
Tile-Based
Fundamentals

• What Does “Tile-Based” mean?

• An Introduction to
Rectangular tiles

• Managing Tile Sets

• Tile Map Basics

CHAPTER 10

Part I I

Isometric

Fundamentals

239

Tile-Based Terminology
While reading this section, keep in mind that these are mainly the terms I use. You might have different
names for them. For the most part, these terms are standard.

• Tile. A graphic used to render a portion of the background. When using rectangular tiles, this usually means
that the entire rectangular area is taken up by the tile. This is not always so, however. You might have “fringe”
tiles to take care of coastlines or a transition from one type of terrain to another, in which case the tile may
cover only a portion of the rectangular area.

• Sprite. An arbitrarily-sized graphic that is usually used for either agents or foreground objects. Really, every-
thing that isn’t a tile is a sprite. Sprite is just a generic term, like tile. You may decide to subclass them into
units, buildings, and markers, depending on the type of game.

• Tileset. A set of tiles. It is inefficient to store each tile in a separate graphics file. It’s easier to just take tiles
and group them into logical sets and then place them all into a single graphics file that gets parsed later. A
tileset might include sprites or might consist entirely of sprites.

• Space. Any arbitrarily-sized and shaped two-dimensional space. Usually a space is rectangular, but not in all
cases. You tend to work with nonrectangular spaces using a bounding rectangle as well as whatever other
structure describes them.

• Screen space. The space on the screen used for rendering the play area, not including any borders, status pan-
els, menu bars, message bars, or any other nonplay area structures. In some cases, the entire display is the
screen space. Often, it is not.

• View space. The same size as screen space, but the upper-left corner is always at (0,0) for view space. Many
times, view space and screen space are the same. View space, in most cases, is purely abstract and plays no
part in the rendering process.

• Tile space. The smallest space (usually rectangular) that is taken up by an individual tile. In rectangular tiles,
this is often the entire rectangle. Tile space can also refer to the space taken up by a sprite.

• World space. The space that allows the display of an entire map of tiles and their associated object/agent
sprites. In board games and puzzle games, world space may be equal to or smaller than screen space/view
space. In larger games, world space might be hundreds of times larger. Figure 10.1 shows the relationship
between the screen, view, and world spaces.

Tile-Based Fundamentals238

With this chapter, we break away from the introductory matter that filled Part 1 and start to move
into the really cool stuff. Naturally, you aren’t going to fly when you haven’t walked yet. We will

explore tile-based fundamentals, from both the management and user interface sides of the coin.

What Does “Tile-Based” Mean?
You’ve seen floor tiles, right? Sometimes, especially in older buildings or in malls, different tiles are com-
bined into a pattern (sometimes very elaborate patterns). That’s exactly what we’ll be doing, but instead of
using linoleum or porcelain, we’ll be using graphic images.

This is where the comparison ends between tile-based games and floor tiles. When you make a tile-based
game, each graphic tile has a different meaning. One might be the floor, and the other solid rock (repre-
senting a wall). In a tile-based game, some sort of “characters” or “units” usually occupy tiles, and are
moved around by either the player or the computer’s AI. These are called agents in AI terminology.

The rules of the game determine what happens to the agents as they occupy the various tiles of the game,
and they also govern how the agents may move from one tile to another. In a strategy game, an agent may
be able to move three tiles per turn. However, different tiles (such as grassland and hills) may have differ-
ent “movement costs” associated with them. Grassland might only cost 1 to move, but a hill could easily
cost 2 or 3. Further addition of things like roads or rivers may reduce these costs. It can all get very com-
plicated very quickly.

Of course, the player isn’t really thinking about all this. He just presses the up arrow to move to whatever
square is there, and the computer takes care of movement cost. (Even though the player isn’t consciously
thinking about movement costs, he does know that it takes longer to traverse hills than it does to traverse
plains.)

Myths about Tile-Based Games
The first myth about tile-based games is that they are dead. This is wholly untrue. Yes, the days of pure
2D tile-based games are over. These days you have to have 3D rendering to make a really hot game.
However, even 3D games can be tile-based, and many are. This is where isometric games come in. I won’t
go into how isometric tiles work until chapter 11, but suffice it to say that isometric is 3D, even if it’s done
with just 2D rendering. Most real-time strategy games and turn-based strategy games are made using iso-
metric tiles (although the days of pure 2D isometric tile-based games are drawing to a close as well).

The second myth is that no one will buy a tile-based game. Also untrue. In your local computer game
store, see for yourself. The strategy genre is filled with tile-based games.

Isometric Game Programming with DirectX 7.0

241

An Introduction to
Rectangular Tiles
Rectangular tiles are the easiest of all to work with, because of their rectangular-ness. Most of the time,
when working in rectangle land, you use square tiles. You can use other sizes, of course, but square seems
to be a favorite. An example of a tile is shown in Figure 10.2.

The point of view for games with square tiles is usually top
down or overhead. This just means that all your graphics must be
drawn as though you are looking down on the object.
Sometimes you can give your game a slightly angled view so
that you are looking mostly down, but you can see some of the
front or back, depending on how the agent is facing.

Another point of view for square tiles is the side scroller view,
where you are looking at the world from its side. This was very
popular among older action games like Super Mario Bros
(Nintendo) and the original Duke Nukem.

With the advance of 3D display technology, both the top-
down and side-scroller views have become nearly obsolete.

Normally, you will want to group your tiles and sprites into
graphical files where more than one tile or sprite is in the file.
Normally, you’ll want one or two files with the graphics for the background, a file for objects, and then a
number of files for the agents (one file to an agent, unless you don’t have too many animation sequences).

The examples shown in Figures 10.3, 10.4, and 10.5 are from Ari Feldman’s SpriteLib, which is a free
graphics package that has been around for a few years. If you aren’t graphically inclined (don’t be
ashamed. . . you’re not alone), you may want to download it from http://www.arifeldman.com.

Tile-Based Fundamentals240

• Anchor. A correlation of one point of a space (usually (0,0)) to another space. An example of this is a cor-
relation of view space to screen space. If you had an 8-pixel border around the main viewing area, you would
keep a point that kept track of the relationship from view space to screen space—namely, (8,8). This lets you
know how to convert between screen space and view space. Another example would be an anchor that con-
verts from view space to world space. In a scrolling tile engine (with a world space larger than the view
space), this anchor helps determine which tiles have to be rendered by translating the tile’s world space coor-
dinates into view space coordinates. From there, you can translate them into screen space coordinates.

• Anchor space. A space that defines legal values for the view-to-world anchor. Clipping your anchor point with
anchor space lets you easily manage the view-to-world anchor and lets you keep the player from having an
illegal view.

• Extent. A rectangle relative to a point (usually an anchor), often with negative left and top values. We will get
into this more when I talk about using templates to manage files.

• Tilemap. An array containing information about how the world looks—that is, which tiles are in what loca-
tion. Tilemaps also contain information about objects and agents in the world, even though the structure that
contains agents or objects may be a different array, or not even an array at all.

• Agent. Any sprite (or sequence of sprites used for animation) that moves, either by AI or by player action.
• Object. An unmoving graphic, representing such things as trees, rocks, or other items.

Hope I didn’t lose you. If you’re fuzzy on the real application of these terms, don’t worry. I’ll explore the
meaning and uses of each as I go, and you will gain full understanding.

Isometric Game Programming with DirectX 7.0

World

World
Space

View

Screen
Space

Screen

View
Space

0
0

0

0

0

0

Figure 10.1

Screen, view, and

world spaces and

their relationship

Figure 10.2

A square tile

NOTE
Later, when we get to isomet-
ric tiles, you will use a view
called “3/4,” in which you ren-
der your agents and object as
though you are looking
straight at them. It gives the
illusion of 3D without per-
spective correction. Luckily,
the human eye is easy to fool,
because it automatically cor-
rects for the errors in the
projection.

243

Managing Tilesets
The tilesets and sprite sets you just saw are great, but they aren’t exactly in a form that is easy to work with
for programmers like you and me. If you wanted to work with them, you’d have to store a bunch of rec-
tangles in a text file or other configuration file, or (gasp!) you’d have to hardcode image rectangles. Later, if
you decided to change the art, this would be a maintenance horror show. You’d have to go back and change
around the rectangle lists. Of course you’d forget one, and naturally you wouldn’t find out until one of
your beta testers got really far into the game. . . well, I think you get the idea.

So, what’s the solution to this dilemma? Templates. A template is used in the first example of a tileset—the
one with the white boxes around it (Figure 10.3). That’s one way to do a template. However, it’s not the
best way, because you still have to either hardcode or put into a configuration file the width and height of
the template.

Load IsoHex10_1.bmp into your favorite graphics editing program. Figure 10.6 shows what it looks like.

You can see the border around each of the images. Unlike the tileset shown in Figure 10.3, the border is
green instead of white. Or is it?

Tile-Based Fundamentals242 Isometric Game Programming with DirectX 7.0

Figure 10.3

Background tiles

Figure 10.4

Object tiles

Figure 10.5

Character tiles

Figure 10.6

A sample tileset

245

There are five pixels in the rightmost column, in the following order: black, white, blue, green, and cyan.
These specify corner, frame, anchor, inside, and inside anchor, respectively. If you wanted to, you could
change one of these colors to red (for example), and put it in the proper control color position, and use it
instead of the color used here.

Using an extended template like this gives you a great deal of freedom. You can make a template and later
change the width or height of the cells, and it will still load the same way. The green and blue and cyan
pixels let you calculate tile spaces, anchor points, and tile extents, which you can parse into arrays of rec-
tangles and points. You can move an image’s anchor point and have it show up in a different location. An
extended template takes pressure off programmers and removes stress from artists, who, when using it, are
less constrained by the normally tight restrictions for tile-based graphics.

Before you finish building your utopian society, though, you have to write code that will parse a graphics
file into arrays of rectangles and points. Let’s start by figuring out what information you need about each
tile. Presumably, these templated graphics will be on an IDirectDrawSurface7 somewhere, and you want
to optimize your data structures for using Blt and BltFast. Since both of these use source rectangles,
you’ll definitely want to keep an array of RECTs for that. The coordinates held in these RECTs will be pixel
coordinates measured from (0,0) in the tileset’s image. Figure 10.9 shows what one of these RECTs might
look like.

Tile-Based Fundamentals244

Take a really close look at the top cell (zoom in as far as the program will let you), shown in Figure 10.7.

There is more than just green. . . there is also white and cyan (you can’t see it too well in the book, but you
can see it just fine in a graphics program). As you might have guessed, each of the different colors means
something. The green dots span the width and height of the image. White dots are part of the frame but
outside of the image. The black dot in the corner is what designates the corner of a tile cell, and also the
transparent color of the tileset. The cyan dot (or blue dot) designates a coordinate for the tile’s anchor. (I
use cyan when the anchor is within the bounds of the tile image itself. In other words, it would otherwise
be a green dot, and blue when the anchor point would otherwise be white.)

Why these colors? Why not a completely different set of colors? Quite frankly, you could use a different set
of colors, and this type of template supports just that. Take a look and zoom in on the upper-right corner
of the tileset (shown in Figure 10.8).

Isometric Game Programming with DirectX 7.0

Figure 10.7

Zooming in on the caveman

Figure 10.8

The upper-right corner of the tileset,

demonstrating control colors

247

In Figure 10.10, the anchor point is (7,1), which is within the range of your source RECT, as I said it
would be.

Finally, you add another array of RECTs to hold the tile extents. Extents can be calculated after the source
RECT and anchor POINT have been determined, like so:

//copy source rect
CopyRect(&rcExtent,&rcSrc);
//offset by anchor point
OffsetRect(&rcExtent,-ptAnchor.x,-ptAnchor.y);

In this case, the extent is (–6,0)–(32,60). The derivation of these values is as follows:
Upper Left:
From source RECT (1,1)
Minus anchor point (7,1)
Combine coordinates (1–7,1–1)
Solve (–6,0)

Bottom Right:
From source RECT (40,62)
Minus anchor point (7,1)
Combine (40–7,62–1)
Solve (33,61)

Yes, there’s a negative left coordinate; this is quite common for this type of tileset, where you might want
to reference a tile from a point other than the upper left. It would not be a stretch to use the character’s
feet or center. Just use whatever works to give an animation continuity and smoothness. For this tileset, the
horizontal aspect of the anchor lines up with the back of the caveman’s hair.

The idea here is that you want to be able to simply specify a single (x,y) screen coordinate and tell it which
tile to blit, and have it come out right. When blitting, the (x,y) point corresponds to the tile’s anchor
point. This means that if you tell this tile to blit to screen coordinate (100,100), you want screen coordi-
nate (100,100) to correspond to the tileset image’s coordinate (7,1).

You want the extent so that you can simplify the process of determining the coordinates of the destination
RECT (or the destination (x,y) for BltFast). Taking the source RECT and subtracting the point gives you
the extent. This way, based on a single set of coordinates (dstX and dstY), you can determine the proper
destination rectangle. For example:

Tile-Based Fundamentals246

In Figure 10.9, the RECT has the coordinates (1,1)–(39,61). Remember that you have to add one to the
bottom and right because of how RECTs work. Doing so gives you a resulting RECT of (1,1)–(40,62).

Because you might or might not be referencing off the upper-left of these source RECTs (the blue and cyan
points might lie elsewhere), you need an array of POINTs to keep track of the tile anchors. Like the source
rectangles, these POINTs contain coordinates into the tileset image, meaning that a tile with a rectangle of
(100,100)–(200,200) has its anchor point within the x and y range of that RECT (rather than having the
anchor point in reference to the tile cell’s upper-left corner, which is another way you could have done this
that would have added unnecessary computations). Figure 10.10 shows the anchor point.

Isometric Game Programming with DirectX 7.0

Figure 10.9

Source RECT

Figure 10.10

Anchor point

249

The members of TILEINFO are explained in Table 10.1.

Next, here’s the class itself:

class CTileSet
{
private:

//number of tiles in tileset
DWORD dwTileCount;
//tile array
TILEINFO* ptiTileList;
//filename from which to reload
LPSTR lpszReload;
//offscreen plain directdrawsurface7
LPDIRECTDRAWSURFACE7 lpddsTileSet;

public:
//constructor
CTileSet();
//destructor
~CTileSet();
//load (initializer)
void Load(LPDIRECTDRAW7 lpdd,LPSTR lpszLoad);
//reload (restore)
void Reload();
//unload (uninitializer)
void Unload();
//get number of tiles
DWORD GetTileCount();
//get tile list

Tile-Based Fundamentals248

//for Blt
CopyRect(&rcDst,&rcExtent);
OffsetRect(&rcDst,dstX,dstY);
//perform the Blt

//for BltFast
dstX+=rcDst.left;
dstY+=rcDst.top;
//perform bltfast

If you didn’t precalculate the extents, you would have to calculate them from the source rectangle, anchor
point, and destination point each time you wanted to render the tile. Although doing so isn’t too much
more work (about a dozen add or subtract operations), it is work, and in game programming, you want to
avoid any work that you can. Precalculating tile extents might give you just one extra frame per second or
even only half a frame per second, which doesnt’ sound like much, but if you have two optimizations that
each give you an extra half-frame per second, you’ve just earned yourself another frame per second. Game
programming is a game of inches.

A TileSet Class
So, now that you’ve decided what information you want, you just have to go in and get it. I made a class to
work with these sorts of templates. It’s called CTileSet, and you can find the code for it in TileSet.h and
TileSet.cpp.

The Class Declaration
First, I designed a struct to contain important information about tiles, including source rectangle, anchor
point, and destination extent. I put this information into TILEINFO.

//tileset information structure
struct TILEINFO
{

RECT rcSrc;//source rectangle
POINT ptAnchor;//anchoring point
RECT rcDstExt;//destination extent

};

Isometric Game Programming with DirectX 7.0

Table 10.1 TILEINFO Members
TILEINFO Member Meaning

rcSrc Source RECT for the tile

ptAnchor Anchor POINT for the tile

rcDstExt Destination extent RECT for the tile

251

The constructor and destructor don’t do much and aren’t very interesting, but the other functions are more
important, so I’ll explain them in more detail.

CTileSet::Load
This function loads a bitmap and places it onto a DirectDraw surface and also parses the image into its
component tiles.

void CTileSet::Load(LPDIRECTDRAW7 lpdd,LPSTR lpszLoad);

The lpdd parameter is a pointer to an IDirectDraw object, which is used to initially create the tileset
surface. The lpszLoad parameter is the name of the file to load that contains the image you want for
this tileset.

Tile-Based Fundamentals250

TILEINFO* GetTileList();
//get surface
LPDIRECTDRAWSURFACE7 GetDDS();
//retrieve filename
LPSTR GetFileName();
//blit a tile
void PutTile(LPDIRECTDRAWSURFACE7 lpddsDst,int xDst,int yDst,int

iTileNum);
};

The private members contain all of the information needed to process the tileset. These are listed in
Table 10.2.

The member functions in the public section perform all necessary operations on the tileset. Table 10.3
explains these member functions.

Isometric Game Programming with DirectX 7.0

Table 10.2 CTileSet Private Members
CTileSet Private Member Meaning

dwTileCount The number of tiles contained in the tileset

ptiTileList A pointer to an array of TILEINFO that describes each tile

lpszReload The file name from which this tileset was loaded

lpddsTileSet The IDirectDrawSurface7 pointer that is the off-screen
surface containing the tileset

Table 10.3 CTileSet Public Member Functions
CTileSet Public Member Function Purpose

CTileSet Constructor that initializes all variables to 0
or NULL

~CTileSet Destructor that calls Unload

Load Loads and parses an image

Reload Reloads the image (if for some reason the sur-
face has been freed, such as resulting from an
Alt+Tab)

Unload Frees the resources associated with the tileset

GetTileCount Returns the number of tiles

GetTileList Returns the tile info pointer

GetDDS Returns a pointer to the
IDirectDrawSurface7 containing the tileset

GetFileName Returns the name of the file from which the
tileset was loaded

PutTile Puts a tile on a surface, given a coordinate and
a tile number

253

CTileSet::GetTileList
This function gives you access to the tile information, which is very important if you want to implement
clipping yourself rather than relying on a DirectDraw clipper and CTileSet::PutTile.

TILEINFO* CTileSet::GetTileList();

This function returns the pointer to the tile array. You can use the result of this function just as you would
an array.

//make tileset
CTileSet tsExample;
tsExample.Load(lpdd,”Sample.bmp”);
//retrieve the info about tile zero
TILEINFO ti=txExample.GetTileList()[0];

CTileSet::GetDDS
This function allows access to the DirectDraw surface on which dwell the tiles.

LPDIRECTDRAWSURFACE7 CTileSet::GetDDS();

This function returns the IDirectDrawSurface7 pointer that contains the image of the tileset. If for
some reason you wanted to modify or read from the surface, this would be the function you’d start with.
Keep in mind that any changes you make to the surface will not survive a call to CTileSet::Reload. Also,
if you want to keep a copy of the surface pointer for a long time, it might be best to use AddRef so that
the surface isn’t inadvertently deleted in the interim.

CTileSet::GetFileName
This function is pretty self-explanatory.

LPSTR CTileSet::GetFileName();

This returns a pointer to the file name that is used to reload the tileset.

CTileSet::PutTile
This function is the reason for the whole show. It’s the workhorse of the CTileSet class.

void CTileSet::PutTile(LPDIRECTDRAWSURFACE7 lpddsDst,int xDst,int yDst,int
iTileNum);

This takes care of putting a tile onto a destination surface (lpddsDst), with xDst,yDst corresponding to
the anchor point of the specified tile (iTileNum). Tiles are numbered starting with 0 and are ordered left
to right, top to bottom.

Tile-Based Fundamentals252

This function is quite long, because of the image parsing. It performs the following tasks:

1. Loads the image.
2. Grabs the control colors from the upper-right corner.
3. Counts and measures the horizontal and vertical cells.
4. Allocates the tile list.
5. Scans each tile’s left and top for anchor points and inside points (using default values if these

control points are not specified).
6. Calculates destination tile extents.

All of the main work is done here, at load time, so that after a call to Load, you can immediately start
using PutTile, and you never really have to worry about it ever again.

CTileSet::Reload
CtileSet::Reload reloads an image if and when it is lost due to a display mode change or Alt+Tab
incident.

void CTileSet::Reload();

If, as a result of an Alt+Tab or other such misfortune, your tileset’s surface is lost, a call to
IDirectDraw7::RestoreAllSurfaces may be required. After that, you can call CTileSet::Reload, and
the image will be reloaded (but not reparsed).

CTileSet::Unload
This frees all the resources used by the tileset. It is called during the destructor and whenever Load is
called.

void CTileSet::Unload();

Very likely, you will never call this function directly, since it is taken care of in the destructor. Even if you
wanted to load a different image into a tileset, you could just call Load. The only time you would ever
want to call Unload is if you were trying to conserve video memory for other images. It is here mainly for
completeness.

CTileSet::GetTileCount
This one’s a no-brainer.

DWORD CTileSet::GetTileCount();

This function returns the number of tiles in the set.

Isometric Game Programming with DirectX 7.0

255

//create primary surface
lpddsMain=LPDDS_CreatePrimary(lpdd,1);
//get back buffer
lpddsBack=LPDDS_GetSecondary(lpddsMain);
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//load in tileset
tsCaveMan.Load(lpdd,”IsoHex10_1.bmp”);
return(true);//return success

}

The Main Loop
In Prog_Loop, three things happen. First, the back buffer is cleared out. Second, one of the cells of the
tileset is written to the approximate middle of the screen. Third, the application is locked to 15 frames per
second.

void Prog_Loop()
{

//start timer
DWORD dwTimeStart=GetTickCount();
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//put the caveman
tsCaveMan.PutTile(lpddsBack,400,300,dwCaveManFrame);
//change the frame number
dwCaveManFrame++;
dwCaveManFrame%=8;
//flip
lpddsMain->Flip(NULL,DDFLIP_WAIT);
//lock to 15 FPS
while(GetTickCount()-dwTimeStart<66);

}

Tile-Based Fundamentals254

An Animated Sprite Example
One of the many uses for a tileset is for an animated sprite sequence. Earlier in this chapter, I showed you
a tileset consisting of some caveman images from spritelib, which is a good example of one such animation
sequence. Load up IsoHex10_1.cpp, which makes use of CTileset (among other things; see the top of
IsoHex10_1.cpp). If you load and run it, you will see the caveman running in place, as shown in Figure
10.11.

This example is based on IsoHex1_1.cpp, just like the rest of the examples. The main differences exist in
Prog_Init, Prog_Loop, and Prog_Done.

Setting up
The Prog_Init does the required DirectDraw setup (creating the DirectDraw interface, creating the pri-
mary surface and the back buffer). It also loads the tileset into tsCaveMan (a global CTileSet variable).

bool Prog_Init()
{

//create IDirectDraw7
lpdd=LPDD_Create(hWndMain,DDSCL_FULLSCREEN | DDSCL_EXCLUSIVE |

DDSCL_ALLOWREBOOT);
//set display mode
lpdd->SetDisplayMode(800,600,16,0,0);

Isometric Game Programming with DirectX 7.0

Figure 10.11

Animation demo

257

dwCaveManFace=1;
//update position
dwCaveManPosition+=796;
dwCaveManPosition%=800;
//update animation frame
dwCaveManFrame+=1;
dwCaveManFrame%=7;

}
else
{

//moving right
dwCaveManFace=0;
//update position
dwCaveManPosition+=4;
dwCaveManPosition%=800;
//update animation frame
dwCaveManFrame+=1;
dwCaveManFrame%=7;

}
}
else
{

//standing
dwCaveManFrame=7;

}
//flip
lpddsMain->Flip(NULL,DDFLIP_WAIT);
//lock to 15 FPS
while(GetTickCount()-dwTimeStart<66);

}

The global variables named MoveLeft and MoveRight are bools, and you change their status in response to
WM_KEYUP and WM_KEYDOWN.

case WM_KEYDOWN:
{

//on escape, destroy main window
if(wParam==VK_ESCAPE)
{

DestroyWindow(hWndMain);
}
//movement keys

Tile-Based Fundamentals256

You can see that using CTileSet is a great deal easier than setting up RECTs and going down that path.
The tileset makes sprite and tile management easy and doesn’t add that much overhead.

Cleaning up
You don’t have to call the Unload function, because CTileSet’s destructor automatically does so, and you
can essentially ignore your tileset in Prog_Done. You can just destroy the primary surface and the
IDirectDraw and be done with it.

void Prog_Done()
{

//destroy primary surface
LPDDS_Release(&lpddsMain);
//destroy IDirectDraw7
LPDD_Release(&lpdd);

}

Taking Control
Although just watching a caveman run in place is fun, you’d probably rather control him. For this, I wrote
IsoHex10_2.cpp. This example is mostly the same as IsoHex10_1, except that now you respond to the
arrow keys and use that information to move the caveman back and forth across the screen. The major
change happens in Prog_Loop.

void Prog_Loop()
{

//start timer
DWORD dwTimeStart=GetTickCount();
//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//put tile

tsCaveMan[dwCaveManFace].PutTile(lpddsBack,dwCaveManPosition,300,dwCaveManFrame);
//move
if(MoveLeft^MoveRight)
{

if(MoveLeft)
{

//moving left

Isometric Game Programming with DirectX 7.0

259

Tilemap Basics
A single tile, or even a sequence of tiles depicting an animated character, isn’t in itself very useful. In order
to be useful, a variety of sprites and tiles must be used together. Now that you’ve seen how easy it is to
manipulate tilesets, the time has come to get into tilemaps. When creating a tile-based world, you must
have a way to represent it in your computer’s memory. Usually, you do so with some sort of array,
although there are other more complicated but more flexible solutions.

Since we are still in rectangle land, our tilemaps are more intuitive than they will be once we get into iso-
metric and hexagonal tilemaps. They are simply two-dimensional arrays, like so:

int iTileMap[WIDTH][HEIGHT];

WIDTH and HEIGHT can be any old value—whatever you need to make your tilemap the proper size. In a
chess or checkers game, WIDTH and HEIGHT would both have a value of 8. A side-scroller might have a
HEIGHT equal to the screen height divided by the tile height, but the width of the map times the width of
the tiles might be several times the width of the screen. The WIDTH and HEIGHT values depend entirely on
what kind of game you are making.

The meaning of the numbers in this array remains in question. Intrinsically, they have none; the meaning
of the numbers is entirely up to you. You may not even have ints in the array, but instead a completely dif-
ferent custom structure. Again, this is entirely game-dependent.

For example, in a checkers game, the board squares are alternately black and red, as shown in Figure 10.12.
You might put this in the number as a bit flag (if bit 0 is set or not set, for example). On the other hand,
you might decide that a board whose x and y add up to be an even number is black, and an odd number is
red, like so:

if((tilex+tiley)&1)
{

//red square
}
else
{

//black square
}

Tile-Based Fundamentals258

if(wParam==VK_LEFT)
{

MoveLeft=true;
}
if(wParam==VK_RIGHT)
{

MoveRight=true;
}
return(0);//handled

}break;
case WM_KEYUP:

{
//movement keys
if(wParam==VK_LEFT)
{

MoveLeft=false;
}
if(wParam==VK_RIGHT)
{

MoveRight=false;
}
return(0);//handled

}break;

In Prog_Loop, you can see that, depending on which key is
being pressed, the facing (contained in dwCaveManFace), the
position (dwCaveManPosition), and the animation frame
(dwCaveManFrame) are updated. Nothing happens if both
keys are pressed at the same time.

This is about it for your crash course in tile and sprite man-
agement. Throughout the rest of the book, you will make
heavy use of CTileSet. I hope I’ve shown you that this stuff
isn’t so hard after all, as long as you have the proper tools and
classes to help you.

Isometric Game Programming with DirectX 7.0

NOTE
You may have noticed that no
subtraction is done—only addi-
tion.This is because all the vari-
ables are DWORDs, or unsigned
longs, which have no negative
values.You can see that all the
additions are shortly followed by
a modulus (%) operation.
Combining addition and modu-
lus, you get a net subtraction.

261

You may want to only contain in your checkerboard’s tile array which piece is or is not there. There are a
total of five options: black piece, red piece, black king, red king, and empty; you might create an enum to
keep track of them.

enum{EMPTY=0,BLACKPIECE=1,REDPIECE=-1,BLACKKING=2,REDKING=-2};

In this scheme, all black pieces are positive numbers, and all red pieces are negative. This provides an easy
way to differentiate them and conveniently leaves 0 for representing empty. The starting board configura-
tion tilemap values are shown in Figure 10.14.

More Complicated Tilemaps
Checkers is a good example of a game for which to use a very simple map structure. There isn’t much vari-
ety in the tiles this map can hold. This is true of most board and puzzle games, like chess, Reversi, and so
on. However, more complicated games like turn-based or real-time strategy games are more visually rich
and thus have a more complicated map structure. Also, these types of maps tend to be layered.

For example, you might decide that your turn-based strategy game will have several different types of ter-
rain: ocean, plains, forest, hills, and mountains. These would become your basic terrain types. In addition,
you might want to have rivers and roads connecting various map squares. Roads and rivers would be con-
tained in different layers. Also, you’ll undoubtedly want to have cities and units on the map, and this can
add even more layers. To accomplish all this layering, you might have a struct like the following to describe
your tilemap areas:

Tile-Based Fundamentals260

Figure 10.13 shows the calculations for (x+y) & 1 for the sample checkerboard.

Isometric Game Programming with DirectX 7.0

Figure 10.12

A checkerboard

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

Figure 10.13

Alternating

odd/even

checkerboard

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7X

Y
1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 -1 0 -1 0 -1 0 -1

-1 0 -1 0 -1 0 -1 0

0 -1 0 -1 0 -1 0 -1

Figure 10.14

Starting board

configuration

263

Of course, neither 200 nor 600 is evenly divisible by 32. 200/32=6.25, and 600/32=18.75, leaving
extra pixels. For this reason, there will be borders around both the editing panel and the tile selection
panel, as shown in Figure 10.16. This makes the map panel 576✕576 (or 18 tiles by 18 tiles), and the tile
selection panel 192✕576 (or 6 tiles by 18 tiles).

Tile-Based Fundamentals262

struct TILEMAPSQUARE
{

char BasicTerrain;//0=ocean;1=plains;2=forest;3=hills;4=mountains;
unsigned char RoadFlags;//bit 0=north; bit 1=northeast; bit 2=east; etc.
unsigned char RiverFlags;//bit 0=north;bit 1=east;bit2=south;bit3=west
UNIT* Unit;//pointer to a unit

};

I think you get the idea. The more rich the world, the more complicated becomes the map structure. For
now, we will stick with simplistic tilemaps. We’ll get into more complicated structures in later chapters.

Rendering a Tilemap
Storing a tilemap somewhere in an array is important. Doing so allows you to persist a world without hav-
ing to hardcode it. With such a tilemap, you can save to and load from disk, and create an editor that
allows you to modify the map. Creating an editor is a great idea; you can distribute it with your game so
that your players can create their own levels if they wish, thus enhancing the replay value of your game.
Take, for example, the popularity of Civilization II, which was written several years ago but is still played
heavily. Entire Web sites are dedicated to modified tilesets and scenarios that can be played within the
game.

Having said that, let’s talk about how to render a tilemap, and then we’ll make a simple map editor
that uses a tileset from spritelib. I’ll bring up and talk about some of the terms I mentioned earlier in
this chapter.

Screen Space
First, we’ll talk about screen space in more depth. Screen space is nothing more than a rectangle describing
the play area shown on-screen. This could be the entire screen, or it could be a smaller portion. Most
modern games have some sort of status bar on the side or bottom of the screen, so quite often screen
space is smaller than the entire screen.

For the editor that we will be making, let’s use 800✕600✕16 mode. We will use a 600✕600 area for edit-
ing the map on the left side of the screen, leaving 200✕600 on the right for tile selection. The tiles we will
be using are 32✕32. The tileset is shown in Figure 10.15.

Isometric Game Programming with DirectX 7.0

Figure 10.15

Tileset for the editor

Map Panel
Tile

Panel

Figure 10.16

Layout of the map

editor

265

A Simple TileMap Editor
Load up IsoHex10_3.cpp. This example demonstrates what we’ve been talking about for the last several
pages. It sets up a map panel and a tile panel. The map panel is your screen space for the tilemap. The tile
panel shows the variety of tiles that you can place in the tilemap. Figure 10.17 shows sample output for
this example.

The controls for this example are rather simple, and the features rather slim. Clicking anywhere in the map
panel puts the selected tile there. Clicking in the tile panel selects a new tile. Clicking above or below the
tile panel scrolls the tile panel up or down. All in all, this example is pretty spartan. It doesn’t save, it does-
n’t load, it doesn’t really do much except let you play with the tileset. Still, I think it’s a pretty good exam-
ple of what a tilemap editor looks like at its very core. Let’s take a look at how it works.

Constants
First, I made a number of constants to keep track of the sizes in the editor. Quite a few of them are
dependent on other constants.

//map and tile constants
const int TILEWIDTH=32;
const int TILEHEIGHT=32;
const int MAPWIDTH=18;

Tile-Based Fundamentals264

You want your map panel centered within the 600✕600 rectangle, and you want the tile selection panel
centered within the 200✕600 rectangle on the right. This will give your map panel RECT the value of
(12,12)–(588,588) and your tile selection RECT the value of (12,604)–(796,588). This gives you not one,
but two screen spaces. In the map panel, draw the current representation of the map based on your map
array, which contains indices into the tileset (make the tilemap 18✕18 so that it conveniently fits). In the
tile selection panel, draw all the tiles, in order, and outline the one that is currently selected.

But now you have more tiles in the set than will fit in the tile selection box. You can fit 6✕18 tiles (108
tiles), but you have 192. In order for the editor to be any good, you must either reduce the number of tiles
in the set—something you don’t want to do—or make it so that all the tiles can be selected by allowing
some sort of scrolling mechanism. This is a better solution. You may, at some point, want to handle a vari-
ably-sized tileset, so not locking yourself into a fixed-size tileset is wise.

World Space and View Space
You have already decided to have an 18✕18 tile grid, and this will be the total of your world space. Since
each tile is 32*32, this makes the pixel measurement of world space 576✕576. Since you are making world
space 0-based, the world space RECT is (0,0)–(576,576).

Your view space is based on your screen space. Since screen space spans from (12,12)–(588,588), you
simply must subtract (12,12) from each coordinate pair to determine your view space. This makes view
space 0-based, which makes conversion from one space to another much easier. The point (12,12) is called
the screen-to-view anchor.

Upper Left:
Screen coordinate (12,12)
Minus anchor (12,12)
Combine (12–12,12–12)
Solve (0,0)

Lower Right:
Screen coordinate (588,588)
Minus anchor (12,12)
Combine (588–12,588–12)
Solve (576,576)

Conveniently, your view space RECT works out to be (0,0)–(576,576), which is exactly the same as your
world space RECT, meaning that no conversion is necessary to go from world to view space. So, to convert
from world to screen space, simply add the coordinate (12,12). To do the reverse, subtract (12,12).

Isometric Game Programming with DirectX 7.0

Figure 10.17

A simple TileMap

editor

267

The Main Loop
The main loop itself (Prog_Loop) does virtually nothing. It delegates to ShowMapPanel and
ShowTilePanel and then performs a flip.

ShowMapPanel
This function has no parameters, returns no value, and carries out two tasks. The first task is clearing out
the entire map panel with black. The second is looping through all the tiles in the tilemap and putting
them onto the map panel.

void ShowMapPanel()
{

//clear out map panel
//set up fill rect
RECT rcFill;
SetRect(&rcFill,MAPPANELX,MAPPANELY,MAPPANELX+MAPPANELWIDTH,MAPPANELY+MAP-

PANELHEIGHT);
//set up ddbltfx
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(&rcFill,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//loop through map
for(int mapy=0;mapy<MAPHEIGHT;mapy++)
{

for(int mapx=0;mapx<MAPWIDTH;mapx++)
{

//put the tile
tsTileSet.PutTile(lpddsBack,MAPPANELX+mapx*TILEWIDTH,

MAPPANELY+mapy*TILEHEIGHT,iTileMap[mapx][mapy]);
}

}
}

Tile-Based Fundamentals266

const int MAPHEIGHT=18;
//panels
const int MAPPANELX=12;
const int MAPPANELY=12;
const int MAPPANELWIDTH=MAPWIDTH*TILEWIDTH;
const int MAPPANELHEIGHT=MAPHEIGHT*TILEHEIGHT;
const int TILEPANELX=604;
const int TILEPANELY=12;
const int TILEPANELCOLUMNS=6;
const int TILEPANELROWS=18;
const int TILEPANELWIDTH=TILEPANELCOLUMNS*TILEWIDTH;
const int TILEPANELHEIGHT=TILEPANELROWS*TILEHEIGHT;

Globals
Besides our usual globals (window handle, our DirectDraw pointer, and our primary and back surfaces),
there are a few extras with which to keep track of the state of the editor.

//tileset
CTileSet tsTileSet;
//tilemap
int iTileMap[MAPWIDTH][MAPHEIGHT];
//tile selection
int iTileTop=0;
int iTileSelected=0;

The tsTileSet variable contains the tileset you’ll be using. iTileMap is the array in which you contain
your tilemap. The iTileTop and iTileSelected variables are for managing the tile selection panel.
iTileSelected keeps track of what tile is currently selected for drawing, and iTileTop tracks what tile is
shown at the top of the tile selection panel.

Set up and Clean up
The changes to Prog_Init are minor. You set up DirectDraw, load your tileset, and clear out your tilemap.
I won’t list the function’s contents here. In Prog_Done, there are effectively no changes, since you neither
have to deallocate the tilemap nor destroy the tileset.

Isometric Game Programming with DirectX 7.0

269

SetRect(&rcOutline,TILEPANELX+
tilex*TILEWIDTH,
TILEPANELY+
tiley*TILEHEIGHT,
TILEPANELX+
tilex*TILEWIDTH+
TILEWIDTH,
TILEPANELY+
tiley*TILEHEIGHT+
TILEHEIGHT);

//select a white pen into dc
SelectObject(hdc,

(HPEN)GetStockObject(WHITE_PEN));
//place selection rectangle

MoveToEx(hdc,rcOutline.left,
rcOutline.top,NULL);

LineTo(hdc,rcOutline.right-1,rcOutline.top);
LineTo(hdc,rcOutline.right-1,rcOutline.bottom-

1);
LineTo(hdc,rcOutline.left,rcOutline.bottom-1);
LineTo(hdc,rcOutline.left,rcOutline.top);

//release the dc
lpddsBack->ReleaseDC(hdc);

}
}
//increase tile counter
tilenum++;

}
}

}

Accepting Input
The only topic left to cover is accepting input and making things happen. I’m only going to show the
event handler for WM_LBUTTONDOWN, since the handler of WM_MOUSEMOVE is almost identical, and because of
the sheer size of the handler.

In essence, the WM_LBUTTONDOWN handler takes the position of the mouse and places it in a POINT variable
called ptMouse. Then it sets up a series of RECTs—one for the map panel, one for the tile panel, one for
the area above the tile panel, and one for the area below the tile panel. It checks to see if the mouse is

Tile-Based Fundamentals268

ShowTilePanel
ShowTilePanel is responsible for displaying all of the tiles in the tile panel and for placing a white box
around the currently selected tile.

void ShowTilePanel()
{

//clear out map panel
//set up fill rect
RECT rcFill;
SetRect(&rcFill,TILEPANELX,

TILEPANELY,TILEPANELX+
TILEPANELWIDTH,TILEPANELY+
TILEPANELHEIGHT);

//set up ddbltfx
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(&rcFill,NULL,NULL,

DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//set tile counter to first tile
int tilenum=iTileTop;
//loop through columns and rows
for(int tiley=0;tiley<TILEPANELROWS;tiley++)
{

for(int tilex=0;tilex<TILEPANELCOLUMNS;tilex++)
{

//check for tilenum’s existence in tileset
if(tilenum<tsTileSet.GetTileCount())
{

tsTileSet.PutTile(lpddsBack,TILEPANELX+tilex*TILEWIDTH,TILEPANELY+tiley*TILE-
HEIGHT,tilenum);

//check for selected tile
if(tilenum==iTileSelected)
{

//grab the dc
HDC hdc;
lpddsBack->GetDC(&hdc);
//calculate outline rect
RECT rcOutline;

Isometric Game Programming with DirectX 7.0

271

tilenum=iTileTop+tilex+tiley*TILEPANELCOLUMNS;
//check for valid tile
if(tilenum<tsTileSet.GetTileCount())
{

//assign current tile
iTileSelected=tilenum;

}
return(0);//handled

}
//scroll tileset up

SetRect(&rcZone,TILEPANELX,0,TILEPANELX+
TILEPANELWIDTH,TILEPANELY);

if(PtInRect(&rcZone,ptMouse))
{

//check if we can scroll up
if(iTileTop>0)
{

//scroll up
iTileTop-=TILEPANELCOLUMNS;

}
}
//scroll tileset down
SetRect(&rcZone,TILEPANELX,TILEPANELY+

TILEPANELHEIGHT,TILEPANELX+
TILEPANELWIDTH,600);

if(PtInRect(&rcZone,ptMouse))
{

//check if we can scroll down
if((iTileTop+TILEPANELCOLUMNS)<

tsTileSet.GetTileCount())
{

//scroll up
iTileTop+=TILEPANELCOLUMNS;

}
}
return(0);//handled

}break;

Tile-Based Fundamentals270

within these RECTs, and if it is, it carries out the appropriate action: place a tile if within the map panel,
select a tile if within the tile panel, scroll the tile panel up if above or down if below.

WM_MOUSEMOVE does mostly the same thing, except for the scrolling of the tile panel if above or below.

case WM_LBUTTONDOWN:
{

//point to contain mouse coords
POINT ptMouse;
ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);
//RECT used for zone checking
RECT rcZone;
//other variables
int mapx=0;
int mapy=0;
int tilex=0;
int tiley=0;
int tilenum=0;
//check the map panel

SetRect(&rcZone,MAPPANELX,MAPPANELY,
MAPPANELX+MAPPANELWIDTH,
MAPPANELY+MAPPANELHEIGHT);

if(PtInRect(&rcZone,ptMouse))
{

//in map panel
//calculate what tile mouse is on
mapx=(ptMouse.x-MAPPANELX)/TILEWIDTH;
mapy=(ptMouse.y-MAPPANELY)/TILEHEIGHT;
//change map tile to currently selected tile
iTileMap[mapx][mapy]=iTileSelected;
return(0);//handled

}
//check the tile panel
SetRect(&rcZone,TILEPANELX,TILEPANELY,

TILEPANELX+TILEPANELWIDTH,
TILEPANELY+TILEPANELHEIGHT);

if(PtInRect(&rcZone,ptMouse))
{

//calculate which tile was selected
tilex=(ptMouse.x-TILEPANELX)/TILEWIDTH;
tiley=(ptMouse.y-TILEPANELY)/TILEHEIGHT;

Isometric Game Programming with DirectX 7.0

273

Two players alternate taking turns placing a single piece on the board and capturing any opposing pieces
that they outflank. To outflank means to have one piece of your color on each end of a horizontal, verti-
cal, or diagonal row of your opponent’s pieces. You cannot outflank across your own pieces or across open
squares. If on a player’s turn there is no valid square on which he can play a piece and outflank his oppo-
nent, he forfeits that turn. Play progresses until no valid moves for either player are left (usually this hap-
pens when the board is full, although it can happen earlier).

Having said that, let’s make the game.

Designing Reversi
I have Milton Bradley’s Othello sitting on my game shelf, so I looked to that to model this game. The
board is green with a black border separating the squares. Two cells in from the corners, there is a small
square on the junction of the black lines, apparently to separate the sides and corners from the middle of
the board. The pieces are double-sided and two-colored, with white on one side and black on the other.

I wanted to have some sort of method with which to highlight the possible squares to which the player can
move on his turn, so I also made yellow versions. I wanted an animated “flipping over” of the pieces, so I
made a sequence of ellipses to show that. Figure 10.19 shows the tileset I came up with for this game. You
can also find it in the source code for this chapter, under the name IsoHex10_4.bmp. I used magenta
instead of black as the transparent color. (Originally, I considered having a black piece instead of the dark
gray that I later settled on.)

Tile-Based Fundamentals272

A Few Words about the
TileMap Editor
Even though the sample map editor doesn’t do much, it does illustrate important points about all map edi-
tors. Just about every map editor I’ve made or used includes something similar to the map panel and some-
thing similar to the tile panel (although usually with a more obvious way of scrolling through the tileset).

A Tile-Based Example: Reversi
Now that we’ve delved a bit into the tile-based world, let’s put this knowledge into practice. The first
example I’d like to show you is a game called Reversi. (It’s also called Othello, but Othello is trademarked
by Milton Bradley, so we’ll call ours Reversi.)

The basic idea of Reversi is pretty simple. In case you aren’t familiar with the game or the rules, here’s a
brief breakdown: the game pieces are a board, divided into an 8✕8 grid of 64 squares, and at least 64 two-
sided pieces of contrasting color (usually black and white). At the beginning of the game, the center four
squares are filled with pieces, two black and two white, as shown in Figure 10.18.

Isometric Game Programming with DirectX 7.0

Figure 10.18

The Reversi board at

the beginning of play

Figure 10.19

Tileset for Reversi

275

Game States
As with all games, there are a number of major game states in which Reversi might dwell at any given time.
I was able to reduce it to only five states.

//game states
const int GS_NONE=-1;
const int GS_WAITFORINPUT=0;
const int GS_NEWGAME=1;
const int GS_NEXTPLAYER=2;
const int GS_FLIP=3;

Table 10.5 explains these states.

Tile Information Structure
Reversi may seem like a simple board game, but the struct that keeps track of the tile information is a little
more complicated than just a simple array of integers.

//tile information structure
struct REVERSITILE
{

int iTileNum;//base tile number for square
bool bHilite;//hilited, or not hilited
int iPiece;//piece occupying square
bool bLastMove;//last move made

};

Tile-Based Fundamentals274

The first row of tiles is the nonhighlighted version of a board background tile. The second row is the
highlighted version. Rows three through five are the animation sequence for the piece flip, with the actual
pieces for both sides on opposite ends of the sequence. The last row consists of extra graphics I needed to
finish up the UI. There is a red square to represent the last move made, and four icons to show the AI level
chosen for the players.

AI Levels
I decided on four levels of AI for this example (none of them are very difficult to beat). These levels are
represented by constants defined in the source.

//ai levels
const int AI_HUMAN=0;
const int AI_RANDOM=1;
const int AI_GREEDY=2;
const int AI_MISER=3;
const int AI_COUNT=4;

Table 10.4 explains these AI levels.

Isometric Game Programming with DirectX 7.0

Table 10.4 AI Levels and Their Tactics
Level Tactic

AI_HUMAN None.Waits for input from the mouse.

AI_RANDOM Picks a random valid move.

AI_GREEDY Picks the valid move that will give it the greatest score.

AI_MISER Picks the valid move that best limits the opponent’s movement.

NOTE
AI_COUNT is not an AI level, but rather a constant to keep
track of the number of levels that exist, in case you later want
to add more AI levels.

Table 10.5 Reversi Game States
Game State Meaning

GS_NONE A neutral state.The board is drawn, but no other action takes place.

GS_WAITFORINPUT If the current player is computer-controlled, a move will be made.
Otherwise, it waits for mouse input.

GS_NEWGAME Sets up a new game

GS_NEXTPLAYER Checks for game over. If the game is not over, it selects the next
player.

GS_FLIP In this state, the pieces captured during this turn are taken through
the animation sequence.

277

Implementation of Reversi
With the design in mind, here’s some of the implementation detail for Reversi. Because of space concerns,
I can’t get into every minute detail, but the full source code can be found in IsoHex10_4.cpp. I’m going to
concentrate on the main game loop (Prog_Loop) and break it down by game state.

Major Global Variables
Reversi uses full-screen DirectDraw, set to an 800✕600✕16 resolution. The major global variables are
shown next.

Your basic run-of-the-mill IDirectDraw7 pointer:

//IDirectDraw7 Pointer
LPDIRECTDRAW7 lpdd=NULL;

A primary surface and the attached back buffer:

//surfaces
LPDIRECTDRAWSURFACE7 lpddsMain=NULL;
LPDIRECTDRAWSURFACE7 lpddsBack=NULL;

The main tileset to contain all of the graphics used:

//tileset
CTileSet tsReversi;

The main board and a temporary storage area:

//the board
REVERSITILE Board[8][8];
//backup board
REVERSITILE BackUpBoard[8][8];

A variable to keep track of the current player:

//current player
int iPlayer=0;

An animation counter for use during GS_FLIP:

//counter for animated “flipping” of pieces
int iAnimation=0;

Tile-Based Fundamentals276

iTileNum

This member keeps track of the background and specifies one of the first five tiles of the tileset. Most
squares contain tile zero, but a few contain the others. I could have easily just used tile zero for the entire
board, but that would have been boring.

bHilite

When the current player can make a valid move on a given square, bHilite is true. If the square is not a
valid move for the player, hHilite is false. bHilite, when used in conjunction with iTileNum, provides
the background tile. When bHilite is true, 5 is added to iTileNum.

iPiece

This member has four meaningful values: PIECEEMPTY(-1), PIECEBLACK(0), PIECEWHITE(1), and
PIECETRANSIT(2). The empty, black, and white are self-explanatory. The transit piece is for use with the
GS_FLIP state. It specifies which pieces undergo the animation sequence.

bLastMove

Only one square at a time will ever have bLastMove set to TRUE. bLastMove specifies that the red rectangle
(tile 25 of the tileset) is to be shown over the background, thus indicating that the square was the most
recent move. Keeping track of this is not absolutely necessary, but I find it helpful when playing the game.

Score Indication
I wanted to have a score indication that did not require a font to implement. I could have used some extra
tiles for the numerals 0 through 9 in the tileset, but I just didn’t like that idea. Instead, I decided to use
vertical stacks of the pieces alongside the board. Both stacks are on the left side of the board, so they can
easily be compared to see who is winning.

AI Level Control
I didn’t want to make a configuration screen, so I had to work in some sort of AI level control right on the
screen itself. What I came up with was to put two of the colored pieces in the bottom-left corner (aligned
with the score stacks), and I would blit icons representing what AI levels controlled which color. The icons
are from the wingdings font, but I colored them in to make them look better.

Isometric Game Programming with DirectX 7.0

279

ShowBoard

This function loops through all of the board squares and follows approximately these steps:

1. Based on iTileNum and bHilite for this board square, determine which tile to use as the
background tile.

2. Determine what piece, if any, is resting on this square. If it is PIECEBLACK or PIECEWHITE,
show the appropriate tiles. If it is PIECETRANSIT, determine what tile to show based on the
global variable iAnimation.

3. If this square has bLastMove set, put the red square on top.

ShowScores

This function shows the scores for each color, representing the score with a vertical stack of pieces. For
each piece on the board, ShowScores renders one piece. The first piece is rendered with the top of the
piece at y=0, and y increases by 4 for each additional piece on the board. This allows a nice, easy way to
tell who is winning while avoiding numerals.

ShowPlayers

This function shows the AI levels of both colors in the bottom-left corner of the screen. A black piece sits
next to a white piece. On top of these pieces the function renders an icon that represents the AI level for
that color. A mouse represents a human player, and computers with the numerals 1, 2, and 3 represent the
three levels of computer AI.

GS_NONE
This game state does almost nothing. In fact, there is no case for it in the iGameState switch in
Prog_Loop. Only in the WM_LBUTTONUP event handler does GS_NONE get a mention. If the board is clicked
on while in GS_NONE, the game moves to GS_NEWGAME.

case WM_LBUTTONUP:
{

//grab mouse position
POINT ptMouse;
ptMouse.x=LOWORD(lParam);
ptMouse.y=HIWORD(lParam);
//test rectangle
RECT rcTest;
//get tile width and height
int iTileWidth=tsReversi.GetTileList()[0].rcSrc.right-

tsReversi.GetTileList()[0].rcSrc.left;

Tile-Based Fundamentals278

An array to keep track of what AI controls each color:

//ai level for the players
int iAILevel[2];

The main game state:

//gamestate
int iGameState=GS_NONE;

All Game States
Regardless of game state, a certain amount of code runs each loop. This code prepares a new frame for the
game and then displays it.

//clear out back buffer
DDBLTFX ddbltfx;
DDBLTFX_ColorFill(&ddbltfx,0);
lpddsBack->Blt(NULL,NULL,NULL,DDBLT_WAIT | DDBLT_COLORFILL,&ddbltfx);
//***OMITTED CODE***
//show the board
ShowBoard();
//show the scores
ShowScores();
//show players
ShowPlayers();
//flip
lpddsMain->Flip(NULL,DDFLIP_WAIT);

This bit is pretty simple. First, you clear out the back buffer, and then you draw the board, draw the
scores, draw the AI levels, and finally flip the page. It’s a pretty to-the-point snippet. You can take a look at
the constituent functions in the source code if you’re interested. The following sections offer a brief run-
down of the major function calls.

Isometric Game Programming with DirectX 7.0

281

GS_WAITFORINPUT
This game state is the central game state. All AI moves are done here. When the game first enters
GS_WAITFORINPUT, it checks the current player’s AI level. If AI_HUMAN is indicated, the game does nothing.
If it is a computer AI (AI_RANDOM, AI_GREEDY, or AI_MISER), it calls the appropriate AI function.

case GS_WAITFORINPUT:
{

//make move appropriate to the AI
switch(iAILevel[iPlayer])
{
case AI_RANDOM:

{
MakeRandomMove(iPlayer);

}break;
case AI_GREEDY:

{
MakeGreedyMove(iPlayer);

}break;
case AI_MISER:

{
MakeMiserMove(iPlayer);

}break;
}

}break;

Note that the AI level of AI_HUMAN isn’t even represented in this snippet. That is because all of the
AI_HUMAN stuff for GS_WAITFORINPUT is handled in the WM_LBUTTONUP event handler. (AI and GS and
WM. . . oh my!)

//***CODE OMITTED***
//point on board?
if(PtInRect(&rcTest,ptMouse))
{

//if we are waiting for input and the ai is “human,” check for inside the
board

if((iGameState==GS_WAITFORINPUT) &&
(iAILevel[iPlayer]==AI_HUMAN))

{
//find board position
int BoardX=(ptMouse.x-rcTest.left)/iTileWidth;
int BoardY=(ptMouse.y-rcTest.top)/iTileHeight;

Tile-Based Fundamentals280

int iTileHeight=tsReversi.GetTileList()[0].rcSrc.bottom-
tsReversi.GetTileList()[0].rcSrc.top;

//calc board rect
SetRect(&rcTest,(400-iTileWidth*4),

(300-iTileHeight*4),(400+iTileWidth*4),
(300+iTileHeight*4));
//point on board?

if(PtInRect(&rcTest,ptMouse))
{
//***CODE OMITTED

//if a game is over, start a new game by clicking on the
board
if(iGameState==GS_NONE)
{

iGameState=GS_NEWGAME;
}

}
//***CODE OMITTED***

}break;

GS_NEWGAME
GS_NEWGAME starts a new game, and is actually one of the simpler game states. First, it makes a call
to SetUpBoard, which does all of the reinitialization necessary to start out with a clean board. Then it sets
the player to PLAYERTWO and sends the game into GS_NEXTPLAYER. I could have done this another way, by
setting iPlayer to PLAYERONE and sending it into GS_WAITFORINPUT.

case GS_NEWGAME:
{

//clear the board
SetUpBoard();
//set player
iPlayer=PLAYERTWO;
//change game state
iGameState=GS_NEXTPLAYER;

}break;

Isometric Game Programming with DirectX 7.0

283

}
else
{

iAnimation++;
}

}break;
}

}break;

The main purpose of GS_FLIP is to modify iAnimation, which controls what part of the animation
sequence you are on. When it is PLAYERONE’s turn, iAnimation starts at 0 and is incremented until it hits
14, at which point the move finishes (by a call to FinishMove, which changes all PIECETRANSITs to a
color’s piece). Similarly, on PLAYERTWO’s turn, iAnimation starts at 14 and moves backwards until it hits
0. In either case, after GS_FLIP is finished, the game moves into GS_NEXTPLAYER.

GS_NEXTPLAYER
After a move has been completed, this game state checks to see if the game is over or sets the next active
player. If the game is over (there are no valid moves for either player), it sends the game into GS_NONE. If
the game is not over, it checks to see if the opposing player has a valid move. If the opposing player does
not have a valid move, it goes to GS_WAITFORINPUT without changing the player. If the opposing player
does have a valid move, it sets the current player to the opposing player and moves into GS_WAITFORINPUT.

case GS_NEXTPLAYER:
{

//scan for moves
ScanForMoves(iPlayer);
//if no more valid moves, game over
if((!AnyValidMoves(PLAYERTWO)) && (!AnyValidMoves(PLAYERONE)))
{

iGameState=GS_NONE;
}
else
{

//find if opponent has any moves
if(AnyValidMoves(1-iPlayer))
{

iPlayer=1-iPlayer;
}

Tile-Based Fundamentals282

//check for a valid square
if(ValidMove(iPlayer,BoardX,BoardY))
{
//make the move

MakeMove(iPlayer,BoardX,BoardY);
SetLastMove(BoardX,BoardY);
iGameState=GS_FLIP;

}
}
//***CODE OMITTED*** (the GS_NONE check)

}
//***CODE OMITTED***

GS_FLIP
After a move has been made, the newly captured pieces are not set to the color of the player who captured
them. Instead, they are changed to PIECETRANSIT, and GS_FLIP is the game state responsible for making
sure that the animation sequence for capturing these pieces is shown.

case GS_FLIP:
{

switch(iPlayer)
{
case PLAYERTWO:

{
if(iAnimation==0)
{

FinishMove(iPlayer);
iGameState=GS_NEXTPLAYER;

}
else
{

iAnimation—;
}

}break;
case PLAYERONE:

{
if(iAnimation==14)
{

FinishMove(iPlayer);
iGameState=GS_NEXTPLAYER;

Isometric Game Programming with DirectX 7.0

284

//scan for moves by current player
ScanForMoves(iPlayer);

//get next move
iGameState=GS_WAITFORINPUT;

}
}break;

Miscellaneous Actions
Before we complete our treatment of Reversi, I have a few last things left that I want to point out.

• Changing AI Levels. During every loop, the current AI levels are shown at the bottom left of the screen. You
can change the level by clicking on the indicators. Each time you click, you increase the AI level by 1. Clicking
on the highest level brings you back to the lowest level (AI_HUMAN).

• Keyboard Controls. Esc exits the program, no matter what game state you are in. F2 starts a new game, no
matter what game state you are in.

Final Words on Reversi
This simple little game of Reversi is far from complete. Yes, it is fully functional and playable, but it lacks
any extras. Just like the Breakout game in the preceding chapter, I’m leaving it for you to finish. Here’s a
brief list of features I think it needs:

• A title screen
• Some sort of “bells and whistles” when you win
• Sound/music

And I’m sure you’ll come up with 50 ways to improve the program. Have fun with it.

Summary
In this chapter, you took a step into a larger world. You explored the power that graphical tiles can give
you. I went into great detail on the topic of tileset management, and for good reason. From here on out,
just about everything you do will be done using the CTileSet class, in some fashion or another.

Isometric Game Programming with DirectX 7.0

