
Vertex and
Pixel Shaders

“To know a thing well, know its limits. Only when pushed
beyond its tolerances will true nature be seen.”

——Paul Mu’adib, from the movie Dune

CHAPTER 10

391

machine in an assembly-like programming language. With a code paradigm in place, you no
longer have to worry about carefully setting each of the card’s dozens of available modes to
achieve the effect you’re going for. Instead, you learn the architecture of the virtual machine and
write code for that architecture to accomplish your task.

Vertex and pixel shaders make it much easier for you to create unique special effects for your
applications. They’re a much cleaner, more elegant solution than the texture stage states and ren-
dering states, and they also enable you to do much more interesting things.

Now you will see how they work, starting with vertex shaders.

VERTEX SHADERS
First, I will nail down what exactly a vertex shader is.

Vertex shaders replace the transformation and lighting pipeline you learned about in Chapter 5,
“3D Concepts” (see Figure 10.1).

VERTEX SHADERS390

In this chapter, you are going to learn how to program shaders—specifically, vertex and pixel
shaders. In essence, Direct3D allows you to code little functions that operate on each vertex

of your world or finished pixel of your scene, using a special Direct3D minilanguage that looks a
lot like assembly language. This enables you to create spectacular effects and still be sure that
your code will run as fast as possible on all graphics cards. Behind the scenes, your vertex and
pixel shader code can run on different hardware, depending on the graphics card used. For
advanced cards, your code can run on the card itself if the card has a little CPU just for running
shader code. On less advanced cards, Direct3D can push the shader code through your main
CPU or do a combination, pushing some code through the CPU and the rest through the graph-
ics card.

You don’t have to worry about where your code actually runs. All you need to know is that on a
given system configuration, Direct3D can set up things so that the vertex and pixel shader code
runs as fast as possible. This means that any effects you create using the shaders will run as fast as
possible(!).

Prepare yourself—shaders are weird little creatures. You might not immediately see the benefits
to using a pixel or vertex shader, but stick with them. You will soon appreciate the power they
possess.

WHY SHADERS?
In the beginning of 3D graphics programming, the graphics cards were simple, which meant that
the API controlling them could also be simple. For example, if the state of the art in graphics
cards does one texture stage and maybe a handful of blending operations, it makes sense to con-
trol that card by using a set of modes. You make API calls to set the texture mode and the blend
mode, and you’re done. Your API is simple, and it can do everything your card does.

Now let’s crank up the complexity of the card. All of a sudden, you need more and more mode
API calls to deal with the card’s various features. You have multiple texture stages, different color-
and alpha-blending operations for each stage, and more addressing modes, bump mapping, and
so on. As you can see by the size of the Direct3D API, you need a huge number of API functions
to deal with all those modes.

Because graphics cards continue to become more complex, Microsoft implemented a far better
approach. Rather than use API calls to set modes on the card, you just write code for a virtual

10. VERTEX AND PIXEL SHADERS

Model Vertices

To the Rasterizer
(code that draws and fills surfaces)

World Space:
all vertices
share one

origin.

Model
Transform
Matrices

(Model position/
orientation)

Screen Space:
The vertices are

clipped and
arranged on the
render surface.

Screen

Coordinates

World
Coordinates

Custom Vertex Shader

Figure 10.1

Vertex shaders

replace most of the

transformation and

lighting pipeline.

393

The default shader is special because various Direct3D interfaces can control its calculations. For
example, you influenced the calculations of the default vertex shader when you set up different
light types using IDirect3DDevice8 methods such as SetLight or LightEnable, in Chapter 7 “Lighting”.

You can’t control your custom vertex shaders the same way, but that’s okay—you’re not losing any
functionality. Your custom vertex shaders can still do everything the default shader does, only
now, rather than call methods, you get your vertex shader to do your bidding by manipulating its
inputs directly. In addition to the required vertex inputs, vertex shaders also take constants as
inputs. These constant values can be set inside your main program, before you start pumping ver-
tices. This means that you can communicate with your shader code by passing values from your
main program into its constants.

Effects You Can Make Using
Vertex Shaders
The ability to write your own vertex-processing code blows the doors open for many interesting
effects. Here are just a couple examples, taken from the DirectX SDK help file:

■ Waves. As your vertex shader processes each vertex of your landscape, it can manipulate
the vertex’s z value to create a wave or ripple effect. This is a killer technique for gener-
ating realistic water. You use the constants to pass in the parameters of the wave you want
the shader to create.

■ Muscles. As your vertex shader processes each vertex of your model, it can distort some
of the vertex’s coordinates, based on the shape and position of a sphere. You can use this
to simulate some guy’s ripped bicep moving as he lifts something. You can also use this
technique to achieve the “There’s something crawling under my skin!” effect, such as
when Neo dives into the agent at the end of The Matrix. You can pass the coordinates
and shape of the perturbing sphere into your shader through the constant registers, so
by specifying different spheres, you can use the same shader for several effects.

■ Bones. Your shader can move the vertices of your model, based on the position and
weight of your model’s “bones,” enabling you to create a skeletal animation system for
the characters in your game.

That should be enough to sell you on the power and flexibility of vertex shaders. Now you will
get technical and start learning how they work.

Determining Whether a Device
Supports Vertex Shaders
First things first—all this discussion is no good if the device you’re on doesn’t support vertex
shaders. Use the members of the D3DCAPS8 structure to answer your questions (see Table 10.1).

VERTEX SHADERS392

A vertex shader takes a vertex as input and outputs a transformed, lit vertex. Now, depending on
how you define your vertex format, a vertex can consist of many things: diffuse color, texture
coordinates, a normal, you name it. This means that your vertex shader can have several inputs
and outputs. In essence, though, a vertex shader is nothing more than a function (see Figure
10.2). It has a specific set of inputs, it runs some code against those inputs, and it outputs a spe-
cific set of things.

10. VERTEX AND PIXEL SHADERS

Your Vertex Shader
Code Goes Here

Input Registers (17)

v0 v1 v2 v16

Output Registers

oDn oFog oPos oPts oTn

Address Register

an

Te
m

po
ra

ry
 R

eg
is

te
rs

 (
12

)

C[0]

C[1]

C[2]

C[95]

C
on

st
an

t
R

eg
is

te
rs

 (
96

)

r0

r1

r2

r11

.

. . .

Figure 10.2

The vertex shader

virtual machine.

To use a vertex shader, you first write the code for it and store the code in a text file, usually with
the extension .s. After that’s done, inside your main program, you use D3DX functions to load that
file and compile it. When the D3DX functions succeed, they give you back a handle to your vertex
shader. You then give this handle to the SetVertexShader method of IDirect3DDevice8, and that
sets your vertex shader active.

Wait a minute, though—you have seen SetVertexShader before, in the first 3D sample program.
You might not realize it, but you have been using a vertex shader ever since you rendered your
first 3D scene. Direct3D comes with a default vertex shader. To use that default vertex shader, you
call SetVertexShader, but rather than give it a vertex shader handle, you give it a combination of
flexible vertex flags—which is exactly what you have been doing.

395

Here is an example, which I will decipher. Say that your vertex structure looks something like
this:

struct Vertex
{

D3DXVECTOR3 Position;
D3DXVECTOR3 Normal;
D3DCOLOR Diffuse;
D3DXVECTOR2 TexCoord0;

};

As you can see, you have a position (specified by a three-element vector), a normal, a diffuse
color, and one set of (u,v) texture coordinates (specified by a two-element vector). That’s typical,
so, given what you learned in Chapter 6, “An Introduction to DirectGraphics,” your flexible ver-
tex flags would look like this:

DWORD dwFvf = D3DFVF_POSITION | D3DFVF_NORMAL | D3DFVF_DIFFUSE |
D3DFVF_TEX0 | D3DFVF_TEXCOORDSIZE2(0);

Now you will learn how to tell Direct3D that your vertex shader takes these parameters as inputs.
It all begins, of course, with an array of DWORDs. You don’t know (or care) how long this array will
be, so you define it like this:

DWORD dwVertexInputDecl[] =
{
};

To specify your inputs, you rely on the macros shown in Table 10.2.

For the first parameter of the D3DVSD_REG macro, you use any of the following values:

■ D3DVSDE_POSITION
■ D3DVSDE_BLENDWEIGHT
■ D3DVSDE_NORMAL
■ D3DVSDE_PSIZE
■ D3DVSDE_DIFFUSE
■ D3DVSDE_SPECULAR
■ D3DVSDE_TEXCOORD0
■ D3DVSDE_TEXCOORD1
■ D3DVSDE_TEXCOORD2
■ D3DVSDE_TEXCOORD3
■ D3DVSDE_TEXCOORD4

VERTEX SHADERS394

VertexShaderVersion indicates the following levels of support:

■ 0: DirectX 7.0. This device does not support vertex shaders.
■ 1.0: DirectX 8.0. You can use vertex shaders, but you do not have the address register A0.
■ 1.1: DirectX 8.0. You can use vertex shaders, and you have the A0 address register.

1.1 is what you’re hoping for, but the only difference between 1.0 and 1.1 is the missing
address register A0.

Most of the cards out there now support vertex shaders, but it never hurts to check.

Specifying the Inputs to a
Vertex Shader
After you verify that your card supports vertex shaders, the next order of business is to define
exactly the inputs your vertex shader function will take.

You specify the inputs as an array of DWORDs. Direct3D deduces your vertex shader’s inputs from an
array of DWORDs, filled with certain flags and numbers. You don’t usually specify these flags and
numbers directly. Instead, you use the D3DVSD_ macros, which save you the headache of making
sure that you flip the right bits in the array.

10. VERTEX AND PIXEL SHADERS

Table 10.1 D3DCAP8 Shader Members
Member Description

MaxPrimitiveCount The maximum number of primitives you can specify in each
call to DrawPrimitive.

MaxVertexIndex The maximum size of the vertex indices you can use for
hardware vertex processing.

MaxStreams The maximum number of concurrent data streams you can
have.

MaxStreamStride The maximum data stream for one data stream stride.

MaxVertexShaderConst The maximum number of vertex shader constants you can
use.

VertexShaderVersion The level of support for vertex shaders.

397VERTEX SHADERS396 10. VERTEX AND PIXEL SHADERS

Table 10.2 D3DVSD Macros
Macro Example Description

D3DVSD_STREAM D3DVSD_STREAM(0) Tells Direct3D from which stream to
get the vertex data.This is usually the
first macro you use.

D3DVSD_END D3DVSD_END() Tells Direct3D that this is the end of
the DWORD array.

D3DVSD_REG D3DVSD_REG(Specifies a data element of your
D3DVSDE_POSITION, vertex structure, along with that
D3DVSDT_FLOAT3) element’s data type.You will use
D3DVSD_REG(this macro the most often.
D3DVSDE_DIFFUSE, The first parameter is the ID of the
D3DVSD_REG(vertex component (color, position, and
D3DVSDE_POSITION, the like).All these IDs are #defines
D3DVSDT_FLOAT3) that start with D3DVSDE_ (for Direct3D
D3DVSD_REG(Vertex Shader Data Element).
D3DVSDE_DIFFUSE, The second parameter is the type of
D3DVSDT_D3DCOLOR) the data element.All these IDs start

with D3DVSDT_ (for Direct3D Vertex
Shader Data Type). Remember, the
order in which you specify data ele-
ments must be the same as the order
of the data members in your vertex
structure so that things line up inside
the vertex buffer.

D3DVSD_CONST D3DVSD_CONST(8, 1), Specifies a constant value.The first
(DWORD)&diffuse[0], parameter tells Direct3D which
(DWORD)&diffuse[1], constant register to begin filling with
(DWORD)&diffuse[2], data, the second parameter tells
(DWORD)&diffuse[3], Direct3D the number of constant
... vectors (not bytes—vectors are four

DWORDs each!) to load.

Table 10.2 Continued
Macro Example Description

D3DVSD_NOP D3DVSD_NOP() Generates a NOP (no operation)
token.

D3DVSD_SKIP D3DVSD_SKIP(2) Tells Direct3D to skip the specified
number of DWORDs in the vertex.This
can be useful if you have additional
information in your vertex structure
that you don’t want to send to your
shader.

D3DVSD_STREAM_TESS D3DVSD_STREAM_TESS() Sets the tesselator stream (for
advanced vertex shader operations).

D3DVSD_TESSNORMAL D3DVSD_TESSNORMAL(0,1) Specifies that you want to enable
tesselator-generated normals.The first
parameter specifies the input stream;
the second parameter specifies the
stream where the normals will be
written to.

This command is used for advanced
shader techniques.

D3DVSD_TESSUV D3DVSD_TESSUV(5) Specifies that you want to enable
tesselator-generated surface parame-
ters.The parameter specifies the out-
put stream where you’d like the
parameters to go.

399

Vertex Shader Assembly Language
After you specify your inputs, you can write the code for your vertex shader. You do this using a
language that resembles assembly language. To learn this language, you have to know the regis-
ters (variables) with which you can work and the operations you can perform on those variables.

You will start with the registers.

Vertex Shader Registers
Table 10.3 summarizes the registers available for vertex shader programming. Keep in mind that
when you see an n in the register name, it stands for an integer—for example, vn stands for v0,
v1, v2, and so on.

VERTEX SHADERS398

■ D3DVSDE_TEXCOORD5
■ D3DVSDE_TEXCOORD6
■ D3DVSDE_TEXCOORD7

For the second parameter of the D3DVSD_REG macro, you use any of the following values:

■ D3DVSDT_D3DCOLOR. A D3DCOLOR
■ D3DVSDT_FLOAT1. One float
■ D3DVSDT_FLOAT2. Two floats
■ D3DVSDT_FLOAT3. Three floats
■ D3DVSDT_FLOAT4. Four floats
■ D3DVSDT_UBYTE4. 4 bytes

As you can see, you probably won’t use some of the D3DVSD_ macros. The most important ones are
D3DVSD_REG, which registers an element of your structure, D3DVSD_STREAM, which tells Direct3D
which vertex stream you want to use, and D3DVSD_END, which ends the array.

Given this simple vertex structure, you can now define the shader inputs:

struct Vertex
{

D3DXVECTOR3 Position;
D3DXVECTOR3 Normal;
D3DCOLOR Diffuse;
D3DXVECTOR2 TexCoord0;

};
DWORD dwDecl[] =
{

D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR

),
D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
D3DVSD_END()

};

See how your vertex structure and input declaration fit
together? For each element in the vertex structure, you put a
corresponding D3DVSD_REG command inside the input decla-
ration.

10. VERTEX AND PIXEL SHADERS

CAUTION
You must specify the
inputs to your shader in
the exact order you
declare them in the
structure. Otherwise,
your vertex data will
not line up correctly in
memory. If you have a
member of your vertex
structure that you don’t
want to input to your
shader function, use the
D3DVSD_SKIP macro to
skip over it.

Table 10.3 Vertex Shader Registers
Register Description

an Address registers.

Currently, there is only one address register, a0, that only has one
element, x (so a0.x).You can use the address register as a relative
address into the array of constants, as in c[a0.x + n]. In this line,
you’re using the a0.x address register as in index into the array of
constants.You can also do the following: c[a0.x + 5]. That is, you can
add a number onto the address register and use that sum as an
index into the array of constants.

c[n] Constant registers.

The vertex shader language supports at least 96 constant registers—
the D3DCAPS8 structure gives the exact number of constants support-
ed.

If you try to read a constant whose index is out of range, you get
back (0.0, 0.0, 0.0, 0.0).

Your program can put values into the constant registers using the
SetVertexShaderConstant method of IDirect3DDevice8.

401

■ v5. Diffuse Color
■ v6. Specular Color
■ v7. Texture Coordinates 0
■ v8. Texture Coordinates 1
■ v9. Texture Coordinates 2
■ v10. Texture Coordinates 3
■ v11. Texture Coordinates 4
■ v12. Texture Coordinates 5
■ v13. Texture Coordinates 6
■ v13. Texture Coordinates 7
■ v13. Position 2
■ v13. Normal 2

To recap in more detail, the purpose of a vertex shader is to take the inputted vn registers, per-
form calculations on them (using the cn constant registers, the an address register, and the rn
temporary registers if needed), and
finally output the o registers your
program uses: oDn, oFog, oPos, oPts,
and oTn—the color, fog factor, posi-
tion, point size, and texture coordi-
nates of the inputted vertex.

Now you will look at the operations
you can perform on these registers.

Vertex Shader Instructions
Table 10.4 summarizes the instructions available in the vertex shader language.

Note that the lit instruction assumes that the source vector vSrc0 contains the following informa-
tion:

■ vSrc0.x = N*L (the dot product between the vertex’s normal and its direction to the
light)

■ vSrc0.y = N*H (the dot product between the vertex’s normal and its half vector)
■ vSrc0.z = ignored
■ vSrc0.w = The power, in the range of –128 to +128

The Direct3DX team has also included the macro instructions shown in Table 10.5. These
macros wrap up several instructions into one macro instruction, making for more readable and
less error-prone coding.

VERTEX SHADERS400 10. VERTEX AND PIXEL SHADERS

Table 10.3 Continued
Register Description

rn Temporary registers you can use for calculation.

The vertex shader language supplies 12 temporary registers—each
register is four floating-point values.You can use up to three tempo-
rary registers per operation.

Note that Direct3D destroys the contents of the temporary regis-
ters each time your shader finishes executing.This means that your
vertex shader code must write to a temporary register before it
reads from it—failure to do so results in a compile error.

vn The input registers.The vertex shader language supplies 17 input reg-
isters.

oDn Output data registers used to output vertex color data.These data
registers are interpolated by the system and then sent into a pixel
shader.You use them most often for color information.

oFog The output fog factor. Direct3D uses only the x component of this
4D float.

oPos The output position.Arguably the most important thing you calcu-
late, this register contains the final position in homogenous clipping
space.

oPts The output point-size registers. Direct3D uses only the x component
of this 4D float.

oTn The output texture coordinate registers. Direct3D uses these values
to determine which texels correspond to this vertex.

The vertex shader language provides several different inputs, detailed here:

■ v0. Position
■ v1. Blend Weight
■ v2. Blend Indices
■ v3. Normal
■ v4. Point Size

HELP REFERENCE
The DirectX SDK help file has more detailed
descriptions of each register. See DirectX
8.0\DirectX Graphics\Direct3DX Shader
Assemblers Reference\Vertex Shader Assembler
Reference\Registers.

403VERTEX SHADERS402 10. VERTEX AND PIXEL SHADERS

Table 10.4 Vertex Shader Instructions
Instruction Syntax Description

add add vDest, vSrc0, Adds vSrc0 and vSrc1 together and puts the
vSrc1 result in vDest.

dp3 dp3 vDest, vSrc0, Calculates the three-component dot product
vSrc1 of vSrc0 and vSrc1 and puts the result in vDest.

dp4 dp4 vDest, vSrc0, Calculates the four-component dot product
vSrc1 of vSrc0 and vSrc1 and puts the result in vDest.

dst dst vDest, vSrc0, Calculates the distance vector and puts the
vSrc1 result in vDest.

This instruction assumes that vSrc0’s compo-
nents are (ignored, d*d, d*d, ignored), and vSrc1’s
components are (ignored, 1/d, ignored, 1/d).
When the instruction is finished, vDest will con-
tain (1, d, d*d, 1/d).

expp expp vDest, vSrc0 The expp instruction allows you to calculate “2
to the power of vSrc0,” with partial precision.
This instruction stores the answer in vDest.z.

Note that this operation is undefined if you
pass in a negative number.

lit lit vDest, vSrc0 The lit instruction allows you to calculate
lighting coefficients from two dot products and
a power.

log log vDest, vSrc0 Provides log2(x) calculations with partial preci-
sion.This instruction stores the answer in
vDest.z.

mad mad vDest, vSrc0, Multiplies vSrc0 and vSrc1, adds vSrc2 onto the
vSrc1, vSrc2 product, and puts the results in vDest.

max max vDest, vSrc0, Fills vDest with the largest components of vSrc0
vSrc1 and vSrc1. For example, if vSrc0.x = 0.5 and

vSrc1.x = 0.75, then vDest.x = 0.75.

Table 10.4 Continued
Instruction Syntax Description

min max vDest, vSrc0, Same as max but uses the smallest components.
vSrc1 Fills vDest with the smallest components of

vSrc0 and vSrc1. For example, if vSrc0.x = 0.5
and vSrc1.x = 0.75, then vDest.x = 0.5.

mov mov vDest, vSrc0 This instruction simply moves the contents of
vSrc0 into vDest.

mul mul vDest, vSrc0, Multiplies vSrc0 and vSrc1 and puts the result
vSrc1 in vDest.

rcp rcp vDest, vSrc0 Computes the reciprocal (1/x) of the source
scalar and puts it in vDest.

rsq rsq vDest, vSrc0 Computes the reciprocal square root of the
source scalar and puts it in vDest.

sge sge vDest, vSrc0, If vSrc0 >= vSrc1, then vDest = 1.0. Otherwise,
vSrc1 vDest = 0.0.

Even though the vertex shader programming
language doesn’t support conditional state-
ments per se, you can use this function to
achieve some primitive if statement
functionality.

slt slt vDest, vSrc0, Just like Store Greater Than/Equal (sge), only
vSrc1 it’s Store Less Than (slt). If vSrc0 < vSrc1, then

vDest = 1.0. Otherwise, vDest = 0.0.

Even though the vertex shader programming
language doesn’t support conditional state-
ments per se, you can use this function to
achieve some primitive if statement
functionality.

sub sub tDest, tSrc0, Subtracts two sources.When this instruction
tSrc1 finishes, tDest = tSrc0 – tSrc1.

405VERTEX SHADERS404 10. VERTEX AND PIXEL SHADERS

Table 10.4 Continued
Instruction Syntax Description

def def vDest, fVal0, Allows you to define a constant register by
fVal1, fVal2, putting four floating-point values into it.You
fVal3 can accomplish the same thing by calling

SetVertexShaderConstant; this is just another
means to the same end.

vs vs.MainVer.SubVer Allows you to specify a version number for this
shader.Version numbers can consist of a main
version, followed by a sub version, that is, 1.0.

Note that Direct3D requires this instruction to
be at the beginning of all vertex shaders.

Table 10.5 Continued
Instruction Syntax Description

log log vDest, vSrc0 Provides log2(x) calculations, with full precision.
This macro also expands into 12 instructions.

m3x2 m3x2 rDest, vSrc0, Computes the product of vSrc0 and the 3×2
mSrc1 matrix mSrc1.This macro expands into two

instructions.

m3x3 m3x3 rDest, vSrc0, Computes the product of vSrc0 and the 3×3
mSrc1 matrix mSrc1.This macro expands into three

instructions.

m3x4 m3x4 rDest, vSrc0, Computes the product of vSrc0 and the 3×4
mSrc1 matrix mSrc1.This macro expands into four

instructions.

m4x3 m4x3 rDest, vSrc0, Computes the product of vSrc0 and the 4×3
mSrc1 matrix mSrc1.This macro expands into three

instructions.

m4x4 m4x4 rDest, vSrc0, Computes the product of vSrc0 and the 4×4
mSrc1 matrix mSrc1.This macro expands into four

instructions.

Table 10.5 Vertex Shader Macro Instructions
Instruction Syntax Description

exp exp vDest, vSrc0 Provides “two to the power of vSrc0” with full
precision.This takes 12 instructions to do, but
hey, when you need the precision, those 12
instructions are a small price to pay.

This operation takes its input from the w chan-
nel of vSrc0 (vSrc0.w).

frc frc vDest, vSrc0 Puts the fractional component of vSrc0 into
vDest. Each component of vDest will be in the
range of 0.0–1.0.

This takes three instructions to do, and it only
writes the x and y components.

As you can see, the language supports essentially all the math tasks you will likely need to do
while calculating vertices.

HELP REFERENCE
You can learn more about the instructions supported by the ver-
tex shader language by looking in the DirectX documentation at
DirectX 8.0\DirectX Graphics\Direct3DX Shader Assemblers
Reference\Vertex Shader Assembler Reference\Instructions.

407

D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT2),
D3DVSD_END()

};
// Assemble the vertex shader from the file
if (FAILED(D3DXAssembleShaderFromFile("MyCoolShader.vsh", 0,
NULL, &pCode, NULL))) { /* handle errors! */ }

// Create the vertex shader
if (FAILED(m_pd3dDevice->CreateVertexShader(dwDecl,
(DWORD*)pCode->GetBufferPointer(), &dwShader, 0)) {
/* handle errors! */

}
// Release the token buffer
pCode->Release();

Rendering, Using the
Shader
The logical next step after loading a vertex shader is to tell DirectGraphics that you’d like to use
this shader when you render. This is surprisingly easy. When you have your vertex shader’s DWORD,
you can pass that DWORD to the SetVertexShader method of IDirect3DDevice8, which activates your
vertex shader. Here’s a code snippet showing how that might look:

// Begin the scene
g_pd3dDevice->BeginScene();

// Make our quad the source for the vertex data
g_pd3dDevice->SetStreamSource(0, g_pVB, sizeof(CUSTOMVERTEX));

// set our vertex shader active
g_pd3dDevice->SetVertexShader(g_dwShader);

// draw some triangles
g_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 2);

// End the scene
g_pd3dDevice->EndScene();

It really is that easy. Simply set your shader active, and then draw your triangles.

VERTEX SHADERS406

Vertex Shader Instruction Modifiers
The vertex shader language supports the component modifiers listed in Table 10.6. You can
apply these modifiers to any of the an, c[n], rn, or vn registers or any of the output registers.

10. VERTEX AND PIXEL SHADERS

Table 10.6 Vertex Shader Instruction Modifiers
Modifier Description

r.{x}{y}{z}{w} Destination mask.This allows you to mask off all
but one of a vector’s four components.

r.[xyzw][xyzw][xyzw][xyzw] Source swizzle.

-r Source negation.

Creating a Vertex Shader in
Your Program
You can write all the vertex shader assembly code you want, but it won’t do you a lick of good
unless you can load and use the functions you’ve written inside your 3D application. Luckily, the
process of loading and using a vertex shader is simple:

1. Write your vertex shader code, and store it in a text file, typically with the extension VSH (for
Vertex SHader). This is the hard part.

2. Inside your application, call the D3DXAssembleShaderFromFile function, which loads and
assembles your shader file. D3DXAssembleShaderFromFile gives you back an ID3DXBuffer inter-
face containing the token stream of your assembled shader function.

3. Create the actual vertex shader by calling the CreateVertexShader method of
IDirect3DDevice8, giving it the contents of the buffer you got in step 2. CreateVertexShader
gives you back a DWORD handle to your shader.

4. Release the ID3DXBuffer interface you got in step 2.

In code, this process looks like the following:

LPD3DXBUFFER pCode;
DWORD dwShader;
DWORD dwDecl[] = { // the declaration for your shader
D3DVSD_STREAM(0),

CAUTION
When you’re done
with the vertex shader,
remember to call
DeleteVertexShader,
giving it the DWORD of
the vertex shader you
want to delete.

409

// plug the diffuse color into constant register 5
float color[4] = { 1.0f, 1.0f, 0.0f, 1.0f };
g_pd3dDevice->SetVertexShaderConstant(5, color, 1);

In this code, you are setting the color to RGBA(1,1,0,1)—opaque yellow—and calling
SetVertexShaderConstant to push those four floats into constant register four.

VERTEX SHADERS408

Passing Data to Your Shader, Using
Constant Registers
You must do one last thing before your vertex shader will work correctly. Even the simplest vertex
shader needs data above and beyond what it’s getting from the geometry. For example, to trans-
form, clip, and project your geometry properly, your shader has to know what the world, view,
and projection matrices are. As you’ve seen, the vertex shader gets its data from the constant reg-
isters, but you haven’t yet looked at how the constant registers are filled up in the first place.

The way you do this is by calling the SetVertexShaderConstant method of IDirect3DDevice8,
explained in Table 10.7:

HRESULT SetVertexShaderConstant(
DWORD Register,
CONST void* pConstantData,
DWORD ConstantCount

);

For example, say that your vertex shader is going to color all your vertices. It expects you to put
the color you’d like it to use into constant register four (c4). Therefore, you use
SetVertexShaderConstant to load up four floating-point values (corresponding to red, green, blue,
and alpha) into c5. This translates into code that looks like the following:

10. VERTEX AND PIXEL SHADERS

Table 10.7 SetVertexShaderConstant
Parameters

Parameter Description

Register The number of the constant register you want to load up, or, if
you’re loading many constant registers at once, the number of the
constant register at which you want to start.

pConstantData The data you want to plug in to the constant register(s). Make
sure that the size of this data is four floats for every constant reg-
ister you’re setting. For example, if you’re setting three registers,
you must make sure that the data size is 12*sizeof(float).

ConstantCount The number of registers you’re setting.

CAUTION
A common mistake involves incorrectly
setting the constant count (the last
parameter to SetVertexShaderConstant).
Remember, each constant register is four
floats, so if you’re pushing four floats into
one register, make sure that this is one,
not four. Incorrectly specifying the number
of values (instead of the number of regis-
ters) can trash your constants behind your
back and lead to really hard-to-find bugs.

NOTE
You can also use the def com-
mand to set constant regis-
ters in a vertex shader. If the
constants you’re using aren’t
changing frame by frame, it
might be better to set them
inside the shader code itself,
using def, rather than bother
with setting them inside your
actual C code.

A Simple Vertex Shader Example
You now have a complete understanding of how to use vertex shaders in your programs, but I’ll
bet that you’re still a little confused about how to write the shader code itself. Let me walk you
through a series of progressively more complex shaders and show you how these work.

Here is a very simple vertex shader. Fire up the Ch10p1_SimpleVertexShader program. Run it, and
you will see nothing terribly interesting, just a yellow rotating square on a blue background (see
Figure 10.3). However, plenty of new techniques are going on under the surface. Rather than use
the fixed function pipeline to generate this image, you are using your own vertex shader.

Because we don’t care about texturing or anything fancy, the shader behind this image is very
small. Ready? Here it is:

vs.1.0
m4x4 oPos , v0, c0
mov oD0, c4

That’s it! Three lines, and they’re not even long lines. The first line is the mandatory vs com-
mand, which DirectX requires at the beginning of all shaders. It simply tells the system that you
will be using vertex shader 1.0 commands.

411

store the number of the matrix you would like to use for each vertex inside that vertex’s data
structure). Also, you could get fancy and use dozens of matrices, along with some vertex weight
values, to calculate the final vertex position (as programmers do for bone calculations). The key
idea here is that the shaders give you the freedom to do whatever you need to do.

That takes care of the vertex position. Now there’s the third and final line, which sets the vertex
color. It does this by copying constant register four (c4) into output data register zero (oD0).

As you might have guessed, you use SetVertexShaderConstant to stuff the vertex color you want
(opaque yellow) into constant register four. The shader simply grabs that constant and uses it as
the final color. Again, it doesn’t have to be this way. If you want to do something bizarre, see what
happens when you change c4 to c0, causing
the vertex shader to make the vertex’s diffuse
color dependent on the matrix you pass it.

Here’s another simple shader:

vs.1.0
m4x4 oPos , v0, c0
mov oD0, v5

In this code, you replace c4 with v5. This sub-
tle change makes the vertex shader obtain
the color information from the diffuse color
stored within the vertex structure. You can
see this shader in action by making the
Ch10p1_SimpleVertexShader program load
SimpleShader2.vsh instead of SimpleShader1.vsh.

A Complex Vertex Shader Example
Are you starting to see how all this works together? Now take a look at a more complex vertex
shader—one that does texturing and lighting, in addition to position and diffuse color. Here it is:

vs.1.0
m4x4 oPos, v0, c0

// lighting calculations
dp3 r0, v3, c4
mul oD0, r0.x, v5

// texture pass-through
mov oT0.xy, v7

VERTEX SHADERS410

The next line is a matrix multiply. This line takes the incoming vertex position data (v0) and mul-
tiplies it by the matrix you’ve put in constant register zero. It stores the result of this multiplica-
tion in oPos, which is the position output register—what DirectGraphics looks at after the shader
is done to determine the final position of the vertex.

“Wait a minute,” you’re probably saying, “What happened to the world, view, and projection
matrices?” In the fixed function pipeline, the vertex position was first multiplied with the world
matrix to get its position in world space. Then, the result of that was multiplied by the view
matrix to get its position, as seen from a certain point in 3D space (the camera). Finally, that
result was multiplied again, this time by the projection matrix to determine its position within the
defined viewport.

As you know, you can combine several matrix multiplications into a single matrix. Multiply a
matrix that scales something with a matrix that rotates something, and you end up with a matrix
that does both the scale and the rotation at once. That’s what’s going on here. This code has
multiplied the world, view, and projection matrices together and stuffed the combined
world/view/projection matrix into c0. Here’s the code that does this:

D3DXMATRIX mat;
D3DXMatrixMultiply(&mat, &g_matWorld, &g_matView);
D3DXMatrixMultiply(&mat, &mat, &g_matProj);
D3DXMatrixTranspose(&mat, &mat);
g_pd3dDevice->SetVertexShaderConstant(0, &mat, 4);

Ah-ha! Here you can see the multiplication fusing the three matrices together, followed by the
call to SetVertexShaderConstant that places the fused matrix into constant register zero (c0).

You should now see how that second line of this little shader works. The m4x4 macro multiplies
the vector position and the fused world/view/projection matrix and puts the result in oPos. The
result of all this is a vertex position equivalent to what you would end up with using the fixed
function pipeline. The differences lie in how you get there and in the amount of freedom you
have along the way. You could choose to leave the three matrices separate and let the shader
combine them. You could use a different matrix for different vertices (for example, you could

10. VERTEX AND PIXEL SHADERS

Figure 10.3

A simple vertex

shader in action.

NOTE
It might seem strange to you that oD0
isn’t named oColor or something simi-
lar. Instead, it’s named output data regis-
ter zero, a much less precise name.This
is because oD0 doesn’t necessarily have
to be the color.The default
DirectGraphics pixel shader uses oD0 as
the diffuse color, but if you write your
own pixel shaders, you can use oD0 for
whatever you want—usually the color
but occasionally not.

Sample Program Reference
To see this shader in action, run the
Ch10p2_TexturingVertexShader sample
program.

413

Here you can see the added D3DFVF_NORMAL tag.

Next, you tell DirectGraphics where inside your vertex structure it can find the normal. You do
this by adding a line to your vertex shader declaration:

DWORD dwDecl[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
D3DVSD_END()

};

In this code, notice that you add an additional binding
for D3DVSDE_NORMAL. You tell DirectGraphics that the
normal comes immediately after the position in your
structure and that you consider a normal to be three
floating-point values (the x, y, and z components of
your vector).

The only order of business left is to set the normals for
each vertex. You do this at the same time you set the
rest of the vertex data:

pVertices[0].position = D3DXVECTOR3(-2.0f, -2.0f, 0.0f);
pVertices[0].norm = D3DXVECTOR3(0.0f, 0.0f, 1.0f);
pVertices[0].color = D3DCOLOR_ARGB(255, 255, 0, 0);
pVertices[0].tu = 0.0f;
pVertices[0].tv = 0.0f;

The next line of the vertex shader lighting calculations multiplies the result of the dot product
with your diffuse color and puts the result of that multiplication in the oD0 output register. Now
you have a vertex shader that calculates light.

The last line of the shader passes your texture coordinates unchanged from the input register
(v7) to the output register (oT0). Note that you use the .xy modifier on oT0 so that you store only
the x and y components of the texture (because that’s all you need—you’re not using 3D tex-
tures).

That’s it for the more complex shader.

VERTEX SHADERS412

The only thing terribly interesting in this new shader is the lighting calculation. A quick and easy
way to calculate the amount of light falling on a vertex is to take that vertex’s normal and dot it
with the light vector (the vector specifying the direction in which the light is shining). Then, mul-
tiply that value by the vertex diffuse color to arrive at the final, lit color.

That’s essentially what the shader does, in the two instructions under the light heading. The c4
register contains the light vector, which you set up using the following code:

// set up the light
D3DXMatrixInverse(&matinv, NULL, &g_matWorld);
D3DXVECTOR3 vLight(0.0f, 0.0f, 1.0f);
D3DXVec3TransformNormal(&vLight, &vLight, &matinv);
D3DXVec3Normalize((D3DXVECTOR3*)&vLight, (D3DXVECTOR3*)&vLight);
vLight = -vLight;
g_pd3dDevice->SetVertexShaderConstant(4, &vLight, 1);

The light vector starts out as (0,0,1), which makes the light point directly into the scene. You then
have to transform the light vector’s normal by the inverse of the world matrix and normalize that
result (remember, normalization means making the length of the vector equal to 1).

Don’t worry about the math here. The important thing is that, in the last line of code, you plug a
correct light vector in to register c4.

Now, back to the first lighting line in your shader. You are taking the dot product of v3 and c4
and putting the result in r0. You know where c4 comes from, so look at where you get v3.

In the fixed function pipeline, v3 is the normal, just as v0 is the position and v5 is the diffuse
color. However, to use the normal in the first place, you must first add it to your vertex data struc-
ture:

struct CUSTOMVERTEX
{
D3DXVECTOR3 position; // The position
D3DXVECTOR3 norm; // normal
D3DCOLOR color; // The color
FLOAT tu, tv; // The texture coordinates

};

Here you can see the new element, norm, sandwiched right in between position and color.

While you’re at it, you should also change the custom FVF specification to match your structure.
This is always a good habit to get into.

#define D3DFVF_CUSTOMVERTEX
(D3DFVF_XYZ|D3DFVF_NORMAL|D3DFVF_DIFFUSE|D3DFVF_TEX1)

10. VERTEX AND PIXEL SHADERS

CAUTION
I’ll say it again here. It’s very
important to keep your decla-
ration and your actual vertex
structure in sync. If they’re out
of sync, your shader won’t run,
or it will run against incorrect
vn input registers.

415

In essence, all the color values come in through the tn and vn registers, and the job of the pixel
shader is to calculate the final color value and put it in r0.

PIXEL SHADERS414

Vertex Shader
Wrap-Up
This section should give you at least a rudi-
mentary understanding of how to write your
own vertex shader. I hope that you will take
what you learned and try to write more com-
plex shaders. Vertex shaders enable you to cre-
ate amazing effects (some of which are dis-
cussed in the 3D effects section of this book),
so you should spend time learning and playing
with them.

PIXEL SHADERS
Pixel shaders are similar to vertex shaders in that they are little snippets of code resembling
assembly language. However, vertex shaders deal with vertex information—pixel shaders allow
you to specify how different pixels and texels are blended together to create a final color value.

Effects You Can Make Using
Pixel Shaders
Pixel shaders allow you to create and augment, using the pixel shader assembly language, all the
texture stage setups discussed in Chapter 9, “Advanced Texturing.” This includes the texture
stage setups for light mapping, glow mapping, detail mapping, and multiple-texture blending.
Additionally, pixel shaders allow you to do all sorts of neat things with light, including dot prod-
uct lighting. What I’d like for you to do is to forget all that Chapter 8 and 9 stuff about texture
stages and such because you’re going to replace it with something even more powerful.

Pixel Shader Assembly Language
The pixel shader assembly language is very similar to the vertex shader assembly language, only it
has different registers and instructions (see Figure 10.4 and Table 10.7).

Pixel Shader Registers
Table 10.8 summarizes the registers available in a pixel shader.

10. VERTEX AND PIXEL SHADERS

HELP REFERENCE
For more information on vertex
shaders, go to DirectX 8.0\DirectX
Graphics\Advanced Topics in DirectX
Graphics\Vertex Shaders.Also, be sure
to check out the .vsh files in the
Samples\MultiMedia\Media directory
of your SDK installation.Those are
sample vertex shader files that show
you how to implement many effects. Your Pixel Shader

Code Goes Here

Vertex Color Registers (at least 2)

v0 v1 v2 v?

Texture Registers (at least 4)

Te
m

po
ra

ry
 R

eg
is

te
rs

 (
at

 le
as

t
2)

r0

r1

r2

r?

. . .

C0

C1

C2

C?

C
on

st
an

t
R

eg
is

te
rs

 (
at

 le
as

t
8)

. . .

. . .

Final Pixel Color
Goes in r0

Figure 10.4

The pixel shader vir-

tual machine.

HELP REFERENCE
The DirectX SDK help file has more detailed descriptions of each reg-
ister. See DirectX 8.0\DirectX Graphics\Direct3DX Shader Assemblers
Reference\Pixel Shader Assembler Reference\Registers.

Generic Pixel Shader Instructions
To accomplish your goal, you can use any of the generic instructions listed in Table 10.9.

417PIXEL SHADERS416 10. VERTEX AND PIXEL SHADERS

Table 10.8 Pixel Shader Registers
Register Description

cn Constant registers, which you set by calling the
SetPixelShaderConstant method of IDirect3DDevice8.

Constant registers are read-only. Direct3D supports at least eight
constants, but you may only use up to two in each instruction.

rn Temporary registers, which you can use to store intermediate
results of a calculation.

Temporary registers are read/write, and you can use up to two of
them in a single instruction. Just like vertex shader temporary reg-
isters, however, these lose their values when the pixel shader
completes, and it’s illegal for you to read one without first writing
something into it.

Note that Direct3D takes r0 as the final output value of the pixel
shader.That’s the color Direct3D eventually puts on the screen.

tn Texture registers.You will have the same number of texture regis-
ters as maximum simultaneous supported textures. For each pixel,
Direct3D initializes the texture registers so that they contain the
texture colors of the appropriate texels from the various textures
you’ve specified using the SetTexture command.

vn Vertex color registers. Direct3D guarantees that you will have at
least two input color registers, maybe more, depending on your
3D card.

Direct3D initializes these registers with the color values obtained
by iterating the color values output by the vertex shader (in other
words, the vertex colors).

Table 10.9 Generic Pixel Shader Instructions
Instruction Syntax Description

add add tDest, tSrc0, Puts the sum of tSrc0 and tSrc1 into tDest.
tSrc1

cnd cnd tDest, r0.a, Compares the alpha value in r0.a to see
tSrc0, tSrc1 whether it’s greater than 0.5. If so, it puts tSrc0

into tDest; otherwise, it puts tSrc1 into tDest.

dp3 dp3 tDest, tSrc0, Puts the three component vector dot product
tSrc1 of tSrc0 and tSrc1 into tDest.

lrp lrp tDest, tSrc0, Linearly interpolates between tSrc1 and tSrc2
tSrc1, tSrc2 by the amount specified in tSrc0. Puts the result

in tDest.

mad mad tDest, tSrc0, Multiplies tSrc1 by tSrc2, then adds tSrc0, and
tSrc1, tSrc2 puts the result in tDest.

mov mov tDest, tSrc0 A simple move operation. Puts tSrc0 into tDest.

mul mul tDest, tSrc0, Multiplies tSrc0 and tSrc1 and puts the result
tSrc1 in tDest.

sub sub tDest, tSrc0, Subtracts tSrc1 from tSrc0 and puts the result
tSrc1 in tDest.

def def vDest, fVal0, Defines a constant, vDest, using four floating-
fVal1, fVal2, point values.
fVal3

ps ps.MainVer.SubVer Allows you to specify a version number for this
shader.Version numbers can consist of a main
version, followed by a subversion (that is, 1.0).

Note that Direct3D requires this instruction to
be at the beginning of all pixel shaders.

419PIXEL SHADERS418

Texture-Addressing Instructions
Additionally, you can use the texture-addressing instructions and macros shown in Table 10.10.

10. VERTEX AND PIXEL SHADERS

Table 10.10 Texture-Addressing Instructions
Instruction Syntax Description

tex tex tDest Takes the current texel from the texture set at
texture stage zero and puts it in tDest.

texbem texbem tDest, Takes tSrc0 as DuDv perturbation data and
tSrc0 calculates the result in tDest.Typically used for

bump mapping. Going into more detail on this
would be beyond the scope of the book; how-
ever, I encourage you to crack open the online
help and the DX SDK sample programs to see
how this instruction works.

This is a macro that expands into two instruc-
tions.

texbeml texbeml tDest, Takes tSrc0 as DuDv perturbation data with
tSrc0 luminance information and calculates the result

in tDest.Typically used for bump mapping.

This is a macro that expands into two instruc-
tions.

texcoord texcoord tDest Puts the iterated texture coordinates for this
stage into tDest as a color.You use this when
declaring the texture registers you’re using. For
example, the line texcoord t0 declares register
t0 as a color derived from its texture coordi-
nates.

texkill texkill tDest Masks out the pixel if any texture coordinates
are less than 0.

texm3x2pad texm3x2pad tDest, Partially performs a 2×3 matrix multiply.
tSrc0

Table 10.10 Continued
Instruction Syntax Description

texm3x2tex texm3x2tex tDest, Performs a 3×2 matrix multiply on the tSrc0
tSrc0 color vector.

texm3x3pad texm3x3pad tDest, Partially performs a 3×3 matrix multiply.
tSrc0

texm3x3spec texm3x3spec tDest, Performs specular reflection and environment
tSrc0, tSrc1 mapping using a 3×3 matrix.

texm3x3tex texm3x3tex tDest, Performs a 3×3 matrix multiply on the tSrc0
tSrc0 color vector.

texm3x3vspec texm3x3vspec Performs specular reflection and environment
tDest, tSrc0 mapping where the eye vector is not constant,

using a 3×3 matrix.

texreg2ar texreg2ar tDest, Samples this stage’s texture at the 2D
tSrc0 coordinates specified by the alpha and red

components of tSrc0. In other words, it uses
tSrc0.a as the u coordinate and tSrc0.r as the v
coordinate and returns the color there.

texreg2gb texreg2gb tDest, Samples this stage’s texture at the 2D
tSrc0 coordinates specified by the green and blue

components of tSrc0. In other words, it uses
tSrc0.g as the u coordinate and tSrc0.b as the v
coordinate and returns the color there.

Pixel Shader Modifiers
The pixel shader language supports several modifiers:

■ Alpha-replicate. You can replicate the alpha channel of a certain register across all chan-
nels before performing an instruction, by putting a .a after the register name. For exam-
ple, the command mul r0, r0, r1.a replicates the alpha channel of r1 into all four
color channels, then multiplies using those channels, effectively modulating with the
alpha value.

421

The little pixel shader contained in the Ch10p3_PixelShader sample program contains three
action-packed lines:

ps.1.0
tex t0
mov r0, t0

The first line is the obligatory header line, telling DirectGraphics that what follows is a pixel shad-
er based on version 1.0 of the pixel shader language.

The next line declares a texture. This is something unique to pixel shaders. Essentially, declaring
a texture gives you an opportunity to change the addressing mode for that texture. The texture
declaration is the only place where you can manipulate the addressing for the texture (as
opposed to the texel colors themselves). For example, it’s in the texture declaration that you tell
DirectGraphics that a certain texture is a bump map and should therefore be used to influence
the colors of a different texture.

Yes, I’m being intentionally vague here because it’s difficult to illustrate without going into a lot
of graphics theory. The bottom line is, there are several texture-addressing instructions, but you
use one more than all the others. The tex instruction tells DirectGraphics that what you’re work-
ing with is a plain old texture. In other words, when you say tex t0, you’re really saying,
“DirectGraphics, I want you to figure out which texel we’re on, given the (u,v) coordinates and
the pixel we’re currently processing. Then I want you to copy the color of that texel into t0.”

After you have the appropriate color in t0, the next line copies it into r0. Recall that r0 is the spe-
cial register that DirectGraphics takes as the final pixel color. When you combine this line with
the lines above it, all you are doing is taking the color of the texel to which this pixel corre-
sponds, putting that color in t0, and copying t0 into r0. This means that the output color (r0) is
nothing more than the color of the texel this pixel corresponds to (t0).

This is texturing at its simplest. If you were writing a more complex pixel shader, you could play
with t0—perhaps multiply it or add it to
another texture color before you
finally place it into r0. Additionally,
you could choose to use a different
texture-addressing instruction and
change the way you calculate the
appropriate texel or what you do
with the texel color after you have
found it. The sky is the limit. It just
takes time and experimentation to
understand all the instructions.

PIXEL SHADERS420

■ Invert. You can invert the color components in a certain register by putting 1- in front of
that register. For example, the command mul r0, r0, 1-r1 multiplies r0 by the inverse
of the color in r1.

■ Negate. You can negate the color components in a register by putting a minus sign (–)
in front of that register. For example, the command mul r0, r0, -v1 multiplies r0 by
the negation of the color in v1.

■ Bias. You can shift each channel in a register down by 0.5 by putting _bias after the reg-
ister name. For example, the command add r0, r0, t0_bias shifts t0 down 0.5 before
adding it to r0.

■ Signed Scaling. You can subtract 0.5 from each channel in a register and then scale the
result by 2, by putting _bx2 after the register name. For example, the command dp3_sat
r0, t1_bx2, v0_bx2 shifts the t1 and v0 registers down by 0.5 and then scales them by 2.

Creating and Using Pixel Shaders in
Your Program
The process of setting up and using a
pixel shader is, in my opinion, easier
than what you must do for vertex
shaders, so I’m not going to go
through every step in mind-numbing
detail.

You create a pixel shader the same way you create a vertex shader. First, you assemble the shader,
via a call to D3DXAssembleShaderFromFile (or something). Then, you create the pixel shader by call-
ing the CreatePixelShader of IDirect3DDevice8. You don’t have to worry about passing
CreatePixelShader a declaration, as you do for a vertex shader. Just pass it your buffer pointer and
the address of the integer where you’d like it to put the pixel shader handle. You delete a pixel
shader by calling the DeletePixelShader method of IDirect3DDevice8.

After you have a pixel shader loaded, you set it active by calling the SetPixelShader method of
IDirect3DDevice8. Again, this is exactly how you use vertex shaders (only you call SetVertexShader
instead). Keep in mind that you must still set your textures to point to the correct texture inter-
faces. If you need to set up any constant registers, call the SetPixelShaderConstant method of
IDirect3DDevice8. Otherwise, just draw your primitives, end your scene, and DirectGraphics will
execute your pixel shader code when the time comes.

A Simple Pixel Shader Example
Here’s a really easy example, just to give you an idea of how to write a pixel shader. Later in this
book you will be writing more advanced shaders.

10. VERTEX AND PIXEL SHADERS

Sample Program Reference
The Ch10p3_PixelShader sample program
illustrates the process of loading and using a
simple pixel shader.

Sample Program Reference
As part of the DirectX SDK, Microsoft includes a
great tool for writing pixel shaders and seeing
the results of your shader code in real time.The
program is named MFCPixelShader and can be
found inside your DirectX SDK samples directo-
ry (<SDK Root>\Samples\Multimedia\Direct3D\
MFCPixelShader).

423

■ Ch10p2_TexturingVertexShader. Demonstrates a slightly more complex vertex shader—
one that calculates texture coordinates for the vertices it processes. Most of this program
is exactly the same as Ch10p1_SimpleVertexShader. The only difference is that the pro-
gram loads a different vertex shader file (VSH) and manages a texture handle.

■ Ch10p3_PixelShader. Demonstrates a simple pixel shader in action. You walked briefly
through segments of this sample program in the section on pixel shaders.

EXERCISES
These are tough exercises, but you can tackle them.

Write vertex and pixel shaders that demonstrate some of the sample effects listed at the begin-
ning of the chapter (waves, muscles, and bones). For vertex shaders, this means that you

1. Write a vertex shader that perturbs an incoming vertex stream into waves (for water).
2. Write a vertex shader that distorts an incoming vertex based on a sphere (for muscles).

For pixel shaders, this means that you

1. Write a pixel shader that performs a texture-blending operation of your choice.

Also, find something you can accomplish with a pixel shader that you can’t do using texture
stages.

EXERCISES422

Pixel Shader Wrap-Up
Using pixel shaders can greatly enhance the quality of your scenes, so take time to become famil-
iar with their operations. The time you spend
learning them will pay off big-time in the long
run.

The PixelShader sample program on your CD
(Ch10p3_PixelShader) illustrates how to set up
and use a pixel shader. The program uses a
pixel shader to texture a quad, instead of using
the traditional fixed-function pipeline.

CHAPTER WRAP-UP
Wow! Talk about an amazing journey. Just a few hundred pages ago, you were learning how to
write a Win32 program. Now you’re programming graphics hardware on an assembly language
level and have covered everything in between.

At this point, you should feel that you have all the pro-
gramming and 3D knowledge necessary to make a
3D game. Of course, this doesn’t mean that you do
feel as though you know enough to write the next
killer 3D game, but you certainly know much more
about the internals of 3D programming (and
Windows and DirectX programming in general) than
when you began reading this book.

From here on, I’m going to talk about the special
effects most games use, dissecting each one so that
you can learn how to code it. I wouldn’t suggest that
you dive right into the effects just yet—you have
come a long way, so take a breather and spend some
time experimenting.

ABOUT THE SAMPLE PROGRAMS
No enhancements to the coding style this chapter. Here are the programs:

■ Ch10p1_SimpleVertexShader. Demonstrates a simple vertex shader in action. You walked
through segments of this sample program in the section on vertex shaders.

10. VERTEX AND PIXEL SHADERS

HELP REFERENCE
For more information on Pixel
Shaders, go to DirectX 8.0\DirectX
Graphics\Advanced Topics in DirectX
Graphics\Pixel Shaders.

NOTE
The nVidia Web site contains
many additional resources
designed to help you understand
and implement vertex and pixel
shaders. On the Web site at
http://developer.nvidia.com you’ll
find a virtual cornucopia of shad-
er knowledge, in the form of
white papers, sample programs,
and tutorials.

