
CHAPTER 14

Implementing
Scripts

Instead, you can write the code for magic spells and their respective effects on the
game denizens in several small scripts. Whenever combat commences, these scripts
are loaded and the selection of magic spells shown. Once a magic spell is cast, a
script processes the effects—from the damage done to the movement and anima-
tion of the spell’s graphics.

For this book, I was torn between using two different types of scripting systems.
One script system involves the use of a language much like C++. You type com-
mands into a script file, compile the file, and execute the compiled script file from
within your game. The second script system is an extremely simplified version of
the first. Rather than allowing you to type the commands into a file, the system
enables you to create scripts by selecting the commands from a predetermined set
of commands.

Because I want to get you up and running with your scripting engine as quickly
as possible, I opted to use the second script system. This system, which I call the
Mad Lib Scripting system, works by using a set of predetermined commands, called
actions, each of which has an associated game function. Take, for example, the
actions in Table 14.1—each action has a specific function to perform.

With such a limited set of actions, you really don’t need the power of complex
compiled script languages; instead, you need the ability to tell the script system
which action to use and what options the action should use to perform the gaming
function. The great thing about this method is that instead of spouting out lines of
code to specify a simple action, you reference the action and options by number.

For example, say that the Play Sound action is considered action number four, and
the action requires only one entry, the sound number to play. There are only two

581Understanding Scripts

When creating projects as large as role-playing games, you will find it difficult
(and foolhardy) to program game-related information in your source code.

Your best course is to use external sources (that resemble programming code)
called scripts for gaming data such as dialogue. In this way, you can control the flow
of your game and save time because you don’t have to recompile the project every
time you make a change. In this chapter, you learn how to create and use a basic
scripting system.

In this chapter, you do the following:

■ Learn about scripts
■ Create your own scripting system
■ Use the scripting system
■ Apply scripts to your game

Understanding Scripts
When creating a game, you use scripts in much the same way that movie producers
use scripts —to control every aspect of your “production.” Game scripts are similar
to the program code you write when creating your game, except that game scripts
are external to the gaming engine. Because they are external, you can make quick
changes to a script without having to recompile the entire game engine. Imagine
having a project with more than one million lines of code and having to recompile
the entire project just to change a single line of dialogue!

Scripts are not really difficult to work with, and just about every aspect of your
game can benefit from the use of scripts. You can use scripts when navigating
menus, controlling combat, handling a player’s inventory, and so much more. For
example, when developing a game, imagine that you want to present users in com-
bat with a list of magic spells that they regularly use for attack. Say that over the
course of developing the game, you decide to change some of those spells. If that
spell information is hard-coded, you have a major problem; you must change every
instance of the program code that controls the spell, not to mention having to
debug and test that code until it’s perfect. Why devote so much time on changes
such as this one?

580 14. Implementing Scripts

Table 14.1 Example Command Actions

Action Function

Print Prints a line of text to the screen.

End Ends script processing.

Move Character Moves the specified character in a specific direction.

Play Sound Plays a specific sound effect.

Each of the six actions has either zero or more blank entries enclosed within paren-
theses. Each of the blank entries holds either a text string or a number. This list of
actions and possible entries (with the type of entry) is called an action template (see
Figure 14.1 for an example).

Once action templates are in use, you can refer to actions by their numbers rather
than by the actions’ text (which exists only to make it easier for users to under-
stand which function each action per-
forms). For example, from now on, I can
say that I want to implement action #4
using title.mid in the first blank entry.
When you execute the script, the script
system will see the number 4 (action #4)
and know that it has only one entry—
the filename of the song that you want
to load and play.

I trust that you are beginning to see the
ease with which you can use this system.
Now, I will forgo any more theory so that
you can jump right into programming
your own MLS system.

583Creating a Mad Lib Script System

values to store in the script: one number for the action and one number that repre-
sents the sound. Using values to represent actions (instead of text) makes process-
ing these types of scripts quick and easy.

Creating a Mad
Lib Script System
As I mentioned in the preceding section, I refer to my recommended scripting sys-
tem as the Mad Lib Script system (or MLS for short) because it closely resembles
the old pen-and-paper game of the same name. In Mad Libs (which is founded on
the perfect concept for a basic scripting system), you receive a story that is missing
numerous words, and your job is to fill in the blanks with hilarious text. While your
game’s actions represent something other than funny quotes, the idea is perfect for
your needs.

In this section, I introduce the concepts of creating a Mad Lib Script system, from
developing the actions you use in your scripts to creating a script system (complete
with a script editor) that you can insert into your game project.

Designing the Mad
Lib Script System
Implementing your own MLS system is easy enough; just create the actions that you
want in your game, complete with the blank spots (called entries) that need to be
filled in by the person creating or editing the scripts. For each action, be sure to
provide a list of choices for filling in the blank entries, which can vary in type from
a line of text to a numerical value.

You number the actions and the blank entries so that the scripting system can ref-
erence them, as illustrated in the following example lists of actions:

1. Character (*NAME*) takes (*NUMBER*) damage.

2. Print (*TEXT*).

3. Play sound effect titled (*SOUND_NAME*).

4. Play music titled (*MUSIC_NAME*).

5. Create object (*OBJECT_NAME*) at coordinates (*XPOS*),(*YPOS*).

6. End script processing.

582 14. Implementing Scripts

Action Template

Action Print *Text*

Entries Text String

Action Move *character* *number*

Main Character

NPC

Nobody

Entries Enter Value

Units Up.

Figure 14.1

An action template is divided
into multiple actions, which in
turn are split into entries.

NOTE
The MLS scripting system will
work for 90 percent of your game.
For example, take a look at the
PlayStation console in the game
RPG Maker (by Agetec, Inc.). In RPG
Maker, you can create your own
role-playing games, working off an
MLS-type system such as the one
I just described; believe me, you can
create complex scripts in this game.

Possible choices for blank entry #1:
1. Player character
2. Spell caster
3. Spell target
4. Nobody

Imagine that you are using the preceding action and instructing it to use choice #3
as the target. You instruct the script engine to use action #1 with choice #3 for the
first blank spot (which is a multiple-choice entry). Using numbers to represent the
actions and entries means that the script processor doesn’t have to deal directly
with code text, which makes processing the scripts easier.

To contain the actions and entries, I’ve come up with the following structures,
which are heavily commented so that you can follow along:

// Type of entries (for blank entries)
enum Types { _NONE = 0, _TEXT, _BOOL, _INT, _FLOAT, _CHOICE };

// Structure to store information about a single blank entry
typedef struct sEntry {

long Type; // Type of blank entry (_TEXT, etc.)

// The following two unions contain the various
// information about a single blank entry, from
// the min/max values (for int and float values),
// and the number of choices in a multiple choice entry.
// Text and Boolean entries do not need such info.
union {

long NumChoices; // # of choices in list
long lMin; // long min. value
float fMin; // float min. value

};
union {

long lMax; // long max. value
float fMax; // float max. value
char **Choices; // text array for each choice

};

// Structure constructor to clear to default values
sEntry()
{

Type = _NONE;
NumChoices = 0;

585Creating a Mad Lib Script System

Programming the
Mad Lib Script System
In order to make your MLS system as powerful as possible, you need to design it so
that it supports multiple action templates, with each action template containing an
unlimited number of actions. In this way, you can reuse the system for just about
any project your heart desires.

To make writing the scripts easier, utilize a script editor program (such as the one
you see in the later section, “Working with the MLS Editor”) with an action tem-
plate that enables you to quickly piece together actions and change the blank
entries for each action. When a script is complete, you can read the script file into
your engine and process each individual action, using the specific entries for each
action that was entered via the script editor.

The first order of business is to work with the action templates.

Working with Action Templates
An action template needs to contain a list of actions, complete with text, number
of entries, and each entry’s data. Recall that each action is numbered by its index
within a list, with each blank entry in each action numbered as well. You assign
each entry a type (text, integer number, float number, Boolean value, or multiple
choice). You also number types, as follows:

0. No entry type

1. Text entry

2. Boolean value

3. Integer number

4. Float number

5. Multiple choice (a choice from a list of text selections)

Each entry type has unique characteristics; strings can be of variable size, numbers
can be between any range of two numbers, and Boolean values can either be TRUE
or FALSE. As for multiple choices, each choice has its own text string (the scripts are
given a choice from a list, and the index number of the selected choice is used
rather than the text).

A sample action might then take this form:

Action #1: Spell targets (*MULTIPLE_CHOICE*).

584 14. Implementing Scripts

You use the two preceding structures, sEntry and sAction, in conjunction to store
the action text as well as the type of each entry. For entries, you select from the
enumerated list type (as described earlier in this section). The sEntry structure also
holds the rules for each entry type (using the two unions).

Because text entries are only buffers of characters, you have no rules to follow for
using text entry types. The same goes for Boolean values because they can be only
TRUE or FALSE. Integer and float values need a minimum and maximum range of
acceptable values (hence, the min/max variables). There are a number of multiple
choices and an array of char buffers that holds the text for each choice.

sAction holds the action ID (the action number from the list of actions), the action
text, and an array of entries to use for the action. To determine the number of
entries in the action (as well as each type), you need to encrypt the action text a
bit. To insert an action into the action text, use a tilde (~) character, as shown here:

Player ~ gains ~ hit points

The two tildes represent two entries. More information is needed about each entry,
but how do you obtain information from only two tilde characters? You can’t, so
you must access the storage format of the action templates to determine what addi-
tional information is required for each action.

Action templates are stored as text files, with each action’s text enclosed within
quotes. Each action that contains entries (marked as tildes in the text) is followed
by a list of entry data. Each entry begins with a word that describes the type of
entry (TEXT, BOOL, INT, FLOAT, or CHOICE). Depending on the entry type, further infor-
mation might follow.

No more information is needed for TEXT. The same goes for BOOL types. As for INT
and FLOAT, a minimum value and a maximum value are required. At last, the CHOICE
entry is followed by the number of choices to select from and then by each choice’s
text (enclosed in quotes).

After you define each entry, you can go on to the next action text. The following
example action template file demonstrates each entry type:

“Print ~”
TEXT

“Move character to ~, ~, ~”
FLOAT 0.0 2048.0
FLOAT 0.0 2048.0
FLOAT 0.0 2048.0

587Creating a Mad Lib Script System

Choices = NULL;
}

// Structure destructor to clean up used resources
~sEntry()
{

// Special case for choice types
if(Type == _CHOICE) {

if(NumChoices) {
for(long i=0;i<NumChoices;i++)

delete [] Choices[i]; // Delete choice text
}
delete [] Choices; // Delete choice array

}
}

} sEntry;

// Structure that stores a single action and contains
// a pointer for using linked lists.
typedef struct sAction {

long ID; // Action ID (0 to # actions-1)
char Text[256]; // Action text
short NumEntries; // # of entries in action
sEntry *Entries; // Array of entry structures
sAction *Next; // Next action in linked list

sAction()
{

ID = 0; // Set all data to defaults
Text[0] = 0;
NumEntries = 0;
Entries = NULL;
Next = NULL;

}

~sAction()
{

delete [] Entries; // Free entries array
delete Next; // Delete next in list

}
} sAction;

586 14. Implementing Scripts

typedef struct sScriptEntry
{

long Type; // Type of entry (_TEXT, _BOOL, etc.)

union {
long IOValue; // Used for saving/loading
long Length; // Length of text (w/ 0 terminator)
long Selection; // Selection in choice
BOOL bValue; // BOOL value
long lValue; // long value
float fValue; // float value

};
char *Text; // Text buffer

sScriptEntry()
{

Type = _NONE; // Clear to default values
IOValue = 0;
Text = NULL;

}

~sScriptEntry() { delete [] Text; } // Delete text buffer
} sScriptEntry;

Much like sEntry, the sScriptEntry holds the actual values to use for each blank
entry in the action. Here, you see Type again. It describes the type of entry (_TEXT,
_BOOL, and so on). The single union of variables is where the good stuff is, including
one variable for the length of the text, one for the multiple choice selection, and
one for the integer and float values and the Boolean value.

Take note of two things about sScriptEntry. First, a character pointer is outside the
union (because both Length and Text are used to store text data); second, an addi-
tional variable called IOValue is included in the union. You use IOValue to access the
union variables to save and load the entry data.

To demonstrate how to store each action’s entry data into an sScriptEntry structure
(or structures if there is more than one entry), review the following action:

“~ player’s health by ~”
CHOICE 2

“Increase”
“Decrease”

INT 0 65535

589Creating a Mad Lib Script System

“Character ~ ~ ~ ~ points”
CHOICE 3

“Main Character”
“Caster”
“Target”

CHOICE 2
“Gains”
“Losses”

INT 0 128
CHOICE 2

“Hit”
“Magic”

“Set variable ~ to ~”
INT 0 65535
BOOL

“End Script”

Because the action template doesn’t allow comments, I’ll explain the actions and
entries. The first action (Print ~) prints a single text string (using the first entry in
the action, entry 0). The second action takes three float values, each ranging from
0 to 2,048. The third action gives three multiple-choice options as well as an inte-
ger value that can range from 0 to 128. Action four demonstrates integer values
again, as well as a single Boolean value. Last is action five, which takes no entries.

Loading the action template is a matter of processing a text file and setting up the
appropriate structures, which consists of doing string comparisons on words loaded
and storing text lines within quotes. This is really an easy process, and in the section,
“Putting Together the cActionTemplate Class,” you find out exactly how it is done.

The next step is to use the action templates in conjunction with another structure
that stores the entry data (which text to display, what number or choice was
selected, and so on), which is the purpose of the script entries.

Creating Script Entries
Because the sEntry structure contains only the template (guidelines) of the actions
and entries, you need another array of structures to store the data for each entry.
These new structures include what text to use in a text entry, which Boolean value
to use, and which multiple-choice selection to use. This new structure that contains
an entry’s data is sScriptEntry, and is defined as follows:

588 14. Implementing Scripts

You use the sScript structure to contain a single action, as well as maintain a linked
list of further sScript structures that constitutes an entire script. The Type variable
can range from zero to the number of actions in the action template minus one. If
you have ten actions in the action template, Type can range from zero to nine.

To make processing easier, store the number of entries in the NumEntries variable.
The value in NumEntries must match the number-of-entries variable in the action
template. From there, allocate an array of sScriptEntry structures to store the data
for each entry in the action template. If two entries are in the associated action,
you need to allocate two sScriptEntry structures.

Lastly, there are the two pointer variables, Prev and Next, in sScript. These two point-
ers maintain a linked list of the entire script. To construct a linked list of sScript
structures (much as illustrated in Figure 14.2), start with a root structure that rep-
resents the first action in the script. You then link sScript structures via the Next and
Prev variables, as shown here:

sScript *ScriptRoot = new sScript();
sScript *ScriptPtr = new sScript;
ScriptRoot->Next = ScriptPtr; // Point to second action
ScriptPtr->Prev = ScriptRoot; // Point back to root

At this point, you can start at the root of the script and traverse down the entire
script with the following code:

void TraverseScript(sScript *pScript)
{

while(pScript != NULL) { // loop until no more script actions
// Do something with pScript
// pScript->Type holds the script action ID
pScript = pScript->Next; // Go to next script action

}
}

591Creating a Mad Lib Script System

Depending on multiple choice selection, the preceding action either increases or
decreases the player’s health by a set amount ranging from 0 to 65535. Because there
are two entries (a multiple choice and an integer), you need two sScriptEntry structures:

sScriptEntry Entries;

// Configure multiple choice - set to first choice
Entries[0].Type = _CHOICE;
Entries[0].Selection = 0; // Increase

// Configure integer - set to 128
Entries[1].Type = _INT;
Entries[1].lValue = 128;

When dealing with the script entries, the most difficult part crops up when many
entries are in a complete script. Each action in the script requires a matching
sEntry structure, which in turn might contain a number of sScriptEntry structures.
Before you know it, you can become knee-deep in structures—talk about a mess!
To better handle a script’s structures, you need another structure that tracks each
entry that belongs to the script actions:

typedef struct sScript
{

long Type; // 0 to (number of actions-1)
long NumEntries; // # entries in this script action
sScriptEntry *Entries; // Array of entries

sScript *Prev; // Prev in linked list
sScript *Next; // Next in linked list

sScript()
{

Type = 0; // Clear to defaults
NumEntries = 0;
Entries = NULL;
Prev = Next = NULL;

}

~sScript()
{

delete [] Entries; // Delete entry array
delete Next; // Delete next in linked list

}
} sScript;

590 14. Implementing Scripts

Script Structure

Prev. Next

Entries[];

Script Structure

Prev. Next

Entries[];

Script Structure

Prev. Next

Entries[];

Figure 14.2

A script-action linked
list uses Prev and
Next variables to link
the entire script. Each
script action has it own
array of script entries.

fwrite(&ScriptPtr->Entries[j].Type, 1,sizeof(long), fp);
fwrite(&ScriptPtr->Entries[j].IOValue,1,sizeof(long),fp);

// Write text entry (if any)
if(ScriptPtr->Entries[j].Type == _TEXT && \

ScriptPtr->Entries[j].Text != NULL)
fwrite(ScriptPtr->Entries[j].Text, 1, \

ScriptPtr->Entries[j].Length, fp);
}

}

// Go to next script structure in linked list
ScriptPtr = ScriptPtr->Next;

}

fclose(fp);

return TRUE; // return a success!
}

sScript *LoadScript(char *Filename, long *NumActions)
{

FILE *fp;
long i, j, Num;
char Text[2048];
sScript *ScriptRoot, *Script, *ScriptPtr = NULL;

// Open the file for input
if((fp=fopen(Filename, “rb”))==NULL)

return NULL;

// Get # of script actions from file
fread(&Num, 1, sizeof(long), fp);

// Store number of actions in user supplied variable
if(NumActions != NULL) *NumActions = Num;

// Loop through each script action
for(i=0;i<Num;i++) {

// Allocate a script structure and link in

593Creating a Mad Lib Script System

You can also quickly load and save scripts by using linked lists, as illustrated in the
following two functions:

BOOL SaveScript(char *Filename, sScript *ScriptRoot)
{

FILE *fp;
long i, j, NumActions;
char Text[256];
sScript *ScriptPtr;

// Make sure there’s some script actions
if((ScriptPtr = ScriptRoot) == NULL)

return FALSE;

// Count the number of actions
NumActions = 0;
while(ScriptPtr != NULL) {

NumActions++; // Increase count
ScriptPtr = ScriptPtr->Next; // Next action

}

// Open the file for output
if((fp=fopen(Filename, “wb”))==NULL)

return FALSE; // return a failure

// Output # of script actions
fwrite(&NumActions, 1, sizeof(long), fp);

// Loop through each script action
ScriptPtr = ScriptRoot;
for(i=0;i<NumActions;i++) {

// Output type of action and # of entries
fwrite(&ScriptPtr->Type, 1, sizeof(long), fp);
fwrite(&ScriptPtr->NumEntries, 1, sizeof(long), fp);

// Output entry data (if any)
if(ScriptPtr->NumEntries) {

for(j=0;j<ScriptPtr->NumEntries;j++) {

// Write entry type and data

592 14. Implementing Scripts

Given the root script structure in a linked list, SaveScript will output each script
structure’s data, which includes the action number, the number of entries to follow,
the entry data, and the optional text of a text entry. The entire linked list of sScript
structure is written to the file.

The LoadScript function opens the script file in question and builds a linked list of
sScript structures from the data it loads. sScriptEntry structures are allocated on-the-
fly, as well as the sScript structures that construct the linked list. When complete,
the LoadFile function sets NumActions to the number of script actions loaded and
returns a pointer to the root script structure.

Putting Together the
cActionTemplate Class
You now understand the structure used for action templates and for containing the
script data. Now, it’s time to put them all together in order to create a working class
that loads and processes scripts:

class cActionTemplate {
private:

long m_NumActions; // # of actions in template
sAction *m_ActionParent; // list of template actions

// Functions for reading text (mainly used in actions)
BOOL GetNextQuotedLine(char *Data, FILE *fp, long MaxSize);
BOOL GetNextWord(char *Data, FILE *fp, long MaxSize);

public:
cActionTemplate();
~cActionTemplate();

// Load and free an action template
BOOL Load(char *Filename);
BOOL Free();

// Get # actions in template, action parent,
// and specific action structure.
long GetNumActions();
sAction *GetActionParent();
sAction *GetAction(long Num);

// Get a specific type of sScript structure

595Creating a Mad Lib Script System

Script = new sScript();
if(ScriptPtr == NULL)

ScriptRoot = Script; // Assign root
else

ScriptPtr->Next = Script;
ScriptPtr = Script;

// Get type of action and # of entries
fread(&Script->Type, 1, sizeof(long), fp);
fread(&Script->NumEntries, 1, sizeof(long), fp);

// Get entry data (if any)
if(Script->NumEntries) {

// Allocate entry array
Script->Entries = new sScriptEntry[Script->NumEntries]();

// Load in each entry
for(j=0;j<Script->NumEntries;j++) {

// Get entry type and data
fread(&Script->Entries[j].Type, 1, sizeof(long), fp);
fread(&Script->Entries[j].IOValue, 1, sizeof(long), fp);

// Get text (if any)
if(Script->Entries[j].Type == _TEXT && \

Script->Entries[j].Length) {
// Allocate a buffer and get string
Script->Entries[j].Text = \

new char[Script->Entries[j].Length];
fread(Script->Entries[j].Text, 1, \

Script->Entries[j].Length, fp);
}

}
}

}

fclose(fp);

return ScriptRoot;
}

594 14. Implementing Scripts

// Add acceptable text to line
if(c != 0x0a && c != 0x0d) {

if(Pos < MaxSize-1)
Data[Pos++] = c;

}
}

}
}

}

BOOL cActionTemplate::GetNextWord(char *Data, FILE *fp, \
long MaxSize)

{
int c;
long Pos = 0;

// Reset word to empty
Data[0] = 0;

// Read until an acceptable character found
while(1) {

if((c = fgetc(fp)) == EOF) {
Data[0] = 0;
return FALSE;

}

// Check for start of word
if(c != 32 && c != 0x0a && c != 0x0d) {

Data[Pos++] = c;

// Loop until end of word (or EOF)
while((c=fgetc(fp)) != EOF) {

// Break on acceptable word separators
if(c == 32 || c == 0x0a || c == 0x0d)

break;

// Add if enough room left
if(Pos < MaxSize-1)

Data[Pos++] = c;
}

597Creating a Mad Lib Script System

sScript *CreateScriptAction(long Type);

// Get info about actions and entries
long GetNumEntries(long ActionNum);
sEntry *GetEntry(long ActionNum, long EntryNum);

// Expand action text using min/first/TRUE choice values
BOOL ExpandDefaultActionText(char *Buffer, sAction *Action);

// Expand action text using selections
BOOL ExpandActionText(char *Buffer, sScript *Script);

};

The only functions in this code that you haven’t seen in this chapter are
GetNextQuotedLine and GetNextWord. The GetNextQuotedLine function scans the file in
question for a line of text enclosed within quotes, while the GetNextWord function
reads in the next text word from a file. Both functions take a pointer to a data
buffer in which to store the text, the file access pointer, and the maximum size
of the data buffer (to avoid overflow):

BOOL cActionTemplate::GetNextQuotedLine(char *Data, \
FILE *fp, long MaxSize)

{
int c;
long Pos = 0;

// Read until a quote is reached (or EOF)
while(1) {

if((c = fgetc(fp)) == EOF)
return FALSE;

if(c == ‘“‘) {
// Read until next quote (or EOF)
while(1) {

if((c = fgetc(fp)) == EOF)
return FALSE;

// Return text when 2nd quote found
if(c == ‘“‘) {

Data[Pos] = 0;
return TRUE;

}

596 14. Implementing Scripts

else
ActionPtr->Next = Action;

ActionPtr = Action;

// Copy action text
strcpy(Action->Text, Text);

// Store action ID
Action->ID = m_NumActions;

// Increase the number of actions loaded
m_NumActions++;

// Count the number of entries in the action
for(i=0;i<(long)strlen(Text);i++) {

if(Text[i] == ‘~’)
Action->NumEntries++;

}

// Allocate and read in entries (if any)
if(Action->NumEntries) {

Action->Entries = new sEntry[Action->NumEntries]();
for(i=0;i<Action->NumEntries;i++) {

Entry = &Action->Entries[i];

// Get type of entry
GetNextWord(Text, fp, 2048);

// TEXT type, no data follows
if(!stricmp(Text, “TEXT”)) {

// Set to text type
Entry->Type = _TEXT;

} else

// INT type, get min and max values
if(!stricmp(Text, “INT”)) {

// Set to INT type and allocate INT entry
Entry->Type = _INT;

// Get min value
GetNextWord(Text, fp, 2048);

599Creating a Mad Lib Script System

// Add end of line to text
Data[Pos] = 0;

return TRUE;
}

}
}

Using the GetNextQuotedLine and GetNextWord functions, you can scan input files for
text that describes the actions, which is the purpose of the cActionTemplate::Load
function:

BOOL cActionTemplate::Load(char *Filename)
{

FILE *fp;
char Text[2048];
sAction *Action, *ActionPtr = NULL;
sEntry *Entry;
long i, j;

// Free previous action structures
Free();

// Open the action file
if((fp=fopen(Filename, “rb”))==NULL)

return FALSE;

// Keep looping until end of file found
while(1) {

// Get next quoted action
if(GetNextQuotedLine(Text, fp, 2048) == FALSE)

break;

// Quit if no action text
if(!Text[0])

break;

// Allocate an action structure and append it to list
Action = new sAction();
Action->Next = NULL;
if(ActionPtr == NULL)

m_ActionParent = Action;

598 14. Implementing Scripts

strcpy(Entry->Choices[j], Text);
}

}
}

}
}

fclose(fp);

return TRUE;
}

Using the cActionTemplate::Load function, you can open a text file and begin scanning
through it. With the beginning of each iteration, the next line of text enclosed in
quotes (an action) is loaded in a new sAction structure and then examined for tilde
characters. If tilde characters are found, the remaining information is loaded and
parsed. This process continues until the end of the file is found.

Moving on, the next questionable function in cActionTemplate is CreateScriptAction; it
takes an action number and returns an initialized sScript structure that is set up to
store the number of entries to match the action. You can directly parse the sScript
structure from this point on to access data contained within the actions and entries
(which is how the MLS editor and samples do it):

sScript *cActionTemplate::CreateScriptAction(long Type)
{

long i;
sScript *Script;
sAction *ActionPtr;

// Make sure it’s a valid action - Type is really the
// action ID (from the list of actions already loaded).
if(Type >= m_NumActions)

return NULL;

// Get pointer to action
if((ActionPtr = GetAction(Type)) == NULL)

return NULL;

// Create new sScript structure
Script = new sScript();

601Creating a Mad Lib Script System

Entry->lMin = atol(Text);

// Get max value
GetNextWord(Text, fp, 2048);
Entry->lMax = atol(Text);

} else

// FLOAT type, get min and max values
if(!stricmp(Text, “FLOAT”)) {

// Set to FLOAT type and allocate FLOAT entry
Entry->Type = _FLOAT;

// Get min value
GetNextWord(Text, fp, 2048);
Entry->fMin = (float)atof(Text);

// Get max value
GetNextWord(Text, fp, 2048);
Entry->fMax = (float)atof(Text);

} else

// BOOL type, no options
if(!stricmp(Text, “BOOL”)) {

// Set to BOOL type and allocate BOOL entry
Entry->Type = _BOOL;

} else

// CHOICE type, get number of entries and entry’s texts
if(!stricmp(Text, “CHOICE”)) {

// Set to CHOICE type and allocate CHOICE entry
Entry->Type = _CHOICE;

// Get the number of choices
GetNextWord(Text, fp, 1024);
Entry->NumChoices = atol(Text);
Entry->Choices = new char[Entry->NumChoices];

// Get each entry text
for(j=0;j<Entry->NumChoices;j++) {

GetNextQuotedLine(Text, fp, 2048);
Entry->Choices[j] = new char[strlen(Text)+1];

600 14. Implementing Scripts

Last in cActionTemplate are the two final functions: ExpandDefaultActionText and
ExpandActionText. Both functions take the action text and replace the tilde characters
inside with more understandable text, such as an integer number or the selected mul-
tiple-choice text. The difference between the functions is that ExpandDefaultActionText
expands text with any entry data; it simply picks the minimum values or first multiple-
choice entry. ExpandActionText, expands the action text using the data contained in the
supplied sScript structure. Both functions are used only in the script editor to make
sense of the data contained with the action template and script structures—you can
find the code for them on the CD-ROM (in the MLS Script Editor project).

With an understanding of the action templates and script structures, you can start
piecing them together and putting MLS to good use, which all starts with the Mad
Lib script editor.

Working with the MLS Editor
An MLS system works only with numbers: the number that represents an action,
the number of entries to follow, and numbers to represent the entry data.
Computers work well with numbers, but we need more. You need to construct
scripts in comprehensible lines of text and let a script editor convert the text you
enter into a series of numerical representations that a script system can handle.

During the editing of a script, dealing with numbers is not for us, so the editor also
has the job of loading and converting those numbers back into lines of text that is
easy for us to read. So, to clear up matters, you only need to construct a script
using a series of text commands, and let the script editor and engine convert those
commands into their numerical representations and vice versa.

The Mad Lib script editor imports the text that represents the actions and provides
the user with the ability to edit a list of actions and modify the blank entry spots
with each action. Figure 14.3 shows the MLS editor I created for the book. The
script list box, which contains the currently edited script, is at the top of the MLS
application window. The actions from the action template are listed at the bottom
of the window. The various buttons used to construct the scripts are spread around
the window.

You will find using the script editor to be very intuitive. You have options for load-
ing a set of actions, loading and saving a script, creating a new script, and adding,
removing, and modifying script entries (as well as for moving their entries up or
down the list). The actions used by the editor are stored in action template files.

603Working with the MLS Editor

// Set type and number of entries (allocating a list)
Script->Type = Type;
Script->NumEntries = ActionPtr->NumEntries;
Script->Entries = new sScriptEntry[Script->NumEntries]();

// Set up each entry
for(i=0;i<Script->NumEntries;i++) {

// Save type
Script->Entries[i].Type = ActionPtr->Entries[i].Type;

// Set up entry data based on type
switch(Script->Entries[i].Type) {

case _TEXT:
Script->Entries[i].Text = NULL;
break;

case _INT:
Script->Entries[i].lValue = ActionPtr->Entries[i].lMin;
break;

case _FLOAT:
Script->Entries[i].fValue = ActionPtr->Entries[i].fMin;
break;

case _BOOL:
Script->Entries[i].bValue = TRUE;
break;

case _CHOICE:
Script->Entries[i].Selection = 0;
break;

}
}

return Script;
}

602 14. Implementing Scripts

NOTE
I didn’t include the script saving or
loading functions because they are
not part of the action templates.
However, you can modify the saving
and loading functions for each appli-
cation as you see fit.This is also the
case for this chapter’s two sample
programs, MlsEdit and MlsDemo,
which you can find on the CD-ROM
at the back of this book (both pro-
grams are in the \BookCode\Chap14
directory).

605Working with the MLS Editor

As for the actual script entries, the editor makes use of the sScript and sScriptEntry
structures to store the current script being edited, and are saved and loaded just as
you have already seen.

To start your MLS editing session, go ahead and load up an action template or use the
default action template, which is titled default.mla (you can find it in the \BookCode\
Chap14\Data directory). Then you can begin adding, inserting, and editing script
entries by using the respective buttons in the editor’s application window. Table
14.2 explains what each button does in the script editor.

As you begin adding actions to the script (using Add to Script, or Insert in Script),
notice that the action text is expanded and added to the script list box (the list box
at the top of the script editor). The script actions are stored from the top down,
with the root of the script being the topmost script action. Processing of the scripts
starts at the top and continues downward, much like typical C/C++ code.

Notice that each time you add, insert, or edit a script entry, the Modify Action
Entry dialog box appears (see Figure 14.4). You use this dialog box to modify the
script action entries.

In the Modify Action Entry dialog box, you see various controls for modifying the
script action entries. The dialog box provides two places to type text. You use the first
one

604 14. Implementing Scripts

Figure 14.3

This MLS editor contains all
the essentials for creating and
editing scripts.

Table 14.2 The MLS Editor Buttons

Button Function

Delete Deletes the currently selected line from the script list box.

Edit Edits the entries from the currently selected line from the script
list box.

Move Up Moves the currently selected script action up in the list box.

Move Down Moves the currently selected script action down in the list box.

New Script Removes all script actions from memory and starts with a fresh slate.

Load Script Loads a script file from disk (files with an .MLS extension).

Save Script Saves a script file to disk (files with an .MLS extension).

Add to Script Adds the currently selected action (from the action list) to
the end of the script list. This automatically opens the Modify
Action Entry dialog box as well.

Insert in Script Inserts the currently selected action (from the action list) into
the selected line in the script list. Also opens the Modify Action
Entry dialog box.

Load Actions Loads a new action template file (files with an extension .MLA).
This also forces the current script to be cleared.

Figure 14.4

Use the Modify Action Entry dialog box to quickly
navigate and modify the script’s action entries.

long NumActions;
sScript *LoadedScript = LoadScript(“Script.mls”, &NumActions);

From this point on, your game engine just iterates the script-linked list in order
to execute each action. This requires a bit of hard-coding because the actions are
known only by numbers at this point (so you must know what each action does).
Here’s an example that iterates the preceding loaded script and looks for Print
actions (action 0), which contain a single entry (the text to print):

sScript *ScriptPtr = LoadedScript; // Start at root

// Loop through all script actions in list
while(ScriptPtr != NULL) {

// Is it an action 0?
if(ScriptPtr->Type == 0) {

// This action definitely has one entry, the text.
// Display the text in a message box
MessageBox(NULL, ScriptPtr->Entries[0].Text, “TEXT”, MB_OK);

}

// Go to next action in script
ScriptPtr = ScriptPtr->Next;

}

Although the preceding is nothing more than a few lines of code, it demonstrates
the awesome potential of processing the scripts. With a little ingenuity, you could
use MLS to handle some major scripting duties.

How about using conditional if...then...else statements? You know, those statements
that determine whether a condition is true or false and, depending on the outcome,
process a different sequence of actions. Take for example the following C code:

BOOL GameFlags[256]; // Some game flags defined in the game

if(GameFlags[0] == TRUE) {
// Print a message and set flag to FALSE
MessageBox(NULL, “It’s TRUE!”, “Message”, MB_OK);
GameFlags[0] = FALSE;

} else {
// Print a message
MessageBox(NULL, “It’s FALSE.”, “Message”, MB_OK);

}

607Executing Mad Lib Scripts

(at the top of the dialog box) to type an entry’s text or the minimum and maximum
ranges for values; in the second one, you type values relevant to the entry. Boolean
values have two radio buttons, one to select a TRUE value and another to select a FALSE
value. The dialog box provides a list box for multiple-choice selections.

A few controls that are common to each type of entry are at the top of the Modify
Action Entry dialog box. First is the box that displays the action text (with the
selected entries expanded in the text). Next is an Entry #, a text box that displays
the entry number currently being editing, as well as the number of entries in the
action. To navigate the entries, you use two buttons—the previous entry button
(represented by an arrow pointing left) and the next entry button (represented by
an arrow pointing right). Clicking either button forces the current entry to be
updated and the next entry’s data to be displayed.

At the bottom of the Modify Action Entry dialog box are two more buttons—OK
and Cancel. The Cancel button is displayed only when you add an action. When
you select an action to edit from the list, the Cancel button is not shown, which
means that all the changes you make to an entry are used whenever OK is clicked,
so make sure that you don’t modify anything if that’s not your intention. Clicking
OK accepts all entry data and adds, inserts, or
modifies the action selected in the MLS Editor
dialog box.

The script editor comes with a sample action
template and script to help you get started. The
real power comes when you start constructing
your own action templates, tailored for your
game project. After you create the action tem-
plates and construct your script, you are ready to
start using them in your own project.

Executing Mad Lib Scripts
Whew! I can honestly say the hardest part is over, as executing the scripts is child’s
play at this point. You can now toss the action templates out the door because you
work with only the sScript and sScriptEntry structures from here on out.

The first step to working with a script is to load it into memory, which you accomplish
using the LoadScript function (refer also to the section “Creating Script Entries” for
more on this function):

606 14. Implementing Scripts

NOTE
The code for the MLS editor
is on the CD-ROM at the
back of this book (look for
\BookCode\Chap14\MLSEdit\).

{ Script_Else },
{ Script_EndIf },
{ Script_SetFlag },
{ Script_Print }

};

BOOL GameFlags[256]; // The games flags array

void RunScript(sScript *pScript)
{

// Clear the GameFlags array to FALSE for this example
for(short i=0;i<256;i++)

GameFlags[i] = FALSE;

// Scan through script and process functions
while(pScript != NULL) {

// Call script function and break on NULL return value.
// Any other return type is the pointer to the next
// function, which is typically pScript->Next.
pScript = ScriptProcesses[pScript->Type].Func(pScript);

}
}

sScript *Script_IfThen(sScript *Script)
{

BOOL Skipping; // Flag is skipping script actions

// See if a flag matches second entry
if(g_Flags[Script->Entries[0].lValue % 256] == \

Script->Entries[1].bValue)
Skipping = FALSE;

else
Skipping = TRUE;

// At this point, Skipping states if the script actions
// need to be skipped due to a conditional if..then statement.
// Actions are further processed if skipped = FALSE, looking
// for an else to flip the skip mode, or an endif to end
// the conditional block.

// Go to next action to process

609Executing Mad Lib Scripts

Based on the value contained in the GameFlags array, a different block of code is
processed. By creating a few actions and a slight reworking of the script processing
code, you could enjoy the benefits of using if...then...else statements in MLS as
well. First, check out the action template:

“If GameFlag ~ equals ~ then”
INT 0 255
BOOL

“Else”
“EndIf”
“Set GameFlag ~ to ~”

INT 0 255
BOOL

“Print ~”
TEXT

There is nothing special here because the real work is done in the script-processing
code:

// pScript = pre-loaded script that contains the following:
// “If GameFlag (0) equals (TRUE) then”
// “Print (It’s TRUE!)”
// “Set GameFlag (0) to (FALSE)”
// “Else”
// “Print (It’s FALSE.)”
// “EndIf”

// Action processing functions
sScript *Script_IfThen(sScript *Script);
sScript *Script_Else(sScript *Script);
sScript *Script_EndIf(sScript *Script);
sScript *Script_SetFlag(sScript *Script);
sScript *Script_Print(sScript *Script);

// The script action execution structure
typedef struct sScriptProcesses {

sScript *(*Func)(sScript *ScriptPtr);
} sScriptProcesses;

// List of script action function structures
sScriptProcesses ScriptProcesses[] = {

{ Script_IfThen },

608 14. Implementing Scripts

actions. The Else action does a simple job of switching processing modes (from no
processing to processing), based on the original value of the Skipping variable.

Now that is power, and if you need a little more convincing, I suggest that you
check out some later chapters that use the MLS system, such as Chapter 16,
“Controlling Players and Characters,” and Chapter 20, “Putting Together a Full
Game.” Both chapters demonstrate the use of scripts when interacting with game
characters.

Applying Scripts to Games
From the beginning of your project, expect to implement scripts in every game-
related detail. For example, scripts come in handy when dealing with dialogue and
cinemas all the way down to spell effects and inventory handling. In fact, creating
your game engine to accept scripts for the majority of in-game data produces a very
open-source and efficient project.

In Chapter 20, you learn just how to apply the scripts to your various game compo-
nents, such as the combat and inventory system. As for now, you might want to
become familiar with the whole script concept by checking out the sample program
MlsDemo, which is on this book’s CD-ROM.

Wrapping Up Scripting
The scripting method introduced in this chapter is very powerful when used
correctly, and in most cases, will be just the right system for your game project.
Advanced readers who want to develop their own “real” script language (one that
resembles C++, for example) might want to acquire a good book on compilers,
specifically one that utilizes lex and yacc (two programs that process text and
grammar). One such book, aptly titled lex & yacc, is a great guide to learning the
basics on creating a script-parsing language processor. Turn to Appendix C,
“Recommended Reading,” for more information on the book.

If you are intrigued by the power behind the MLS system, before beginning your
project, you might create a set of action templates that will carry you through the
entire game. In this chapter, I discussed some of the simpler techniques for doing
so, but I’m sure that you can build on this information and come up with other
great uses for MLS.

611Wrapping Up Scripting

Script = Script->Next;

while(Script != NULL) {
// if Else, flip skip mode
if(Script->Type == 1)

Skipping = (Skipping == TRUE) ? FALSE : TRUE;

// break on EndIf
if(Script->Type == 2)

return Script->Next;

// Process script function in conditional block
// making sure to skip actions when condition not met.
if(Skipping == TRUE)

Script = Script->Next;
else {

if((Script = ScriptProcesses[Script->Type].Func(Script)) == NULL)
return NULL;

}
}
return NULL; // end of script reached

}

sScript *Script_SetFlag(sScript *Script)
{

// Set a Boolean flag
GameFlags[Script->Entries[0].lValue % 256] = \

Script->Entries[1].bValue;
}

sScript *Script_Else(sScript *Script) { return Script->Next; }
sScript *Script_EndIf(sScript *Script) { return Script->Next; }

sScript *Script_Print(sScript *Script)
{

MessageBox(NULL, Script->Entries[0].Text, “Text”, MB_OK);
return Script->Next;

}

You can see that the real magic is in the Script_IfThen statement, which is a recursive
function that processes all script actions contained within a pair of if...then and EndIf

610 14. Implementing Scripts

612 14. Implementing Scripts

Programs on the CD-ROM

Two programs that demonstrate the code discussed in this chapter
are located on the CD-ROM at the back of this book.You can find
the following programs in the \BookCode\Chap14\ directory:

◆ MlsEdit. A Mad Lib Script editor program that is perfect
for putting together scripts for your project.
Location: \BookCode\Chap14\MlsEdit\.

◆ MlsDemo. A small project that demonstrates the parsing
of Mad Lib Scripts created with the MLS editor.
Location: \BookCode\Chap14\MlsDemo\.

