1 presents behavioral scores. The SQnS=44% 

Test subject/Scores S1 S7 S10 Average 
SQnS 37% 32% 60% 43% 
FQnS 63% 71% 42% 59% 
PQnS 46% 39% 40% 42% 

MisFix 13% 6% 33% 17% 
MisSac 11% 0.00% 11% 7% 
FQlS 0.46º 0.44º 0.58º 0.49º 

PQlS_P 3.07º 3.15º 2.58º 2.93º 
PQlS_V 39º/s 23º/s 30º/s 31º/s 

Evaluation medium good bad  
Table 2. The scores for manually classified eye trace position 
for three test subjects. Their qualitative evaluation presented. 

Figure 1.  Performance of the I-VVT algorithm. X axis depicts SP 
threshold. Y axis depicts the behavioral score values 
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remains almost the same due to a fixed saccade threshold. The 
FQnS starts extremely low and increases together with the value 
of the SP threshold. The PQnS score starts at 41% and decreases. 

Both mismatch errors start high and decrease to 0% when SP 
threshold reaches saccade threshold. Increase of FQnS and paral-
lel decrease of PQnS depicts classification failure of the I-VVT, 

Figure'2.!Performance!of!the!I.VMP!algorithm.!X!axis!
depicts!SP!threshold.!Y!axis!depicts!average!behavioral!
score!values.!
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which is represented by the impossibility of accurately classifying 
both fixations and SP at the same time. The intersection point at 
SP threshold of 26º/s yields FQnS=PQnS=22% is far from the 
values provided by manual classification. At the same time mis-
match scores are too high. 

I-VMP: Figure 2 presents the behavior scores. The SQnS=44% 
remains almost the same due to a fixed saccade threshold. The 
values of FQnS and PQnS immediately indicate that magnitude of 
movement threshold Tm with values of 0.1 and 0.4 does not yield 
acceptable classification performance indicating that the move-
ment threshold value provides a substantial impact on classifica-
tion performance. In case of Tm=0.1 the FQnS is too low and the 
PQnS is too high. In case of Tm=0.4 the FQnS is too high and the 
PQnS is too low. Tm=0.2 provides the most usable case, where the 
FQnS slightly grows, when temporal window size increases, and 
essentially reaches the value of 63%. The PQnS slightly decreases 
eventually reaching the value of 49% and stabilizing at that value 
starting temporal window threshold of Tw=120 ms. Obtained 
quantitative scores are not far from the average values depicted by 
the Table 2. Mismatch scores start with relatively high values but 
decrease with the increase of the temporal window. Both mis-
match scores stabilize after temporal window reaches 120 ms. 
with the values, which are close to average depicted by Table 2. 
Starting the temporal window size of 140 ms. mismatch scores 
start increasing again. The FQlS stays relatively stable with ap-
proximate value of 0.7°, PQlS_V remains relatively stable at 58%, 
PQlS_P fluctuates at approximately 3.5°. 

I-VDT: Figure 3 presents classification performance of the I-
VDT algorithm. Impact of two factors on I-VDT performance is 
investigated: dispersion threshold and the size of the temporal 
window. The increase in dispersion threshold increases FQnS, 
however slightly yielding maximum at 52%. The increase in dis-
persion threshold Td significantly decreases the PQnS. At Td=1.5º 
the PQnS almost reaches 55%, while at Td=2.5º the PQnS goes 
down to 35%. The size of the temporal window does not impact 
the FQnS, however the growth in temporal window size produces 
substantial growth in PQnS. PQnS start saturating at window sizes 
exceeding 110 ms. Eventually, obtained quantitative scores are 
not far from the average values depicted by the Table 2. Mismatch 
scores are higher for smaller dispersions. The growth of the tem-
poral window makes mismatch scores grow slowly, however 

without reaching 20% for either of the scores. Essentially, the 
mismatch scores are close to the values specified by the Table 2. 
Qualitative scores with the exception of the PQnS_V are not af-
fected either by the dispersion threshold or the temporal window 
size. The velocity error represented by the PQnS_V goes down 
when temporal window size is increased. PQnS_V value is satu-
rated after the temporal window size reaches 110 ms. Smaller 
dispersion value yields smaller value. 

I-VDT vs. I-VMP: From the range of thresholds that we have 
considered, the performance of the I-VDT is less impacted by the 
thresholds than the performance of the I-VMP. However, if opti-
mum thresholds are selected for the I-VMP classification perfor-
mance becomes very similar to the I-VDT. One disadvantage of 
the I-VMP is that the PQnS_V is relatively high with a high de-
gree of variance when compared to the I-VDT performance. 

7 Discussion   

7.1 Optimal Thresholds 

Based on results of classifications we estimate optimal values of 
parameters for each used algorithm. For the I-VVT the optimal 
values of fixation threshold is 26º/s for which more or less bal-
anced performance is achieved. However, this optimal point pro-
duces low qualitative scores and high mismatch scores when 
compared to the average values presented by Table 2. For the I-
VMP the optimal value of the magnitude of movement threshold 
is TM=0.2, with a temporal window range between the 120-140 
ms. Such thresholds produce the scores that are close to the aver-
age values depicted by the Table 2. For the I-VDT the optimal 
dispersion threshold is TD=2º, with the temporal window of 110-
150 ms. These thresholds allow to obtain scores that are close to 
the average scores presented by the Table 2. Classification exam-
ple is depicted by Figure 5. 

7.2 Limitations  

The ideal behavioral scores mentioned in Sections 3 and 5 are far 
from what was obtained by manual classification and represented 
by the Table 2. This happens due to the differences in terms of 
what we expect from the HVS performance in the ideal scenario 
and what actually HVS exhibits when the stimuli that elicits three 
eye movement types is presented to a person. Further work is 
necessary to correct the performance expectations coded in the 
ideal score values. Such ideal score values should be useful in 
selecting the thresholds that provide meaningful classification 
performance. 

A very specific hardware and step ramp stimulus was employed in 
this work. A chin rest was employed for additional stability of the 
recorded data.  Future research is necessary to provide more com-
prehensive performance picture of ternary eye movement classifi-
cation algorithms that employs different hardware, allows free-
dom of head movement, and contains different stimuli characteris-
tics. However, we expect that behavioral scores performance will 
remain similar to our findings here. 

7.3 HVS performance 

During manual inspection of the recorded data we have noticed 
substantial variability of HVS performance between and within 
subjects. SP latency, the size of the corrective saccades and the 
quality of target’s tracking vary substantially. Very frequently 
during ramp stimulus the HVS exhibits a sequence of corrective 
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saccades interspersed by fixations, rather than tracking the target 
smoothly. Closer to the end of the recording, when a subject has 
experienced a variety of SP stimuli, the HVS started exhibiting 
during fixational stimulus occasional movements with characteris-
tics resembling the SP. MisFix errors presented in Table 2 high-
light this peculiarity. Such HVS performance further complicates 
ternary classification and necessitates very careful construction of 
the ideal behavioral scores. 

8 Conclusions & Future Work 

This paper considered and introduced methods for reliable auto-
mated ternary classification that consists of three eye movement 
types: fixations, saccades, and smooth pursuit. This task is ex-
tremely challenging due to the substantial variability of Human 
Visual System performance between and within subjects, difficul-
ties in separation of fixations from smooth pursuit, and substantial 
noisiness of the eye tracking data. 

We have extended the set of behavior scores originally introduced 
by Komogortsev and colleagues [5] with a purpose of assessing 
the meaningfulness of ternary classification.  

We should point out that the performance of the HVS was differ-
ent from the expectations that were encoded in the ideal behavior 
scores. This difference in performance contrasts with the scenario 
when only fixations and saccades are present in the data, in which 
case the ideal behavior scores and HVS performance are very 
similar, therefore allowing to select meaningful thresholds based 
on the ideal score values [5]. As a result further research is neces-
sary to define what realistically can be expected from the HVS if 
fixations, saccades, and smooth pursuit eye movement types are 
present in the eye positional data. In case of this work, manual 
classification of the recorded data was performed and scored to 
serve as a performance baseline for the assessment of the auto-
mated classification algorithms. 

Our findings indicate that a simple extension of the popular veloc-
ity threshold method (I-VT) algorithm with an idea of separating 
fixations from smooth pursuit with an auxiliary velocity threshold 
will not provide meaningful ternary classification. Two additional 
algorithms were considered Velocity Movement Pattern Identifi-
cation (I-VMP) as introduced by San Agustin [9]  and Larsson 
[10] and the algorithm that we have developed in this work Veloc-
ity Dispersion Threshold Identification (I-VDT). Both algorithms 
when driven by the optimal thresholds were able to provide classi-
fication results that were close to the results obtained via manual 
classification. However, within considered threshold intervals the 
I-VDT had smaller performance variability and dependence on 
the thresholds than the I-VMP possibly indicating higher practical 
usefulness. Misclassification errors were also slightly smaller for 
the proposed I-VDT algorithm. Classification speed was very fast 
for both algorithms and only was limited by the size of the tem-
poral window. 

Future work will adjust expectations encoded in the ideal behav-
ioral scores and will seek stimulus presentation that can be effec-
tively presented as a part of the eye tracker calibration procedure 
to be able to suggest optimal threshold selection for any algorithm 
that performs ternary classification. Such automated threshold 
selection should be particularly useful for eye tracking practition-
ers that would be able to use suggested thresholds for a variety of 
stimuli recorded immediately after the calibration procedure.  
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