
CHAPTER 21

Bezier
Patches

387386 21. Bezier Patches Lines and Curves and Patches, Oh…

T he last couple of chapters have involved shaders that manipulate the position
of the vertex according to some function, but each of these shaders has

affected the geometry in limited ways. Some situations require a large number of
vertices to be set according to some relatively complex function. The temptation is
to process the vertices on the CPU where it’s easy to implement complex functions.
A better way is to use the CPU to define a coarse representation of the basic shape
of the geometry and then let the GPU process the larger number of points. You can
do this using Bezier patches. This chapter looks at many aspects of Bezier patches,
including the following topics:

■ The theory behind Bezier curves and patches.
■ Computing the normals of a patch (with an extremely brief introduction to

calculus).
■ Implementing Bezier patches with a shader.
■ Setting up patch data to send to a shader.
■ Uses for patches in manipulation and level of detail operations.
■ Patch representation for complex objects.

Everything in this chapter hinges on you understanding the complex subject of Bezier
curves and patches, so bear with me as we delve into some pretty murky depths.

Lines and Curves and Patches, Oh…
Consider Figure 21.1, which is a
screenshot from this chapter’s sample
application.

The original data for this model was a
flat 2D plane of many triangles, yet the
resulting surface is far more complex
than what any of the previous
techniques could have produced. The
secret behind this technique is that the
surface in Figure 21.1 was produced with
a Bezier patch. Patches are 3D
extensions of Bezier curves, so I start
there, but keep the screenshot in mind
as you read the following.

Bezier curves are generally defined as curves that can be described by a set of
control points. In most cases, these curves are defined with four control points, as
shown in Figure 21.2.

Figure 21.1

The Bezier patch
application rendered in
wireframe.

Figure 21.2

A Bezier curve defined
with four control points.

NOTE
Some texts use the letters u and or
v to represent the range of the
curve. I have chosen to use s and t
to avoid confusion with the most
common texture coordinates u and
v. If you see textbooks that use
other letters, know that the
concepts are exactly the same. They
are just using other symbols.

These four control points define the curve with P0 and P3 defining the endpoints.
If you think of an arbitrary variable s as ranging from 0 to 1 over the length of the
curve, you can define the values of the curve as a function of s.

With control points P0-P3 and the range s, the equation for the curve becomes

Q(s) = ∑pibi(s)
 i=0

3

389388 21. Bezier Patches

where Q(s) is the position of a point along the curve and b
i
 is a basis function that

describes the “weight” of each point in the calculation. For our purposes, the basis
functions are the following Bernstein polynomials:

b0 = (1 – s)3

b1 = 3s(1 – s)2

b2 = 3s2(1 – s)

b3 = s3

Putting all this together, the long form of the values along the curve as a function of
s is the following dreadful-looking function:

Q(s) = p0(1 – s)3 + p13s(1 – s)2 + p23s2(1 – s) + p3s
3

In graphical terms, the basis functions are shown in Figure 21.3. As you can see, P0
and P3 are the actual endpoints of the curve, but at every other point, the other
control points have some contribution to the value of Q. I marked a couple of
points of interest on Figure 21.3.

and the outer points have equal (but far less) control. At this point, the easiest way
to internalize the concepts might be to break out a sheet of paper and a pencil, plot
four points, and plot a couple of points along the curve to see for yourself how they
work. Take your time; I’ll wait.

One of the nice things about these curves is that the math doesn’t care how many
points you actually plot along the curve. If you plot 10 points, you’ll create a rough
but accurate curve. If you plot one million points, you will have a very accurate
curve, but you will be old and lonely. I revisit this point later when I talk about some
level of detail considerations.

La Vie de Msr. Bezier
Bezier developed the idea of Bezier curves while working for Renault. At the time,
curves given in engineering drawings were fairly arbitrary and not very consistent. Bezier
developed these curves as a way to give a more rigorous definition to the curves in
design drawings. This was especially useful when manufacturing CAD/CAM machines
emerged. Incidentally, similar ideas were developed by James Ferguson and Paul de
Casteljau, but both innovations were kept secret by their employers. Bezier was credited
with the curves that now bear his name. Pierre Bezier passed away in 1999.

Extending these ideas to another dimension is a relatively simple matter of
extending the four control points to a four-by-four control grid. If we use t to
specify the range in the other dimension, the equation for values anywhere in the
patch becomes

Figure 21.3

The basis functions.

The line at s = a shows where the first two control points have equal influence on
the value of Q, and the line at s = b shows where the inner points have equal control

Q(s,t) = ∑ ∑pi,jbi(s)bj(t)
 i=0

3

j=0

3

In this equation, the basis functions are the same, and all the underlying concepts
are the same; I’ve just extended the ideas into another dimension. Again, if you’d
like, plot out a couple points if it helps you internalize the concepts. I refrain from
giving the equation in its long form.

You now have an equation that gives you the value of any point in the space of the
patch based on the 16 control points within the patch. Soon I show you the shader
that makes this possible, but first I have to address the method of deriving the
surface normals that is necessary for lighting calculations.

Lines and Curves and Patches, Oh…

391390 21. Bezier Patches

Deriving Surface Normals
with “Calculus”
I’m placing calculus in quotes because a full explanation of calculus is well outside
the scope of this humble tome. If you already know calculus, you should understand
the following ideas, but you’ll also see that my explanation is far less than complete.
If you have not already studied calculus, please take this quick and dirty explanation
with a grain of salt.

There are two branches of calculus, but the one applicable here is differential
calculus. If you think of every function as describing some curve on a graph, then
you can use differential calculus to find the derivative of that function. The
derivative is a new function that describes the slope of the curve at any given point.
For the simplest case, consider the function shown in Figure 21.4.

an infinitesimal value. Figure 21.5 revisits the graph from Figure 21.4. The second
graph shows the derivative of the first function. As you can see, as X increases, the
slope also increases. You can see this increase on the graph of the derivative.

Figure 21.4

Changing slopes on a
curve.

As you can see, the slope of the curve at point A is very different from the slope of
the curve at point B. To approximate the slope at any given point, you could find
the value of the function at point A and the value of the function at a very short
distance away. The approximation then takes the form of the following equation:

There are many rules for finding different kinds of derivatives, but in this chapter
you only need to find the derivatives of the polynomials that define the Bezier
patch. Derivatives of simple polynomials take the following form:

Figure 21.5

Graphing the derivative.

One thing to remember is that the derivative of a constant is zero. If you plot a
constant function, there is no slope. Again, you might want to take a break and
sketch out a few of these graphs on graph paper and get a feel for what’s going on.
Once you try it yourself, it will probably be much clearer. Using these rules, you can
compute the following derivatives of the basis functions for a 2D Bezier curve. The
derivatives for the other dimension of a 3D patch are analogous:

b'0 = –3(1 – s)2

b'1 = 3 – 12s + 9s2

b'2 = 6s – 9s2

b'3 = 3s2I don’t delve into the exact mathematical proof of differential calculus, but the
short version of the story is that you find the derivative by shrinking that interval to

Deriving Surface Normals with “Calculus”

f '(a) = lim
f(a + h) – f(a)

h h→0

if f(a) = cax, then

— f(a) = f '(a) = xcax–1 d
dx

393392 21. Bezier Patches

Derivatives of Other Functions
Please remember that this is only the simplest explanation of how to find the
derivative for a simple polynomial and that some functions might not adhere to this
simple rule. I don’t go into all the rules, but it might be worthwhile to mention the
derivatives for sine and cosine. The derivatives for sin(x) and cos(x) are cos(x) and
–sin(x), respectively. This becomes pretty apparent if you plot both curves and look at
their slopes at various points. If you are interested, you can go back and use this
information to compute the proper lighting values for the example from Chapter 18.

You are now very close to being able to compute the normals for a Bezier patch.
The derivatives for the basis functions allow you to compute the slopes of the
surface in both directions on the patch (s and t in this case). These are the surface
tangents, not the normals. That’s where the cross product comes in. In Chapter 2, I
said that the cross product of two vectors yields the vector that was perpendicular to
both. In this case, you want the vector that is perpendicular to the two surface
tangents. You can now find the normal vector for any point on the surface of a
Bezier patch with the following equation:

This all sounds like a lot of work, but it’s not really that bad. In the next few pages, I
show how you can set up the nasty math once and then control everything else with
the control points.

Computing the Patch Values
in a Shader
If you compare and contrast my version of this technique with a similar effect found
on the nVidia site, you’ll see a major difference in the way we handle the basis
functions. The nVidia effect encodes the s and t positions in the vertices and then
computes the basis functions at the beginning of the shader before applying the
control points. My version computes the basis values once when the vertices are
loaded and then performs the relatively simple task of multiplying and adding up
the influences of all the control points. The tradeoff is that my shader has less
computational overhead, but at a higher overall data cost. To be honest, I haven’t
tested both versions to see which is faster under equal conditions (the effect
example handles lighting differently), but a determination of which way is better
would have to account for the exact requirements of your project and where
bottlenecks are found to occur. In any case, be aware that the tradeoff exists.

The following shader code expects v7 to contain the precomputed basis functions in
the s direction and v8 to contain the functions for the t direction. The v9 and v10
input registers also contain the precomputed derivatives used to compute the vertex
normal. Also, the positions of the 16 control points are stored in constants c10
through c25. I show you how that data is stored when I get to the application code.
The full code appears in Bezier.vsh in the shaders directory:

vs.1.1

These first lines move the data from the input registers to temporary registers. This
makes it easier to use the data because the shader allows better concurrent access to
temporary registers than it does to the input registers:

mov r7, v7

mov r8, v8

mov r9, v9

mov r10, v10

This first chunk of code computes the influence of the S0T0 control point. This is
the equivalent to P0 on the Bezier curve, but I name the control points by their s

N(s,t) = ∑ ∑pi,jb'i(s)bj(t) × ∑ ∑pi,jbi(s)b'j(t)
 i=0

3

j=0

3

i=0

3

j=0

3

This is relatively difficult to illustrate on a 2D page, but consider the very simple case
of a flat control grid producing a flat patch. The surface tangents would then be
straight vectors lying on the surface of the plane, and the cross product of those two
lines would be a vector pointing straight up from the plane, as shown in Figure 21.6.

Figure 21.6

A very simple surface
normal.

One thing to remember is that order matters when finding the cross product of two
vectors. If you compute the cross product in the wrong order, the vector will point
the opposite direction. This mistake is fairly easy to identify because your lights
show up “backwards.”

Computing the Patch Values in a Shader

395394 21. Bezier Patches

and t values because they are in two
dimensions. The block of code
multiplies the two precomputed basis
functions together and then multiplies
that by the position of S0T0 given in the
constant c10. It then multiplies each of
the precomputed derivatives with the
position of the control point. In the case
of the tangent vectors, you do not want
to multiply the two values together
because you must use the final tangent
vectors to compute the surface normal.
Throughout this shader, r0 is a
temporary working variable, r1 contains
the vertex position, r2 is the tangent
vector in the s direction, and r3 is the
tangent vector in the t direction:

;S0T0 control point

mul r0.x, r7.x, r8.x

mul r1, c10, r0.x

mul r2, c10, r9.x

mul r3, c10, r10.x

This next block computes the influence of the S0T1 control point. It multiples the
appropriate basis values and then uses the mad instruction to multiply the control
point value and add it to the position stored in r1. The same procedure is repeated
for the tangent vectors, but again they are not multiplied together:

;S0T1 control point

mul r0.x, r7.x, r8.y

mad r1, c11, r0.x, r1

mad r2, r9.x, c11, r2

mad r3, r10.y, c11, r3

I removed several lines of the shader from this listing because they basically repeat
the same operation for each of the control points. You can find the full listing on
the CD. At first glance, the lines of code are exactly the same, but remember that
each of the four values of r7, r8, r9, and r10 contains separate precomputed basis

values. It’s extremely important to match the proper control point with the proper
basis functions. For instance, S0T0 matched with r7.x and r8.x and now the final
point S3T3 matches with r7.w and r8.w:

;S3T3 control point

mul r0.x, r7.w, r8.w

mad r1, c25, r0.x, r1

mad r2, r9.w, c25, r2

mad r3, r10.w, c25, r3

The r1 register now contains the interpolated position of this vertex on the Bezier
patch. In the application code, I loaded a mesh that was centered on the origin
from –0.5 to 0.5, and then I added 0.5 to compute s and t values in the range of 0 to
1. Here, I subtract 0.5 again to undo that correction. This might not be needed for
other implementations, but I wanted to add a complication into the mesh-loading
process just to show how you might handle something. You could have just as easily
derived the s and t values for each vertex in a different way and saved this
instruction. I talk more about this when I get into the application code:

add r1, r1, c6

The following lines compute the cross product in a manner described in some of
the nVidia documentation. Shaders provide native support for the dot product, but
cross product requires two instructions and some clever swizzling. If you
deconstruct these two lines, you can see that it does match the cross product shown
in Chapter 2:

mul r6, r3.yzxw, r2.zxyw

mad r6, -r2.yzxw, r3.zxyw, r6

The r6 register now contains the normal vector. You must normalize it in the usual
way before using it in the lighting instructions:

dp3 r5.w, r6, r6

rsq r5.w, r5.w

mul r6, r6, r5.w

For the sake of simplicity, I am computing only simple diffuse lighting by finding
the dot product of the normal and the light vector. There is no reason you couldn’t
add more, but a full description of lighting in vertex shaders does not appear until
Chapter 24:

dp3 oD0, r6, -c5

TIP
You never want to use more shader
instructions than you have to. In
some cases, shader limitations will
force you to. In this case, the shader
cannot access multiple input
registers in the same line, so I move
the input values into temporary
registers. This is one of the few
places where you really need to
move data without performing
some other value added operation.

Computing the Patch Values in a Shader

397396 21. Bezier Patches

The final four lines transform the new vertex position to clip space. You can use the
control grid to transform the positions of each point, but the world matrix is still
good for positioning, rotating, or scaling the actual mesh:

dp4 oPos.x, r1, c0

dp4 oPos.y, r1, c1

dp4 oPos.z, r1, c2

dp4 oPos.w, r1, c3

That’s the shader (or at least part of it), but the picture isn’t really complete until
you take a look at the application code. Next, I show you how the application
prepares the vertex data, computes the control points, and feeds the shader.

The Bezier Application
This section contains the abridged code for the Bezier application. The application
loads the patch vertices from a mesh in a file and creates another set of vertices to
use when displaying the control grid. In the render loop, the application sets the 16
control points and feeds them to the shader through a set of 16 constants. It then
renders the mesh, and the vertex shader computes the actual vertex positions. See
the source code for the complete code listing.

The following structure defines the vertex format for the patch vertices. The shader
doesn’t actually use the three position values, but I included them here because
sometimes you might want to display the original data either to debug or to simply
render the existing model. In the following sample, the mesh is a plane of many
vertices, but I can also imagine scenarios when you might want to use the control
grid to warp a 3D model instead of a simple plane. For instance, you might want to
compute the influence of the control points, but instead of setting the position, you
could add the interpolated position to the real coordinates. This would allow you to
warp a real 3D object using the control grid and the original position, but
generating the normals could be a bit tricky. Finally, including the position is
convenient when cloning the mesh because the cloning functions have a place to
put the position data. For this sample, I could have restructured the vertex format
and saved the three unused floats. Also, as I mentioned earlier, I could have
encoded the s and t values into the vertex structure and generated the basis values
in the shader. In the best case, the vertex structure could have been as small as two
floats. This would be nearly one-eighth of amount of data (if the following format
were more efficient), but it would require in the neighborhood of 50 percent more
shader instructions. Again, there are advantages and disadvantages to either

approach. Chances are that the other approach is faster on very fast hardware, but
it depends on your exact needs. In any case, be aware that at least two different
approaches both use the same underlying concepts:

struct BEZIER_VERTEX

{

 float x, y, z;

 float Bs0, Bs1, Bs2, Bs3;

 float Bt0, Bt1, Bt2, Bt3;

 float dBs0, dBs1, dBs2, dBs3;

 float dBt0, dBt1, dBt2, dBt3;

};

The following declaration defines the vertex structure for the vertex shader. The
unused position information is stored in v0, and the precomputed basis values for
both position and tangent vectors are stored as four values in the first four texture
coordinate registers. This doesn’t mean that you must use these values as texture
coordinates; it just defines which registers contain the values:

DWORD BezierDeclaration[] =

{

 D3DVSD_STREAM(0),

 D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),

 D3DVSD_REG(D3DVSDE_TEXCOORD0,D3DVSDT_FLOAT4),

 D3DVSD_REG(D3DVSDE_TEXCOORD1,D3DVSDT_FLOAT4),

 D3DVSD_REG(D3DVSDE_TEXCOORD2,D3DVSDT_FLOAT4),

 D3DVSD_REG(D3DVSDE_TEXCOORD3,D3DVSDT_FLOAT4),

 D3DVSD_END()

};

The following structure renders the control grid. The vertex structure contains the
position, and the shader sets the color according to a constant. The extremely
simple shader is in the shader directory as BezierControl.vsh:

struct CONTROL_VERTEX

{

 float x, y, z;

};

This is the FVF and declaration that creates a buffer of the simple control vertices.
Rendering the control grid is very simple and could have been done without a
shader, but I used a shader to increase your exposure to shader code. Also, you can
use the shader to easily set the vertex color with a constant. If I had used the fixed

The Bezier Application

399398 21. Bezier Patches

function pipeline, I would have had to add code that sets a material, adjusts
lighting, and so on. The shader method is arguably easier:

#define D3DFVF_CONTROLVERTEX (D3DFVF_XYZ)

DWORD ControlDeclaration[] =

{

 D3DVSD_STREAM(0),

 D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),

 D3DVSD_END()

};

The ExtractBuffers function assumes that a mesh has already been loaded and
cloned to the Bezier vertex format. In this case, the mesh is a plane of vertices with
position values ranging from –0.5 to 0.5 in both the X and the Z directions. If you
shift these values by 0.5, it creates a mesh that has a convenient range of 0 to 1, and
the shader corrects this shifting by subtracting 0.5 later.

Creating s and t Values
I created a mesh that had convenient values so I could concentrate on more important
matters, but using meshes with less convenient values is still easy. For any mesh, you
can find the bounding box and use the extents of that box to find s and t values in the
range of 0 to 1. For instance, if the mesh has x values that range from 0 to 100, you can
create the correct s value by dividing each x value by 100.

I could have just as easily created the vertices in code by creating a vertex buffer and
index buffer. It was a little bit less code to create the patch vertices with a mesh, and
you will see a how to create the vertex and index buffers in the next function:

HRESULT CTechniqueApplication::ExtractBuffers()

{

 m_pMesh->GetVertexBuffer(&m_pMeshVertexBuffer);

 m_pMesh->GetIndexBuffer(&m_pMeshIndexBuffer);

 BEZIER_VERTEX *pMeshVertices;

 m_pMeshVertexBuffer->Lock(0, m_pMesh->GetNumVertices() *

 sizeof(BEZIER_VERTEX),

 (BYTE **)&pMeshVertices, 0);

 for (long Vertex = 0;

 Vertex < m_pMesh->GetNumVertices();

 Vertex++)

 {

The patch shader works on two dimensions, so I use the x and z coordinates and
ignore y. There is nothing about Bezier patches that explicitly forces you to work
with a horizontal plane. The vertices and control points could also be vertically
oriented. Theoretically, any orientation is fine as long as you are consistent all the
way through. Again, the half-unit shift is an idiosyncrasy of the particular mesh I’m
using; it is not a general requirement:

 float S = pMeshVertices[Vertex].x + 0.5;

 float T = pMeshVertices[Vertex].z + 0.5;

The following four values are the precomputed basis functions for this particular s
value. The underlying mesh data does not change, so there is no reason to compute
these values each time:

 pMeshVertices[Vertex].Bs0 = (1.0f - S) * (1.0f - S) *

 (1.0f - S);

 pMeshVertices[Vertex].Bs1 = 3.0f * S * (1.0f - S) *

 (1.0f - S);

 pMeshVertices[Vertex].Bs2 = 3.0f * S * S * (1.0f - S);

 pMeshVertices[Vertex].Bs3 = S * S * S;

Here the process is repeated for the t value. The basis functions are exactly the
same. Only this time, they use the t value instead of the s value:

 pMeshVertices[Vertex].Bt0 = (1.0f - T) * (1.0f - T) *

 (1.0f - T);

 pMeshVertices[Vertex].Bt1 = 3.0f * T * (1.0f - T) *

 (1.0f - T);

 pMeshVertices[Vertex].Bt2 = 3.0f * T * T * (1.0f - T);

 pMeshVertices[Vertex].Bt3 = T * T * T;

These next eight lines compute the values of the derivatives of the basis functions.
You derive these functions using the rule for simple polynomials. If you expand the
basis functions and then take the derivative, you obtain the functions that follow:

 pMeshVertices[Vertex].dBs0 = (6.0f * S) -

 (3.0f * S *S) - 3.0f;

 pMeshVertices[Vertex].dBs1 = 3.0f - (12.0f * S) +

 (9.0f * S * S);

 pMeshVertices[Vertex].dBs2 = (6.0f * S) - (9.0f * S * S);

The Bezier Application

401400 21. Bezier Patches

 pMeshVertices[Vertex].dBs3 = 3.0f * S * S;

 pMeshVertices[Vertex].dBt0 = (6.0f * T) - (3.0f * T *

 T) - 3.0f;

 pMeshVertices[Vertex].dBt1 = 3.0f - (12.0f * T) +

 (9.0f * T * T);

 pMeshVertices[Vertex].dBt2 = (6.0f * T) - (9.0f * T * T);

 pMeshVertices[Vertex].dBt3 = 3.0f * T * T;

 }

After you have computed the basis values, unlock the buffer. The vertex shader
makes any further changes:

 m_pMeshVertexBuffer->Unlock();

 return S_OK;

}

CreateGridVisuals creates the simple vertices used to display the control grid. This is
really only a debugging and learning tool, so I don’t spend too much time
optimizing their usage:

HRESULT CTechniqueApplication::CreateGridVisuals()

{

You need 16 vertices to show the 16 control points. You use these vertices to render
both the points and the grid of lines that connect them. They are created in managed
memory so that they do not need to be explicitly recreated if the device is reset:

 if (FAILED(m_pD3DDevice->CreateVertexBuffer(16 *

 sizeof(CONTROL_VERTEX),

 0, D3DFVF_CONTROLVERTEX,

 D3DPOOL_MANAGED,

 &m_pControlVertexBuffer)))

 return E_FAIL;

The index buffer allows you to reuse the 16 vertices to draw the lines that
interconnect the control points. This is not just an optimization; I think it’s easier
than creating more points:

 if (FAILED(m_pD3DDevice->CreateIndexBuffer(48 * sizeof(short),

 0, D3DFMT_INDEX16,

 D3DPOOL_MANAGED,

 &m_pControlIndexBuffer)))

 return E_FAIL;

The index buffer contains the data for a line list of interconnections between the
control points. You can hardcode these values because they won’t ever change. It is
also possible to generate these values in a loop, but writing this way is easier to show
what is actually going on:

 short *pIndex;

 m_pControlIndexBuffer->Lock(0, 48 * sizeof(short),

 (BYTE**)&pIndex, 0);

 short Indices[] = {0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9,

 10, 10, 11, 12, 13, 13, 14, 14, 15, 0, 4, 4, 8, 8, 12,

 1, 5, 5, 9, 9, 13, 2, 6, 6, 10, 10, 14, 3, 7, 7,

 11, 11, 15};

 memcpy(pIndex, &Indices, 48 * sizeof(short));

 m_pControlIndexBuffer->Unlock();

}

The render function is where the real magic happens. Figures 21.7 and 21.8 show
the application in action both in solid and wireframe renderings:

Figure 21.7

Bezier patch solid
rendering.

The Bezier Application

403402 21. Bezier Patches

void CTechniqueApplication::Render()

{

The underlying data is based on a very small one-unit array of vertices and
corresponding control points. Computing everything with those values is
convenient, and the scaling matrix lets you scale the final mesh to any size
you need:

 D3DXMatrixScaling(&m_WorldMatrix, 5.0f, 5.0f, 5.0f);

I also added a rotation to the mesh so that you can see the Bezier functionality
working with the standard matrix transformations. The rotation matrix is
concatenated with the scaling values in the world matrix:

 D3DXMATRIX Rotation;

 D3DXMatrixRotationY(&Rotation, (float)GetTickCount() / 1000.0f);

 m_WorldMatrix *= Rotation;

Once the new world matrix is computed, you still need to concatenate, transpose,
and send the matrix to the vertex shader:

 D3DXMATRIX ShaderMatrix = m_WorldMatrix *

 m_ViewMatrix *

 m_ProjectionMatrix;

 D3DXMatrixTranspose(&ShaderMatrix, &ShaderMatrix);

 m_pD3DDevice->SetVertexShaderConstant(0, &ShaderMatrix, 4);

The light is shining straight down, and I didn’t bother to specify a specific light
color or any other attributes. Also, when you get to Chapter 24 you’ll see some of
the considerations you must take to make sure the lighting is consistent with the
matrix transformations. If you want to experiment with this code, you might need to
augment it to make the lighting work correctly. See Chapter 24 for more details:

 D3DXVECTOR4 LightDir(0.0f, -1.0f, 0.0f, 0.0f);

 m_pD3DDevice->SetVertexShaderConstant(5, &LightDir, 1);

Here I also set the correction values to account for this particular mesh. In other
cases, you may be able to save the constant and the instruction count:

 D3DXVECTOR4 Correction(-0.5f, 0.0f, -0.5f, 0.0f);

 m_pD3DDevice->SetVertexShaderConstant(6, &Correction, 1);

These warp values are just arbitrary values I picked to animate the control grid. I
highly recommend you experiment with these values or any of the control grid
parameters. Just remember that if you pull the grid in too many different
directions, the patch may be mathematically correct but very ugly. Experiment all
you want, but change the code is small increments until you are comfortable with
what is going on:

 float Warp1 = 2.0f * sin((float)GetTickCount() / 1000.0f);

 float Warp2 = 2.0f * cos((float)GetTickCount() / 1000.0f);

Each of these four blocks of code sets the control-point positions for one row of
points. For the sample, I change only the height of the points and keep the other
values evenly spaced along the grid:

 D3DXVECTOR4 ControlS0T0(0.0f, 0.25f * Warp1, 0.0f, 1.0f);

 D3DXVECTOR4 ControlS0T1(0.0f, 0.0f, 0.33f, 1.0f);

 D3DXVECTOR4 ControlS0T2(0.0f, 0.0f, 0.66f, 1.0f);

 D3DXVECTOR4 ControlS0T3(0.0f, 0.25f * Warp1, 1.0f, 1.0f);

 D3DXVECTOR4 ControlS1T0(0.33f, 0.0f, 0.0f, 1.0f);

 D3DXVECTOR4 ControlS1T1(0.33f, 0.33f * Warp1 + 0.33 * Warp2,

 0.33f, 1.0f);

Figure 21.8

Bezier patch wireframe.

The Bezier Application

405404 21. Bezier Patches

 D3DXVECTOR4 ControlS1T2(0.33f, -0.33f * Warp1 + 0.66f * Warp2,

 0.66f, 1.0f);

 D3DXVECTOR4 ControlS1T3(0.33f, 0.0f, 1.0f, 1.0f);

 D3DXVECTOR4 ControlS2T0(0.66f, 0.0f, 0.0f, 1.0f);

 D3DXVECTOR4 ControlS2T1(0.66f, 0.66f * Warp1 + 0.33 * Warp2,

 0.33f, 1.0f);

 D3DXVECTOR4 ControlS2T2(0.66f, -0.66f * Warp1 + 0.66f * Warp2,

 0.66f, 1.0f);

 D3DXVECTOR4 ControlS2T3(0.66f, 0.0f, 1.0f, 1.0f);

 D3DXVECTOR4 ControlS3T0(1.0f, 0.25f * Warp2, 0.0f, 1.0f);

 D3DXVECTOR4 ControlS3T1(1.0f, 0.0f, 0.33f, 1.0f);

 D3DXVECTOR4 ControlS3T2(1.0f, 0.0f, 0.66f, 1.0f);

 D3DXVECTOR4 ControlS3T3(1.0f, 0.25f * Warp2, 1.0f, 1.0f);

When the control points are set, each control point is set in the shader. It may have
been more optimal to create an array of 16 vectors and then send the complete
block of vectors in a single call to SetVertexShaderConstant. However, this was a better
way to demonstrate which constant matched with which control point. If you are
interested, you can optimize the way that constants are set:

 m_pD3DDevice->SetVertexShaderConstant(10, &ControlS0T0, 1);

 m_pD3DDevice->SetVertexShaderConstant(11, &ControlS0T1, 1);

 m_pD3DDevice->SetVertexShaderConstant(12, &ControlS0T2, 1);

 m_pD3DDevice->SetVertexShaderConstant(13, &ControlS0T3, 1);

 m_pD3DDevice->SetVertexShaderConstant(14, &ControlS1T0, 1);

 m_pD3DDevice->SetVertexShaderConstant(15, &ControlS1T1, 1);

 m_pD3DDevice->SetVertexShaderConstant(16, &ControlS1T2, 1);

 m_pD3DDevice->SetVertexShaderConstant(17, &ControlS1T3, 1);

 m_pD3DDevice->SetVertexShaderConstant(18, &ControlS2T0, 1);

 m_pD3DDevice->SetVertexShaderConstant(19, &ControlS2T1, 1);

 m_pD3DDevice->SetVertexShaderConstant(20, &ControlS2T2, 1);

 m_pD3DDevice->SetVertexShaderConstant(21, &ControlS2T3, 1);

 m_pD3DDevice->SetVertexShaderConstant(22, &ControlS3T0, 1);

 m_pD3DDevice->SetVertexShaderConstant(23, &ControlS3T1, 1);

 m_pD3DDevice->SetVertexShaderConstant(24, &ControlS3T2, 1);

 m_pD3DDevice->SetVertexShaderConstant(25, &ControlS3T3, 1);

Everything is now ready for some actual rendering. First make sure that the shader
is set, and then set the vertex and index buffers:

 m_pD3DDevice->SetVertexShader(m_BezierShader);

 m_pD3DDevice->SetStreamSource(0, m_pMeshVertexBuffer,

 sizeof(BEZIER_VERTEX));

 m_pD3DDevice->SetIndices(m_pMeshIndexBuffer, 0);

This line is commented out in the source code, but you can uncomment it if you
want to see the mesh rendered in wireframe:

 //m_pD3DDevice->SetRenderState(D3DRS_FILLMODE,

 D3DFILL_WIREFRAME);

Draw the mesh with the vertex shader. If you enable the preceding line, the output
displays the wireframe view of the mesh; otherwise it displays a solid rendering of
the mesh:

 m_pD3DDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0,

 m_pMesh->GetNumVertices(), 0,

 m_pMesh->GetNumFaces());

This line ensures that the rendering mode is solid for all subsequent calls. If you
want to optimize, you can make sure that this call is enabled only if the wireframe
call is enabled:

 m_pD3DDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);

The last thing the render function does is call the function that renders the control
grid. You can remove this line if you like:

 RenderControlGrid();

}

The RenderControlGrid function is not at all optimized, but it is still useful to see what
is going on with the control points:

void CTechniqueApplication::RenderControlGrid()

{

This code locks the vertex buffer so that it can be filled with control point data. In
the next chapter, you’ll see a method for accessing specific constants with the
address register. I could have done that here and avoided the lock and the need to

The Bezier Application

407406 21. Bezier Patches

retrieve the constants, but it seemed overly complicated and there is no real need to
optimize this function:

 CONTROL_VERTEX *pVertices;

 m_pControlVertexBuffer->Lock(0, 16 * sizeof(CONTROL_VERTEX),

 (BYTE **)&pVertices, 0);

The loop walks through each vertex and retrieves the value of the constant. This is a
bit heavy handed because you just passed the constants into the shader in the
previous function. The advantage of this method is that you can be sure the values
are consistent. Once the constants are retrieved, they are used to set the vertex
position. Note the correction here keeps everything together with the mesh object.
I don’t go into too much detail, but keep this in mind as you read the next chapter.
You could encode each vertex with the address of the constant that it matches to
and then rewrite the control grid shader to retrieve the real position from that
constant. If you did that, this function would become much simpler:

 for (long Vertex = 0; Vertex < 16; Vertex++)

 {

 D3DXVECTOR4 Temp;

 m_pD3DDevice->GetVertexShaderConstant(10 + Vertex,

 &Temp, 1);

 pVertices[Vertex].x = Temp.x - 0.5f;

 pVertices[Vertex].y = Temp.y;

 pVertices[Vertex].z = Temp.z - 0.5f;

 }

 m_pControlVertexBuffer->Unlock();

The control grid shader uses c4 to set the vertex color. The first pass draws all the
lines between the control points using a red color.

 D3DXVECTOR4 LineColor(1.0f, 0.0f, 0.0f, 0.0f);

 m_pD3DDevice->SetVertexShaderConstant(4, &LineColor, 1);

These next lines set the shader and the proper data sources used for two passes:

 m_pD3DDevice->SetVertexShader(m_ControlShader);

 m_pD3DDevice->SetIndices(m_pControlIndexBuffer, 0);

 m_pD3DDevice->SetStreamSource(0, m_pControlVertexBuffer,

 sizeof(CONTROL_VERTEX));

The first rendering call draws the lines:

 m_pD3DDevice->DrawIndexedPrimitive(D3DPT_LINELIST, 0,

 16, 0, 24);

These lines now reset the vertex color constant so that the control points can be
rendered as yellow points:

 D3DXVECTOR4 PointColor(1.0f, 1.0f, 0.0f, 0.0f);

 m_pD3DDevice->SetVertexShaderConstant(4, &PointColor, 1);

Before I render the points, I set the point size. It’s possible that some devices might
not support this. If that’s the case, you may not actually see the points:

 float PointSize = 5.0f;

 m_pD3DDevice->SetRenderState(D3DRS_POINTSIZE,

 ((DWORD)&PointSize));

 m_pD3DDevice->DrawPrimitive(D3DPT_POINTLIST, 0, 16);

}

Uses and Advantages
of Bezier Patches
There are many uses for Bezier curves and Bezier patches, but most have to do with
the fact that the parametric representation allows you to apply the curve functions
to an arbitrary number of vertices. For instance, you could use a lower-resolution
mesh in the sample application and get a shape that was correct but much coarser.
This lends itself well to the dynamic level of detail meshes.

Imagine a section of terrain defined with a set of Bezier patches that created rolling
hills and deep valleys. If you are actually standing in a valley, you might want to
render the terrain with a very high number of vertices so that all the edges appear
smooth. If you hop into a plane and fly above the valley, you can render the same
Bezier patches using fewer vertices. The patch calculations ensure that the general
shape of the patches are correct, yet you can save calculations because you don’t
need as much detail when you are farther away.

This idea is not limited to something like terrain. Most algorithms for higher-order
primitives use similar concepts to render 3D objects. For example, you can
represent an object as a collection of parametric patches rather than a set of
vertices. Using the patches, you can dynamically generate different meshes at any

Uses and Advantages of Bezier Patches

409408 21. Bezier Patches

level of detail. This is the basis for hardware implementations as well. Some
hardware implementations use lower-resolution meshes to interpolate smoother
curved values without the data-transfer overhead of additional vertices. The
underlying algorithms might not be exactly the same as the algorithms shown here,
but the basic concepts are the same.

Also, as I mentioned earlier, you can use the patches to define how to warp a real
3D object. To do this, use the patch values to increment or scale the vertex positions
rather than set them directly. You can use this method to create very organic and
smooth warping effects. You can also use it to warp or move materials such as cloth.
Imagine a waving flag. You can use the CPU to generate the rough control points of
the flag and let the Bezier functionality control the smooth interpolation of the
points on the flag. You can also apply this idea to moving capes and so on.

Finally, you can apply the concepts behind this chapter to other areas outside of
rendering. For instance, you can describe a path of motion with a Bezier curve and
use the basis functions to generate a smooth interpolated position at any time value.
This type of approach can be useful for any situation where you might need to
derive smooth values from relatively coarse data. Keep in mind that this sample
generates a very smooth surface based on only four points.

Connecting Curves and Patches
Many of these ideas involve shapes or paths with more control points. You can
specify a Bezier curve with more than 4 control points or a Bezier patch with more
than 16, but this often becomes computationally expensive. Instead, you can join
curves by having two curves share a common endpoint. This is an acceptable
solution, but it can create abrupt transitions if the two curves are very different. You
can also join two patches by having them share a common row of four control
points, but the same caveat about abrupt transitions also applies.

If you do choose to add more control points, the generalized definition for the set
of basis functions is as follows:

bi,n(s) = si(1 – s)(n – i)n!/i!(n – i)!

In Conclusion…
If you have not studied a lot of geometry or calculus, this chapter may have been
like drinking from the fire hose. My hope is that I watered down the math enough

to make the overall concepts understandable. If you have not studied calculus, you
might have to simply trust me about the derivatives, but I do recommend trying a
couple simple calculations for yourself. It should be pretty apparent that the
methodology works even if you don’t understand the underlying mechanics. If you
are really interested in learning more, many math resources on the Web attack
these subjects from a variety of different angles. Do a couple searches and see which
explanations work for you.

In the meantime, I finish this chapter off with a recap of some of the major points:

■ Bezier curves and patches let you define curves and surfaces with a very small
amount of data.

■ The equation for Bezier curves is a function of a set of basis functions and a
set of control points.

■ You can use the derivatives of the basis functions to find the tangent vectors
for a surface. Once those vectors are found, the cross product of two tangent
vectors yields the surface normal at a given point.

■ Once the control points are found, you can then use a vertex shader to apply
the influences of the control points to an arbitrary number of vertices.

■ The vertex shader can also compute the surface normal and apply lighting
calculations.

■ My method involves encoding more data into the vertices and using fewer
instructions. A sample effect on the nVidia site does the opposite. There are
advantages and disadvantages to each approach.

■ Bezier patches are most useful in situations where you want to control a large
amount of vertices with a very small amount of changing data.

■ Bezier patches are also good when you don’t necessarily want the number of
vertices to remain constant. This is useful in cases where you want a dynamic
level of detail control and you want to render the same general shape with
fewer vertices.

■ If you want more control over the shape, you can add more control points,
but it might be better to connect multiple curves. The result is fewer
calculations, but abrupt changes at the interface might be an issue.

In Conclusion…

