
Coordinate
Transformations

and OpenGL
Matrices

CHAPTER 5

115

There is an additional transformation called the viewport transformation, which maps the two-
dimensional projection of the scene into the window on your screen. You don’t count the view-
port transformation as a transformation that the vertices pass through because it relates strictly to
the rendering window. Additionally, there is one other transformation that we will discuss: the
modelview transformation. It can be considered a combination of the viewing and modeling
transformation. Table 5.1 shows a summary of all these transformations.

UNDERSTANDING COORDINATE TRANSFORMATIONS114

Now it’s time to take a short break from learning how to create objects in the world, and
focus on learning how to move the objects around the world. This is a vital ingredient to

generating realistic 3D gaming worlds; without it, the 3D scenes you create would be static, bor-
ing, and totally non-interactive. OpenGL makes it easy for the programmer to move objects
around through the use of various coordinate transformations, discussed in this chapter. You will also
take a look at how to use your own matrices with OpenGL, which is a feature that is often used to
create special-effect transformations on objects.

In this chapter, you’ll learn the following:

■ The basics of coordinate transformations
■ The camera and viewing transformations
■ OpenGL matrices and matrix stacks
■ Projections
■ Using your own matrices with OpenGL

UNDERSTANDING COORDINATE
TRANSFORMATIONS
Transformations allow us to move, rotate, and manipulate entities in a 3D world. One use of
transformations is the capability to project 3D coordinates on a 2D screen. Another use was dis-
cussed in Chapter 3, “An Overview of 3D Graphics Theory,” which covered the theory side of
translate, rotate, and scale. Although it may seem that these transformations modify the objects
directly, in reality, they modify the coordinate systems of the objects being transformed. For
example, when you rotate a model’s coordinate system, the model will appear to be rotated when
it is drawn. Similarly, when you translate a model from the origin to a point 100 units away, the
model will appear to be 100 units away from the camera when it is drawn.

When rendering 3D scenes, vertices pass through three types of transformations before they are
finally rendered on the screen:

■ Viewing transformation. Specifies the location of the camera.
■ Modeling transformation. Moves objects around the scene.
■ Projection transformation. Defines the viewing volume and clipping planes.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

Table 5.1 OpenGL Transformations
Transformation Description

Viewing Specifies the location of the camera

Modeling Handles moving objects around the scene

Projection Defines the viewing volume and clipping planes

Viewport Maps the 2D projection of the scene into the rendering window

Modelview Combination of the viewing and modeling transformations

When you are actually implementing these transformations, they must be executed in a specific
order. The viewing transformations must execute before the modeling transformations; however,
the projection and viewport transformations can be executed at any point before rendering.
Figure 5.1 shows the general order that these vertex transformations are executed.

The Camera and Eye Coordinates
One of the most critical concepts to transformations and viewing in OpenGL is the concept of
the camera, or eye, coordinates. Eye coordinates come strictly from the Cartesian coordinate system
applied to the camera. In OpenGL, the default camera always looks down the negative z axis, as
shown in Figure 5.2.

Eye coordinates remain the same no matter what transformations have been applied to them. For
example, when rotating an object, you are in effect rotating the coordinate system of the object
with respect to the eye’s coordinate system. If you were to rotate a triangle 45 degrees counter-
clockwise, you would be transforming the triangle’s coordinate system by 45 degrees counter-
clockwise. Figure 5.3 shows this transformation.

117

Understanding eye coordinates is essential to understanding OpenGL transformations. We’ll be
taking a look at how you can modify the current coordinates to transform objects all over your
3D world.

Viewing Transformations
The viewing transformation is the first transformation applied to the scene and is used to posi-
tion and aim the camera. As already stated, the camera’s default orientation is to point down the
negative z axis while positioned at the origin (0,0,0). You can move and change the camera’s ori-
entation through translation and rotation commands, which in effect manipulate the viewing
transformation.

Remember that the viewing transformation must be completed before any other transformations.
This is because it moves the current coordinate system with respect to the eye-coordinate system.
Any other transformations that you do are based on the modified current coordinate system.

So how do you create the viewing transformation? Well, first you need to clear the current matrix.
You accomplish this through the glLoadIdentity() command, specified as

void glLoadIdentity(void);

This sets the current matrix equal to the identity matrix and is necessary because most transfor-
mation commands manipulate the current matrix and set it to their own values. This can cause
unexpected results, so you need to remember to clear the matrix.

After initializing the current matrix, you can create the viewing matrix in several different ways.
One way is to just set the viewing matrix equal to the identity matrix. This will result in the
default location and orientation of the camera, which would be at the origin and looking down
the negative z axis. Other ways include the following:

UNDERSTANDING COORDINATE TRANSFORMATIONS116 5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

Vertex Data
(x, y, z, w)

Modelview
Matrix

Projection
Matrix

Clip
Coordinates

Perspective
Division

Viewport
Transformation

Window
Coordinates

(x, y)

Normalized
Device

Coordinates

Eye Coordinates

Figure 5.1

The vertex-

transformation

pipeline.

+y

–y

–x +x

 –z

 +z

Camera
Location: (0, 0, 0)

Figure 5.2

The viewer in OpenGL

uses the Cartesian

coordinate system and

looks down the nega-

tive z axis.

+y

–y

–x +x

+y

+y

–y

–x

–x

+x

+x

World Coordinate System

Object Coordinate System

World Coordinate System

–y

Object
Coordinate
System

Figure 5.3

Rotating a triangle

actually rotates its

coordinate system

with respect to eye

coordinates.

119

Here is a short code snippet that uses the gluLookAt() function. Don’t worry about any code you
don’t understand yet. You will get to it at some point. In any case, here is the code:

void DisplayScene()
{

glClear(GL_COLOR_BUFFER_BIT); // clear the color buffer
glColor3f(1.0f, 0.0f, 0.0f); // set color to red
glLoadIdentity(); // clear the current matrix

// Now we set the viewing transformation with the gluLookAt() function.
// This sets the camera at the position (0,0,10) and looking down the
// negative z axis (0.0, 0.0, -100.0).
// (eyex, eyey, eyez) = (0.0, 0.0, 10.0)
// (centerx, centery, centerz) = (0.0, 0.0, -100.0)
// (upx, upy, upz) = (0.0, 1.0, 0.0)
gluLookAt(0.0f, 0.0f, 10.0f, 0.0f, 0.0f, -100.0f, 0.0f, 1.0f, 0.0f);

// draw a triangle at the origin
glBegin(GL_TRIANGLE);

glVertexf(10.0f, 0.0f, 0.0f);
glVertexf(0.0f, 10.0f, 0.0f);
glVertexf(-10.0f, 0.0f, 0.0f);

glEnd();

// flush the buffer
glFlush();

}

As you can see, the gluLookAt() function is rather easy to use. By manipulating the parameters,
you can move the camera to any position and orientation that you want.

Using the glRotate*() and glTranslate*() Functions
A drawback to the gluLookAt() function, however, is that you must link the GLU library with your
application. What if you don’t want to use the GLU library? Well, one solution is to simply use the
glRotate*() and glTranslate*() modeling-transformation functions. These functions modify the
location of the objects in the world relative to a stationary camera. So rather than move the actu-
al camera coordinates, you move the entire world around the camera. If you do not already
understand the modeling-transformation functions, you might want to skip ahead to that section
before looking at the following code. This code uses the modeling functions to produce the same
effect on the camera as the gluLookAt() code.

UNDERSTANDING COORDINATE TRANSFORMATIONS118

■ Using the gluLookAt() function to specify a line of sight that extends from the camera.
This is a function that encapsulates a set of translation and rotation commands.

■ Using the translation and rotation modeling commands glTranslate*() and
glRotate*(). These commands are discussed in more detail later in this chapter; for now,
suffice it to say that this method moves the objects in the world relative to a stationary
camera.

■ Creating your own routines that use the translation and rotation routines for your own
coordinate system (for example, polar coordinates for a camera orbiting around an
object).

Using the gluLookAt() Function
Because we have not yet talked about the modeling transformations, let’s take a look at the
gluLookAt() function, defined as

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble
centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

You can use this function to define the camera’s location and orientation. The first set of three
parameters (eyex, eyey, eyez) specifies the location of the camera. The value (0,0,0) would natu-
rally specify the origin. The next set of parameters (centerx, centery, centerz) specifies where the
camera is pointing, also called the line of sight. This typically specifies a point somewhere in the
middle of the scene that is currently being examined. The last set of parameters (upx, upy, upz) is
a vector that tells which direction is up. Figure 5.4 shows how all of these parameters work on the
camera with the gluLookAt() function.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery,
GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

(upx, upy, upz)

(centerx, centery, centerz)
(eyex, eyey, eyez)

Camera

Figure 5.4

The gluLookAt()

parameters specify

the location and

orientation of the

camera.

121

// yaw, or heading, is rotation about the y axis
glRotatef(yaw, 0.0f, 1.0f, 0.0f);

// pitch is rotation about the x axis
glRotatef(pitch, 1.0f, 0.0f, 0.0f);

// move the plane to the plane’s world coordinates
glTranslatef(-planeX, -planeY, -planeZ);

}

Using this function would place the camera in the pilot’s seat of your airplane regardless of the
orientation or location of the plane. This is just one of the uses of your own customized routines.
Other uses include applications of polar coordinates, such as rotation about a fixed point and use
of the modeling-transformation functions to create what is called “Quake -like movement,” where
the mouse and keyboard can be used to control the camera.

Modeling Transformations
The modeling transformations allow you to manipulate the position and set the orientation of a
model by moving, rotating, and scaling it. You can perform these operations one at a time or as a
combination of events. Figure 5.5 illustrates the three operations that you can use on objects:

■ Translation. This operation is the act of moving an object along a specified axis.
■ Rotation. This is where an object is rotated about one of the axes.
■ Scaling. This is when you increase or decrease the size of an object. With scaling, you can

specify different values for different axes. This gives you the ability to stretch and shrink
objects non-uniformly.

The order that you specify modeling transformations is very important to the final rendition of
your scene. For example, as shown in Figure 5.6, rotating and then translating an object has a
completely different effect than translating and then rotating the object. Let’s say you have an
arrow located at the origin, and the first transformation you apply is a rotation of 30 degrees
around the z axis. You then apply a translation transformation of 5 units along the x axis. The
final position of the triangle would be (5, 4.33) with the arrow pointing at a 30-degree angle from
the positive x axis. Now, let’s say you translate the arrow by 5 units along the x axis instead of
rotating it first. After the translation, the arrow would be located at (5,0). When you apply the
rotation transformation, the arrow would still be located at (5,0), but it would be pointing at a 30-
degree angle from the x axis.

UNDERSTANDING COORDINATE TRANSFORMATIONS120

void DisplayScene()
{

glClear(GL_COLOR_BUFFER_BIT); // clear the color buffer
glColor3f(1.0f, 0.0f, 0.0f); // set color to red
glLoadIdentity(); // clear the current matrix

// Now we set the viewing transformation with the glTranslatef() function.
// We move the modeling transformation to (0.0, 0.0, -10.0), which effectively
// moves the camera to the position (0.0, 0.0, 10.0).
glTranslatef(0.0f, 0.0f, -10.0f);

// draw a triangle at the origin
glBegin(GL_TRIANGLE);

glVertexf(10.0f, 0.0f, 0.0f);
glVertexf(0.0f, 10.0f, 0.0f);
glVertexf(-10.0f, 0.0f, 0.0f);

glEnd();

// flush the buffer
glFlush();

}

In this case, there isn’t a serious difference in code from the gluLookAt() function because all you
are doing is moving the camera along the z axis. But if you were orienting the camera at an odd
angle, you would need to use the glRotate() function as well, which leads to the next way of
manipulating the camera: your own custom routines.

Creating Your Own Custom Routines
Suppose you want to create your own flight simulator. In a typical flight simulator, the camera is
positioned in the pilot’s seat, so it moves and is oriented in the same manner as the plane. Plane
orientation is defined by pitch, yaw, and roll, which are rotation angles relative to the center of
gravity of the plane (in your case, the pilot/camera position). Using the modeling-transformation
functions, you could create the following function to create the viewing transformation:

void PlaneView(GLfloat planeX, GLfloat planeY, glFloat planeZ, // the plane’s position
GLfloat roll, GLfloat pitch, GLfloat yaw) // orientation

{
// roll is rotation about the z axis
glRotatef(roll, 0.0f, 0.0f, 1.0f);

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

123

Projection Transformations
The projection transformation defines the viewing volume and clipping planes. It is performed
after the modelview transformation, which we have not yet covered in detail. You can think of the
projection transformation as determining which objects belong in the viewing volume and how
they should look. It is very much like choosing a camera lens that is used to look into the world.
The field of view you choose when creating the projection transformation determines what type
of lens you have. For instance, a wider field of view would be like having a wide-angle lens, where
you could see a huge area of the scene without much detail. With a smaller field of view, which
would be similar to a telephoto lens, you would be able to look at objects as though they were
closer to you than they actually are.

OpenGL offers two types of projections:

■ Perspective projection. This type of projection shows 3D worlds exactly how you see
things in real life. With perspective projection, objects that are farther away appear
smaller than objects that are closer to the camera.

■ Orthographic projection. This type of projection shows objects on the screen in their true
size, regardless of their distance from the camera. This projection is useful for CAD soft-
ware, where objects are drawn with specific views to show the dimensions of an object.

The Viewport Transformation
The last transformation is the viewport transformation. This transformation maps the two-dimen-
sional scene created by the perspective transformation onto your window’s rendering surface.
You can think of the viewport transformation as determining whether the final image should be
enlarged or shrunk, depending on the size of the rendering surface.

OPENGL AND MATRICES
Now that you’ve learned about the various transformations involved in OpenGL, let’s take a look
at how you actually use them. Transformations in OpenGL rely on the matrix for all mathematical
computations. As you will soon see, OpenGL has what is called the matrix stack, which is useful for
constructing complicated models composed of many simple objects. You will be taking a look at
each of the transformations and look more into the matrix stack in this section.

The Modelview Matrix
The modelview matrix defines the coordinate system that is being used to place and orient
objects. It is a 4×4 matrix that is multiplied by vertices and transformations to create a new matrix
that reflects the result of any transformations that have been applied to the vertices.

OPENGL AND MATRICES122 5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

RotationTranslation

Scaling

Figure 5.5

The three modeling

transformations.

+y

–y

–x +x

+y

–y

–x +x

+y

–y

–x

+x

+y

–y

–x +x

+y

–y

–x

+x

(A)

+y

–y

–x +x

+y

–y

–x +x

+y

–y

–x
+x

+y

–y

–x

+x

(B)

Figure 5.6

(a) Performing rotation

before translation; (b)

Performing translation

before rotation.

125

The only difference between these two functions is their parameter types. You pass float parame-
ters to glTranslatef() and double parameters to glTranslated(). Which one you decide to use
depends on the level of precision you desire.

The parameters x, y, and z specify the amount to translate along the x, y, and z axes. For exam-
ple, if you execute the command

glTranslatef(3.0f, 1.0f, 8.0f);

your object will move three units along the positive x axis, one unit along the positive y axis, and
eight units along the positive z axis.

Suppose you want to move a cube from the origin to the position (5, 5, 5). You first load the
modelview matrix and reset it to the identity matrix. Then you translate the current matrix to the
position (5,5,5) before calling your DrawCube() function. In code, this looks like

glMatrixMode(GL_MODELVIEW); // set current matrix to modelview
glLoadIdentity(); // reset modelview to identity matrix
glTranslatef(5.0f, 5.0f, 5.0f); // move to (5,5,5)
DrawCube(); // draw the cube

Figure 5.7 illustrates how this code executes.

OPENGL AND MATRICES124

You can specify that you want to modify the modelview matrix through the OpenGL command
glMatrixMode(), which is defined as

void glMatrixMode(GLenum mode);

Before calling any transformation commands, you must specify whether you want to modify the
modelview matrix or the projection matrix. In order to modify the modelview matrix, you use the
argument GL_MODELVIEW. This will set the modelview matrix to the current matrix, which means
that it can be modified with subsequent transformation commands. Doing this would look like

void glMatrixMode(GL_MODELVIEW);

Other arguments for glMatrixMode include GL_PROJECTION and GL_TEXTURE. GL_PROJECTION is used to
specify the projection matrix, and GL_TEXTURE is used to indicate the texture matrix, which we will
discuss in Chapter 8, “Texture Mapping.”

In most cases, you will want to reset the modelview matrix after you set it to the current matrix.
To do this, you call the glLoadIdentity() function, discussed earlier. Calling this function will set
the modelview matrix equal to the identity matrix and reset the current coordinate system to the
origin. Here’s a snippet of how you would reset the modelview matrix:

// ...
glMatrixMode(GL_MODELVIEW);
glLoadIdentity(); // reset the modelview matrix

// ... do transformations

glBegin(GL_POINTS);
glVertex3f(0.0f, 0.0f, 0.0f);

glEnd();

// ... continue with program

Translation
Translation allows you to move an object from one place to another in the 3D world. You can
accomplish this with OpenGL using the functions glTranslatef() and glTranslated(), which are
defined as follows:

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

void glTranslated(GLdouble x, GLdouble y, GLdouble z);

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

+y

–y

–x +x

 –z

 +z

(0, 0, 0)

(5, 5, 5)

Figure 5.7

Translating a cube

from the origin to

(5,5,5).

Rotation
Rotation in OpenGL is accomplished through the glRotate*() function, which is defined as

void glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);
void glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z);

127

And now a quick snippet of code that rotates a cube 60 degrees along the x axis and 45 degrees
along the y axis:

glMatrixMode(GL_MODELVIEW); // set matrix to modelview and reset
glLoadIdentity();

glRotatef(60.0f, 1.0f, 0.0f, 0.0f); // rotate 60 degrees around x axis
glRotatef(45.0f, 0.0f, 1.0f, 0.0f); // rotate 45 degrees around y axis
DrawCube(); // draw the cube

Scaling
Scaling is when you increase or decrease the size of an object. Vertices of an object are expanded
or shrunk along the three axes depending on the scaling factor for each axis. You perform scal-
ing through the OpenGL function glScale*(), which is defined as

void glScalef(GLfloat x, GLfloat y, GLfloat z);
void glScaled(GLdouble x, GLdouble y, GLdouble z);

The values passed to the x, y, and z parameters specify the scale factor along each axis. For exam-
ple, the following line doubles the current size of an object:

glScalef(2.0f, 2.0f, 2.0f);

Now, let’s say you had a cube, and you wanted to double its width (the x axis) without changing
its height (the y axis) and depth (the z axis). You would use the following:

glScalef(2.0f, 1.0f, 1.0f);

OPENGL AND MATRICES126

Again, you can use either doubles or floats for your parameters. With this function, you are per-
forming a rotation around the vector specified by the x, y, and z parameters. The angle of rota-
tion is specified by angle and is measured in degrees in the counterclockwise direction.

For example, if you wanted to rotate around the y axis 135 degrees in the counterclockwise direc-
tion, you would use the following code:

glRotatef(135.0f, 0.0f, 1.0f, 0.0f);

The value of 1.0f for the y argument specifies a unit vector pointing in the direction of the y axis.
When doing the rotation, you only need to specify unit vectors to rotate about the axis you
desire. Figure 5.8 illustrates how the glRotate*() function works.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

+y

–y

–x +x

 –z

 +z

glRotatef(45.0f, 0.0f, 0.0f, 1.0f);

Figure 5.8

The glRotate*() func-

tion takes the angle of

rotation and a unit vec-

tor for the axis of rota-

tion as parameters.

If you wanted to rotate clockwise, you would set the angle of rotation as a negative number. To
rotate around the y axis 135 degrees in the clockwise direction, you use the following code:

glRotatef(-135.0f, 0.0f, 1.0f, 0.0f);

What if you wanted to rotate around an arbitrary axis? You can accomplish this by specifying the
arbitrary axis vector in the x, y, and z parameters. By drawing a line from the origin to the point
represented by (x,y,z), you can see the arbitrary axis around which you will rotate. For instance,
if you rotate 90 degrees about the axis specified by the vector (1,1,0), you rotate about the axis
that goes from the origin to the point (1,1,0). In code, this looks like the following:

glRotatef(90.0f, 1.0f, 1.0f, 0.0f);

Figure 5.9 illustrates how it works.

+y

–y

–x +x

 –z

 +z

glRotatef(90.0f, 1.0f, 1.0f, 0.0f);

(1, 1, 0)

Figure 5.9

Rotation about an

arbitrary axis.

129

■ The modelview matrix stack
■ The projection matrix stack
■ The texture matrix stack

The modelview matrix is actually the top of the modelview matrix stack, and as you will see, the pro-
jection matrix is the top of the projection matrix stack. Figure 5.11 gives some more information
about these matrix stacks. The texture matrix stack is used for the transformation of coordinates.

OPENGL AND MATRICES128

What if you wanted to shrink an object? Well, because the scaling factors are each multiplied by
the vertices, you simply choose a value less than one, like this:

glScalef(0.5f, 0.5f, 0.5f);

This line will shrink an object by half its original size. A value of 0.2 would shrink it by one-fifth,
0.1 by one-tenth, and so on. Now, if you set a scaling factor to 1.0, then the axis it belongs to will
not be scaled. This is equivalent to multiplying a number by 1.0. Otherwise, values less than 1.0
will shrink the object, and values greater than 1.0 will enlarge the object. Figure 5.10 illustrates
the glScale*() function.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

+y

–y

–x –x+x

 –z

 +z

glScalef(2.0f, 2.0f, 2.0f);

+y

–y

+x

 –z

 +z

glScalef(0.5, 0.5f, 0.5f);

Figure 5.10

The glScale*()

function.

Here is some code that will double the size of a cube:

glMatrixMode(GL_MODELVIEW); // set matrix to modelview and reset
glLoadIdentity();

glScalef(2.0f, 2.0f, 2.0f); // double the size
DrawCube(); // draw the cube

Matrix Stacks
The modelview matrix we’ve been playing with so far is actually only the top of a stack of matri-
ces, which is naturally called the OpenGL matrix stack. There are three types of matrix stacks in
OpenGL:

Modelview Matrix Stack
32 4×4 Matrices

Projection Matrix Stack
2 4×4 Matrices•

•
•

M1
M2

M3

M32

M1
M2

Figure 5.11

The modelview and pro-

jection matrix stacks are

made up of 32 4×4

matrices and two 4×4

matrices, respectively, for

the Microsoft OpenGL

implementation.

The modelview matrix stack is used to construct complicated models out of more-simple ones.
For example, consider how a robot might be built out of boxes. If you divide the robot into indi-
vidual components, you have the torso, two arms, one head, and two legs. So in our program,
we’d have a function to draw the torso, a function for one arm, a function for the head, and one
for the legs. Each of these functions draws its respective component centered around the origin
and at a normal orientation.

When you draw the robot, you would first draw the torso. Then, to draw the left arm, you
would call the arm-drawing routine after translating to the position of the left arm relative to the
torso. To draw the right arm, you would translate to the position of the right arm, again relative
to the torso. Likewise, the legs and head would be drawn in their respective positions relative to
the torso.

Matrix stacks provide this type of functionality in OpenGL. You can move object A relative to
object B’s origin, draw object A around its own origin, and then throw away the whole transfor-
mation so you are again relative to object B’s origin. Two stack operations make this possible:
glPushMatrix() and glPopMatrix().

The glPushMatrix() function copies the current matrix and places it as the second matrix in the
stack after pushing all the other matrices in the current stack down one level. Using this function

131

#define WIN32_LEAN_AND_MEAN // trim the excess fat from Windows

////// Includes
#include <windows.h> // standard Windows app include
#include <gl/gl.h> // standard OpenGL include
#include <gl/glu.h> // OpenGL utilities
#include <gl/glaux.h> // OpenGL auxiliary functions

////// Global Variables
float angle = 0.0f; // current angle of the camera
HDC g_HDC; // global device context
bool fullScreen = false;

////// Robot Variables
float legAngle[2] = { 0.0f, 0.0f }; // each leg’s current angle
float armAngle[2] = { 0.0f, 0.0f }; // each arm’s current angle

// DrawCube
// desc: since each component of the robot is made up of
// cubes, we will use a single function that will
// draw a cube at a specified location.
void DrawCube(float xPos, float yPos, float zPos)
{

glPushMatrix();
glTranslatef(xPos, yPos, zPos);
glBegin(GL_POLYGON);

glVertex3f(0.0f, 0.0f, 0.0f); // top face
glVertex3f(0.0f, 0.0f, -1.0f);
glVertex3f(-1.0f, 0.0f, -1.0f);
glVertex3f(-1.0f, 0.0f, 0.0f);
glVertex3f(0.0f, 0.0f, 0.0f); // front face
glVertex3f(-1.0f, 0.0f, 0.0f);
glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(0.0f, -1.0f, 0.0f);
glVertex3f(0.0f, 0.0f, 0.0f); // right face
glVertex3f(0.0f, -1.0f, 0.0f);
glVertex3f(0.0f, -1.0f, -1.0f);
glVertex3f(0.0f, 0.0f, -1.0f);
glVertex3f(-1.0f, 0.0f, 0.0f); // left face
glVertex3f(-1.0f, 0.0f, -1.0f);
glVertex3f(-1.0f, -1.0f, -1.0f);

OPENGL AND MATRICES130

is like telling OpenGL to remember the current position in the world for a few moments while
you visit another portion of the world. glPushMatrix() is defined as

void glPushMatrix(void);

If you push too many matrices onto the stack, then OpenGL gives a GL_STACK_OVERFLOW error.

The glPopMatrix() function discards the top matrix on the stack, destroying its contents, and
places the second matrix at the top of the stack. All other matrices in the stack are moved up
one. Using this function is like telling OpenGL to take you back to your original position after
you’ve been visiting another portion of the world. glPopMatrix() is defined as

void glPopMatrix(void);

If you try to use this function when there is only one matrix in the stack, OpenGL will give a
GL_STACK_UNDERFLOW error.

Figure 5.12 shows how the glPushMatrix() and glPopMatrix() functions operate on the matrix stack.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

Matrix Stack

glPushMatrix(): glPopMatrix():

Figure 5.12

Pushing and popping

on the matrix stack.

The Robot Example
Let’s take a break and look at an example that uses everything we’ve talked about so far in this
chapter. The source code on the following pages is for a small OpenGL demo that shows a walk-
ing robot around which the camera rotates. The robot is constructed of cubes that you scale to
different shapes and sizes to give it the arms, legs, torso, and head. Take special note of how you
use the glPushMatrix() and glPopMatrix() functions to place and move the robot.

Without further ado, here is the code:

133

{
glPushMatrix();

glColor3f(0.0f, 0.0f, 1.0f); // blue
glTranslatef(xPos, yPos, zPos);
glScalef(3.0f, 5.0f, 2.0f); // torso is a 3x5x2 cube
DrawCube(0.0f, 0.0f, 0.0f);

glPopMatrix();
}

// DrawLeg
// desc: draws a single leg
void DrawLeg(float xPos, float yPos, float zPos)
{

glPushMatrix();
glColor3f(1.0f, 1.0f, 0.0f); // yellow
glTranslatef(xPos, yPos, zPos);
glScalef(1.0f, 5.0f, 1.0f); // leg is a 1x5x1 cube
DrawCube(0.0f, 0.0f, 0.0f);

glPopMatrix();
}

// DrawRobot
// desc: draws the robot located at (xPos,yPos,zPos)
void DrawRobot(float xPos, float yPos, float zPos)
{

static bool leg1 = true; // robot’s leg states
static bool leg2 = false; // true = forward, false = back

static bool arm1 = true;
static bool arm2 = false;

glPushMatrix();

glTranslatef(xPos, yPos, zPos); // draw robot at desired coordinates

// draw components
DrawHead(1.0f, 2.0f, 0.0f);
DrawTorso(1.5f, 0.0f, 0.0f);
glPushMatrix();

OPENGL AND MATRICES132

glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(0.0f, 0.0f, 0.0f); // bottom face
glVertex3f(0.0f, -1.0f, -1.0f);
glVertex3f(-1.0f, -1.0f, -1.0f);
glVertex3f(-1.0f, -1.0f, 0.0f);
glVertex3f(0.0f, 0.0f, 0.0f); // back face
glVertex3f(-1.0f, 0.0f, -1.0f);
glVertex3f(-1.0f, -1.0f, -1.0f);
glVertex3f(0.0f, -1.0f, -1.0f);

glEnd();
glPopMatrix();

}

// DrawArm
// desc: draws one arm
void DrawArm(float xPos, float yPos, float zPos)
{

glPushMatrix();
glColor3f(1.0f, 0.0f, 0.0f); // red
glTranslatef(xPos, yPos, zPos);
glScalef(1.0f, 4.0f, 1.0f); // arm is a 1x4x1 cube
DrawCube(0.0f, 0.0f, 0.0f);

glPopMatrix();
}

// DrawHead
// desc: draws the robot head
void DrawHead(float xPos, float yPos, float zPos)
{

glPushMatrix();
glColor3f(1.0f, 1.0f, 1.0f); // white
glTranslatef(xPos, yPos, zPos);
glScalef(2.0f, 2.0f, 2.0f); // head is a 2x2x2 cube
DrawCube(0.0f, 0.0f, 0.0f);

glPopMatrix();
}

// DrawTorso
// desc: draws the robot torso
void DrawTorso(float xPos, float yPos, float zPos)

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

135

// we want to rotate the legs relative to the robot’s position in the
//world. this is leg 1, the robot’s right leg
glPushMatrix();

// if leg is moving forward, increase angle, else decrease angle
if (leg1)

legAngle[0] = legAngle[0] + 1.0f;
else

legAngle[0] = legAngle[0] - 1.0f;

// once leg has reached its maximum angle in a direction,
// reverse it
if (legAngle[0] >= 15.0f)

leg1 = false;
if (legAngle[0] <= -15.0f)

leg1 = true;

// move the leg away from the torso and rotate it to give
//”walking” effect
glTranslatef(0.0f, -0.5f, 0.0f);
glRotatef(legAngle[0], 1.0f, 0.0f, 0.0f);

// draw the leg
DrawLeg(-0.5f, -5.0f, -0.5f);

glPopMatrix();

// do the same as above with leg 2, the robot’s left leg
glPushMatrix();

if (leg2)
legAngle[1] = legAngle[1] + 1.0f;

else
legAngle[1] = legAngle[1] - 1.0f;

if (legAngle[1] >= 15.0f)
leg2 = false;

if (legAngle[1] <= -15.0f)
leg2 = true;

OPENGL AND MATRICES134

// if leg is moving forward, increase angle, else decrease angle
if (arm1)

armAngle[0] = armAngle[0] + 1.0f;
else

armAngle[0] = armAngle[0] - 1.0f;

// once leg has reached its maximum angle in a direction,
// reverse it
if (armAngle[0] >= 15.0f)

arm1 = false;
if (armAngle[0] <= -15.0f)

arm1 = true;

// move the leg away from the torso and rotate it to give
//”walking” effect
glTranslatef(0.0f, -0.5f, 0.0f);
glRotatef(armAngle[0], 1.0f, 0.0f, 0.0f);
DrawArm(2.5f, 0.0f, -0.5f);

glPopMatrix();

glPushMatrix();
// if leg is moving forward, increase angle, else decrease angle
if (arm2)

armAngle[1] = armAngle[1] + 1.0f;
else

armAngle[1] = armAngle[1] - 1.0f;

// once leg has reached its maximum angle in a direction,
// reverse it
if (armAngle[1] >= 15.0f)

arm2 = false;
if (armAngle[1] <= -15.0f)

arm2 = true;

// move the leg away from the torso and rotate it to give
//”walking” effect
glTranslatef(0.0f, -0.5f, 0.0f);
glRotatef(armAngle[1], 1.0f, 0.0f, 0.0f);
DrawArm(-1.5f, 0.0f, -0.5f);

glPopMatrix();

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

137

static PIXELFORMATDESCRIPTOR pfd = {
sizeof(PIXELFORMATDESCRIPTOR), // size of structure
1, // default version
PFD_DRAW_TO_WINDOW | // window-drawing support
PFD_SUPPORT_OPENGL | // OpenGL support
PFD_DOUBLEBUFFER, // double-buffering support
PFD_TYPE_RGBA, // RGBA color mode
32, // 32-bit color mode

0, 0, 0, 0, 0, 0, // ignore color bits, non-palletized mode
0, // no alpha buffer
0, // ignore shift bit
0, // no accumulation buffer
0, 0, 0, 0, // ignore accumulation bits
16, // 16-bit z-buffer size
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main drawing plane
0, // reserved
0, 0, 0 }; // layer masks ignored

// choose best-matching pixel format
nPixelFormat = ChoosePixelFormat(hDC, &pfd);

// set pixel format to device context
SetPixelFormat(hDC, nPixelFormat, &pfd);

}

// the Windows Procedure event handler
LRESULT CALLBACK WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{

static HGLRC hRC; // rendering context
static HDC hDC; // device context
int width, height; // window width and height

switch(message)
{

case WM_CREATE: // window is being created

hDC = GetDC(hwnd); // get current window’s device context
g_HDC = hDC;
SetupPixelFormat(hDC); // call our pixel format setup function

OPENGL AND MATRICES136

glTranslatef(0.0f, -0.5f, 0.0f);
glRotatef(legAngle[1], 1.0f, 0.0f, 0.0f);
DrawLeg(1.5f, -5.0f, -0.5f);

glPopMatrix();
glPopMatrix();

}

// Render
// desc: handles drawing of scene
void Render()
{

glEnable(GL_DEPTH_TEST); // enable depth testing

// do rendering here
glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // clear to black
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear color/depth buffer
glLoadIdentity(); // reset modelview matrix

angle = angle + 1.0f; // increase our rotation angle counter
if (angle >= 360.0f) // if we’ve gone in a circle, reset counter

angle = 0.0f;

glPushMatrix(); // put current matrix on stack
glLoadIdentity(); // reset matrix
glTranslatef(0.0f, 0.0f, -30.0f); // move to (0, 0, -30)
glRotatef(angle, 0.0f, 1.0f, 0.0f); // rotate the robot on its y axis
DrawRobot(0.0f, 0.0f, 0.0f); // draw the robot

glPopMatrix(); // dispose of current matrix

glFlush();
SwapBuffers(g_HDC); // bring back buffer to foreground

}

// function to set the pixel format for the device context
void SetupPixelFormat(HDC hDC)
{

int nPixelFormat; // our pixel format index

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

139

default:
break;

}

return (DefWindowProc(hwnd, message, wParam, lParam));
}

// the main Windows entry point
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,

int nShowCmd)
{

WNDCLASSEX windowClass; // windows class
HWND hwnd; // window handle
MSG msg; // message
bool done; // flag saying when our app is complete
DWORD dwExStyle; // window extended style
DWORD dwStyle; // window style
RECT windowRect;

// screen/display attributes
int width = 800;
int height = 600;
int bits = 32;

windowRect.left=(long)0; // set left value to 0
windowRect.right=(long)width; // set right value to requested width
windowRect.top=(long)0; // set top value to 0
windowRect.bottom=(long)height; // set bottom value to requested height

// fill out the windows class structure
windowClass.cbSize = sizeof(WNDCLASSEX);
windowClass.style = CS_HREDRAW | CS_VREDRAW;
windowClass.lpfnWndProc = WndProc;
windowClass.cbClsExtra = 0;
windowClass.cbWndExtra = 0;
windowClass.hInstance = hInstance;
windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
windowClass.hCursor = LoadCursor(NULL, IDC_ARROW);
windowClass.hbrBackground = NULL;
windowClass.lpszMenuName = NULL;

OPENGL AND MATRICES138

// create rendering context and make it current
hRC = wglCreateContext(hDC);
wglMakeCurrent(hDC, hRC);

return 0;
break;

case WM_CLOSE: // Windows is closing

// deselect rendering context and delete it
wglMakeCurrent(hDC, NULL);
wglDeleteContext(hRC);

// send WM_QUIT to message queue
PostQuitMessage(0);

return 0;
break;

case WM_SIZE:
height = HIWORD(lParam); // retrieve width and height
width = LOWORD(lParam);

if (height==0) // don’t want a divide by zero
{

height=1;
}

// reset the viewport to new dimensions
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION); // set projection matrix current matrix
glLoadIdentity(); // reset projection matrix

// calculate aspect ratio of window
gluPerspective(54.0f,(GLfloat)width/(GLfloat)height,1.0f,1000.0f);

glMatrixMode(GL_MODELVIEW); // set modelview matrix
glLoadIdentity(); // reset modelview matrix

return 0;
break;

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

141

// class registered, so now create our window
hwnd = CreateWindowEx(NULL, “MyClass”, // class name

“OpenGL Robot”, // app name
dwStyle | WS_CLIPCHILDREN |
WS_CLIPSIBLINGS,
0, 0, // x,y coordinate
windowRect.right - windowRect.left,
windowRect.bottom - windowRect.top, // width, height
NULL, // handle to parent
NULL, // handle to menu
hInstance, // application instance
NULL); // no extra params

// check if window creation failed (hwnd would equal NULL)
if (!hwnd)

return 0;

ShowWindow(hwnd, SW_SHOW); // display the window
UpdateWindow(hwnd); // update the window

done = false; // initialize the loop condition variable

// main message loop
while (!done)
{

PeekMessage(&msg, hwnd, NULL, NULL, PM_REMOVE);

if (msg.message == WM_QUIT) // do we receive a WM_QUIT message?
{

done = true; // if so, time to quit the application
}
else
{

Render();
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

OPENGL AND MATRICES140

windowClass.lpszClassName = “MyClass”;
windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO);

// register the windows class
if (!RegisterClassEx(&windowClass))

return 0;

if (fullScreen) // full screen?
{

DEVMODE dmScreenSettings; // device mode
memset(&dmScreenSettings,0,sizeof(dmScreenSettings));
dmScreenSettings.dmSize = sizeof(dmScreenSettings);
dmScreenSettings.dmPelsWidth = width; // screen width
dmScreenSettings.dmPelsHeight = height; // screen height
dmScreenSettings.dmBitsPerPel = bits; // bits per pixel
dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

if (ChangeDisplaySettings(&dmScreenSettings, CDS_FULLSCREEN) !=
DISP_CHANGE_SUCCESSFUL)

{
// setting display mode failed, switch to windowed
MessageBox(NULL, “Display mode failed”, NULL, MB_OK);
fullScreen=FALSE;

}
}

if (fullScreen) // are we still in full-screen mode?
{

dwExStyle=WS_EX_APPWINDOW; // window extended style
dwStyle=WS_POPUP; // Windows style
ShowCursor(FALSE); // hide mouse pointer

}
else
{

dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // window extended style
dwStyle=WS_OVERLAPPEDWINDOW; // Windows style

}

AdjustWindowRectEx(&windowRect, dwStyle, FALSE, dwExStyle);

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

143

Setting a projection transformation creates a viewing volume, which serves two purposes. The
first is that it specifies a number of clipping planes, which determine which portion of your 3D
world is visible at any given time. Objects that are outside this volume are not transformed or ren-
dered. The second purpose of the viewing volume is to determine how objects are drawn. This
depends on the shape of the viewing volume, which is the primary difference between ortho-
graphic and perspective projections.

Before specifying any kind of projection transformation, though, you need to make sure that the
projection matrix stack is currently selected. As with the modelview matrix, this is done with a call
to glMatrixMode():

glMatrixMode(GL_PROJECTION);

In most cases, you’ll want to follow this up with a call to glLoadIdentity() to clear out anything that
may be stored in the matrix stack, so that previous transformations don’t get accumulated. Unlike
with the modelview matrix, it is very rare to make a lot of changes to the projection matrix.

Once the projection matrix stack is selected, you’re ready to specify your projection. We’ll look at
orthographic projections first, and then at the more commonly used perspective transformations.

Orthographic
As we mentioned before, orthographic, or
parallel, projections are those that involve no
perspective correction. In other words, no
adjustment for distance from the camera is
made; objects appear the same size on
screen whether they are close or far away.
Although this may not look as realistic as per-
spective projections, it has a number of uses.
Traditionally, orthographic projections are
included in OpenGL for things like CAD.
Orthographic projections can also be used for 2D games or for creating isometric games.

OpenGL provides the glOrtho() function to set up orthographic projections:

glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near,
GLdouble far);

left and right specify the x-coordinate clipping planes, bottom and top specify the y-coordinate
clipping planes, and near and far specify the distance to the z-coordinate clipping planes.
Together, these coordinates specify a box-shaped viewing volume. More precisely, opposite planes
are parallel to each other, and adjacent planes are perpendicular.

PROJECTIONS142

if (fullScreen)
{

ChangeDisplaySettings(NULL,0); // if so switch back to the desktop
ShowCursor(TRUE); // show mouse pointer

}
return msg.wParam;

}

Wow! That was a lot of code, but you’re just now beginning to get into the fun stuff. If you trace
through to the DrawRobot() function, you will see how you can build and animate a hierarchical
model, which is obviously in this case a robot-like figure. Pay careful attention to how you use the
glPushMatrix() and glPopMatrix() functions to place the robot’s arms, legs, torso, and head rela-
tive to the robot’s local coordinate system origin. You could get really fancy and add hands, feet,
or other body parts by using the push/pop functions to place the other body parts relative to
existing parts. We’ll leave that as an exercise for when we get bored. In the meantime, Figure 5.13
shows a screenshot of the robot demo.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

Figure 5.13

A screenshot of the

OpenGL robot demo.

PROJECTIONS
We’ve mentioned projection transformations several times now, and even used it in code, so it’s
high time we discussed how they work. As we’ve pointed out, there are two general classes of pro-
jection transformations available in OpenGL: orthographic (or parallel) and perspective. We’ll
look at both of these in detail.

NOTE
Although orthographic projections can
be used for isometric games, this is
rarely done in practice due to the fact
that a higher level of detail can be
obtained using conventional 2D meth-
ods.This could very well change in the
future, however.

145

Using glFrustum() enables you to specify an asymmetrical frustum, which may be useful in some
instances, but it’s not typically what you’ll want to do. In addition, thinking about what the viewer
can see in terms of a frustum is not particularly intuitive. Instead, it’s easier to think about their
field of view—that is, how wide of an angle they can see. The OpenGL Utility Library provides a
function that allows you to directly specify the field of view, and then calculates the frustum for
you. This function is

void gluPerspective(GLdouble fov, GLdouble aspect, GLdouble near, GLdouble far);

fov specifies, in degrees, the angle in the y direction that is visible to the user. aspect is the aspect
ratio of the scene, which is the width divided by the height. This determines the field of view in
the x direction. near and far have the same meanings as they’ve had in the other projection func-
tions in this section.

One thing we haven’t mentioned in our discussion of setting up a frustum is how to determine
an appropriate ratio between the width of the far and near end (that is, how wide the field of
view is). The appropriate field of view is highly application dependent. If you want to create a
fish-eye effect, a very wide field of view may be appropriate. For a realistic perspective, something
around 90 degrees will probably work best. In general, you’ll want to experiment to see what
looks right for your particular application.

Setting the Viewport
Some of the projection functions we’ve just discussed are closely related to the size of the view-
port (for example, the aspect ratio in gluPerspective). You know that the viewport transformation
happens after the projection transformation, so now is as good a time as any to discuss it.
Although you can’t modify the viewport matrix directly, you can set the size of the viewport,
which is all you really need to do.

In essence, the viewport specifies the dimensions and orientation of the 2D window into which
you’ll be rendering. It is set using glViewport():

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

x and y specify the coordinates of the lower-left corner of the viewport, and width and height
specify the size of the window, in pixels.

When a rendering context is first created and attached to your window, the viewport is automati-
cally set to match the dimensions of the window. That may be good enough for some applica-
tions, but in most cases, you’ll want to update your viewport any time the window is resized.
Although the viewport will generally match your window size, there is nothing requiring it to be
the same size. There may be times when you want to limit rendering to a sub-region of your win-
dow, and setting a smaller viewport is one way to do this.

PROJECTIONS144

Because orthographic projections are commonly used to create 2D scenes, the Utility Library
provides an additional routine to set up orthographic projections for scenes in which you won’t
really be using the z coordinate:

gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);

left, right, bottom, and top are as with glOrtho() above. Using gluOrtho2D is equivalent to calling
glOrtho() with near set to –1.0 and far set to 1.0. When using gluOrtho2D(), you’ll normally want
to use a version of glVertex() that takes only two parameters (the x and y coordinates) because
the z coordinate will be ignored anyway. It’s common in this case to use integer coordinates and
to set the view volume to match the x and y coordinates of the viewport.

Perspective
Although orthographic projections can be interesting, perspective projections create more realis-
tic-looking scenes, so that’s what you’ll likely be using more often. In perspective projections, as
an object gets farther from the viewer, it appears smaller on the screen—an effect commonly
referred to as foreshortening. The viewing volume for a perspective projection is a frustum, which
looks like a pyramid with the top cut off, with the narrow end toward the viewer. That the far end
of the frustum is larger than the near end is what creates the foreshortening effect. The way this
works is that OpenGL transforms the frustum so that it becomes a cube. This transformation
affects the objects inside the frustum as well, so objects at the wide end of the frustum get com-
pressed more than objects at the narrow end. The greater the ratio between the wide and narrow
ends, the more objects will be shrunk. If the ends of the frustum are close in size, there won’t be
much perspective correction (if they are the same, there will be no correction at all, which is
what happens with orthographic projections).

There are a couple ways you can set up the view frustum, and thus the perspective projection.
The first we’ll look at is the following:

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

left, right, top, and bottom together specify the x and y coordinates on the near clipping plane,
and near and far specify the distance to the near and far clipping planes. Thus, the top-left cor-
ner of the near clipping plane is at (left, top, –near), and the bottom-right corner is at (right,
bottom, –near). The corners of the far clipping plane are determined by casting a ray from the
viewer through the corners of the near clipping plane and intersecting them with the far clipping
plane. So, the closer the viewer is to the near clipping plane, the larger the far clipping plane will
be, and the more foreshortening will be apparent.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

147

// reset the viewport to the new dimensions
glViewport(0, 0, width, height);

// set up the projection, without toggling the projection mode
UpdateProjection();

} // end ResizeScene()

/**
UpdateProjection()

Sets the current projection mode. If toggle is set to GL_TRUE, then the
projection will be toggled between perspective and orthograpic. Otherwise,
the previous selection will be used again.
***/
void UpdateProjection(GLboolean toggle = GL_FALSE)
{
static GLboolean s_usePerspective = GL_TRUE;

PROJECTIONS146

Projection Example
To get a better idea of the differences between the two major projection types, we’ve included a
simple demo that will you allow to view the same scene in each mode. The demo starts off with a
perspective projection; pressing the spacebar will enable you to toggle between perspective
(shown in Figure 5.14) and orthographic (shown in Figure 5.15).

The relevant portion of this demo is in the ResizeScene and UpdateProjection functions, which are
listed here for convenience:

/**
ResizeScene()

Updates the viewport and projection based on the screen size.
***/
GLvoid ResizeScene(GLsizei width, GLsizei height)
{
// avoid divide by zero
if (height==0)
{
height=1;

}

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

Figure 5.14

Perspective

projection.

Figure 5.15

Orthographic

projection.

149

Because the matrices are 4×4, you may be tempted to declare them as two-dimensional arrays,
but there is one major problem with this. In C and C++, two-dimensional arrays are row major.
For example, to access the bottom-left element of the matrix in Figure 5.16, you might think
you’d use matrix[3][0], which is how you’d access the bottom-left corner of a 4×4 C/C++ two-
dimensional array. Because OpenGL matrices are column major, however, you’d really be access-
ing the top-right element of the matrix. To get the bottom-left element, you’d need to use
matrix[0][3]. This is the opposite of what you’re used to in C/C++, making it counterintuitive
and error-prone. Rather than using two-dimensional arrays, it’s recommended that you use a one-
dimensional array of 16 elements. The nth element in the array corresponds to element mn in
Figure 5.16.

As an example, if you want to specify the identity matrix (something you’d never need to do in
practice due to the glLoadIdentity() function), you could use

GLfloat identity[16] = { 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0 };

That’s easy enough. So, now that you’ve specified a matrix, the next step is to load it. This is done
by calling glLoadMatrix(), which has two flavors:

void glLoadMatrixd(const GLdouble *matrix);

void glLoadMatrixf(const GLfloat *matrix);

The only difference between these functions is that one takes an array of doubles, and the other
takes an array of floats. When glLoadMatrix() is called, whatever is at the top of the currently
selected matrix stack is replaced with the values in the matrix array, which is a 16-element array as
specified previously.

Multiplying Matrices
In addition to loading new matrices onto the matrix stack (and thus losing whatever information
was previously in it), you can multiply the contents of the active matrix by a new matrix. Again,
you’d specify your custom matrix as above, and then call one of the following:

void glMultMatrixd(const GLdouble *matrix);

USING YOUR OWN MATRICES148

// toggle the control variable if appropriate
if (toggle)
s_usePerspective = !s_usePerspective;

// select the projection matrix and clear it out
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

// choose the appropriate projection based on the currently toggled mode
if (s_usePerspective)
{
// set the perspective with the appropriate aspect ratio
glFrustum(-1.0, 1.0, -1.0, 1.0, 5, 100);

}
else
{
// set up an orthographic projection with the same near clip plane
glOrtho(-1.0, 1.0, -1.0, 1.0, 5, 100);

}

// select modelview matrix and clear it out
glMatrixMode(GL_MODELVIEW);

} // end UpdateProjection

USING YOUR OWN MATRICES
Up until now, we’ve talked about functions that allow you to modify the matrix stacks without
really having to worry about the matrices themselves. This is great, because it allows you to do a
lot without having to understand matrix math, and the functions OpenGL provides for you are
actually quite powerful and flexible. Eventually, though, you may want to create some advanced
effects that are possible only by directly affecting the matrices. This will require that you know
your way around matrix math, which we’re not going to cover in any more detail than we have
already. However, we’ll at least show you how to load your own matrix, how to multiply the top of
the matrix stack by a custom matrix, and one example of using a custom matrix.

Loading Your Matrix
Before you can load a matrix, you need to specify it. OpenGL matrices are column-major 4×4
matrices of floating point numbers, laid out as in Figure 5.16.

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

m0
m1
m2
m3

m4
m5
m6
m7

m8
m9
m10
m11

m12
m13
m14
m15

Figure 5.16

OpenGL’s column-

major matrix format.

150

void glMultMatrixf(const GLfloat *matrix);

Again, matrix is an array of 16 elements. If the active matrix before the call to glMultMatrix() is
Mold, and the new matrix is Mnew, then the new matrix will be Mold×Mnew. Note that the ordering is
important; because matrix multiplication is not commutative, Mold×Mnew is not likely to have the
same result as Mnew×Mold.

Custom Matrix Example
For an example of using your own matrices, refer to the sample program from Chapter 1, “The
Exploration Begins: OpenGL and DirectX.” In this program, we used a custom matrix to gener-
ate shadows in real time. The code we’re interested in for the purposes of the current discussion
follows:

GLfloat shadowMatrix[16] = { lightPos[1], 0.0, 0.0, 0.0, -lightPos[0], 0.0,
-lightPos[2], -1.0, 0.0, 0.0, lightPos[1], 0.0, 0.0,
0.0, 0.0, lightPos[1] };

...
// project the cube through the shadow matrix
glMultMatrixf(shadowMatrix);
DrawCube();

This matrix projects any vertices passed through it onto the y = 0 plane. If you set the current
drawing color to black (along with some alpha blending and use of the stencil buffer, which are
beyond the scope of this chapter), this has the effect of creating a shadow of the objects being
drawn. You store the matrix into the modelview matrix stack by using glMultMatrix() rather than
glLoadMatrix() because you want to preserve other transformations that have been used to orient
the scene and position the cube.

One final note needs to be made in regard to using your own matrices: Whenever possible, you
should use OpenGL’s built-in transformation functions. In many cases, they are able to take
advantage of hardware acceleration that you will not have access to.

SUMMARY
In this chapter, you have seen how to manipulate objects in your scene by using transformations.
You’ve also examined how to change the way in which the scene itself is viewed through setting
up projections. In the process, you’ve learned about the projection and modelview matrices and
how to manipulate them using both built-in functions and matrices you define yourself. You now
have the means to place objects in a 3D world, to move and animate them, and to move around
the world. Hmm…sounds like the beginnings of a game!

5. COORDINATE TRANSFORMATIONS AND OPENGL MATRICES

