
5/31/00, 2:03 PM 1

Adding Boolean-quality control to best-match searching
via an improved user interface

Donald Byrd and Rodion Podorozhny
Center for Intelligent Information Retrieval

Computer Science Department
University of Massachusetts

Amherst, MA 01003
{ dbyrd , podorozh }@cs.umass.edu

1 May 2000

Abstract

While end users these days seem happy with best-match text-retrieval systems, it appears
that expert searchers still prefer exact-match (Boolean) text-retrieval systems by an
overwhelming margin. This is somewhat surprising. Most expert searchers were probably
trained with Boolean systems, and an obvious factor is simply preferring the familiar, but
we argue that a second major factor is that these experts feel a much greater sense of
control with Boolean than with best-match systems. We have designed a best-match
system, MIRV, incorporating user-interface features that we believe will give experts a
sense of control comparable to that of Boolean systems and that we believe end users will
also be happy with. We implemented MIRV’s document viewer and did a controlled user
study, with encouraging results.

This material is based on work supported in part by the National Science Foundation, Library of
Congress and Department of Commerce under cooperative agreement number EEC-9209623, and
also supported in part by Defense Advanced Research Projects Agency/ITO under ARPA order
number D468, issued by ESC/AXS contract number F19628-95-C-0235.

Any opinions, findings and conclusions or recommendations expressed in this material are the
author(s)’ and do not necessarily reflect those of the sponsor(s).

5/31/00, 2:03 PM 2

1. Rationale
The advent of the World Wide Web has resulted in an explosion of searching by end
users as opposed to expert intermediaries. The vast majority of end users are not expert
searchers, and it seems clear that they generally prefer to enter their queries in free-text
(very often but very misleadingly called “natural language”) form rather than in any
type of structured input, whether with Boolean operators or otherwise. Free-text input
generally implies best-match rather than exact-match evaluation.

This approach fits well with recent experiments (Turtle 1994), which confirm indications
of many years earlier (Sparck Jones 1981) that free-text-input best-match text-retrieval
systems get results in nearly all cases at least as good as, and often much better than,
exact-match (Boolean) systems. Hersh and Hickam (1995) survey prior research
comparing Boolean and best-match searching; results are not completely consistent, but
most of the small number of studies support Turtle. Furthermore, there are substantial
theoretical grounds for expecting such a result. For example, Blair and Maron (1985)
argue strongly that no conceivable full-text retrieval system can achieve consistently
good recall with a large database, but their arguments apply only to exact-match
evaluation: there is no theoretical reason why best-match systems cannot produce good
recall with databases of any size. Finally, Sparck Jones and Willett (1997, p. 3) comment
“The Boolean model…is entirely appropriate for use in a DBMS context…However, it is
far less obviously appropriate for use in an IR context, where users generally have only
a vague picture of the sorts of documents that might satisfy their information need.”

On the other hand, Boolean systems are still extremely popular, especially with
professional searchers; in fact, there is considerable evidence that, as of mid 1999,
professional searchers—librarians and others—preferred Boolean systems by a wide
margin. For example, commercial services like Westlaw, DIALOG, and Lexis/Nexis
began offering a choice of best-match and exact-match retrieval between late 1992 and
early 1994, and the “new way to search old systems [gained] a lot of attention” (Tenopir
and Cahn 1994). But it is common knowledge that the vast majority of queries to these
services still use the old Boolean interfaces, and therefore exact-match evaluation. In
mid-1999, Joanne Claussen of Westlaw said of their service (Claussen 1999): “The usage
of Boolean versus natural language varies from group to group and database to
database. In general 10 to 20% of searches involve natural language and 80 to 90% [use]
Boolean (either directly or through a template). Academic users make significantly
greater use of natural language than other users but still remain below 20% of usage.”
Daniel Pliske of Lexis-Nexis reports similar figures for that service (Pliske 1999). A word
of caution: Claussen commented that Boolean is the default for most of Westlaw’s
databases, so “there is a built-in-bias towards Boolean”; we have not been able to
determine whether the same holds for Lexis-Nexis. But it seems unlikely that this built-
in bias explains completely the overwhelming popularity of Boolean searching; why is
Boolean search still so popular?

It is probable that most professional searchers on the job today have far more experience
with, and had far more training with, exact-match than with best-match systems. Hence,
an obvious explanation for these searchers’ preference for exact-match evaluation is
simply that they are more comfortable with what they were trained with and have
experience with. While there is undoubtedly some truth to this, it does not explain

5/31/00, 2:03 PM 3

everything. For one thing, if lack of experience with best-match systems was the only
significant factor, one would expect these systems to gradually gain in popularity with
expert searchers, but this does not appear to be happening. Claussen (1999) went on to
say that “ my perception has been that the usage of WIN [Westlaw’s ‘natural language’
interface] has remained fairly consistent since its release.”

Of course, situations differ: a searcher might prefer best-match in one case but exact-
match in another. Factors that might be important include:

• Do the systems available support exact-match only, best-match only, or both
models? (If only one model is supported, of course it’s all that people will use.)

• Do the databases available contain free-text fields, or are all text fields controlled-
vocabulary (CV)? (The case for Boolean queries is much stronger in CV situations.)

• What types of information does the user need? In particular, how interested are they
in precision vis-à-vis recall? (In large databases, Boolean queries are much better at
precision than at recall; more to the point, they are arguably better at precision than
best-match systems are.)

In mid 1997, we interviewed seven university librarians regarding their views on
Boolean vs. best-match searching (Byrd, 1998). Nearly all of them had extensive
searching experience. An excerpt from one interview, with the reference librarian at a
science branch library, is revealing:

She graduated from library school 10 years ago; in those days, Boolean was all they taught.
All the databases in her library use Boolean searching. She likes Boolean because it’s
predictable. Alta Vista is maddening because they give you hints (“ + = required”) but don’t
really tell you what they’re doing. Also, as an expert searcher, she needs to be able to
communicate with users, and Boolean is good for that.

Along the same lines, another of these librarians, one who learned searching with
DIALOG over 20 years ago, commented that he had been “ experimenting with Alta
Vista but often has no idea why it finds documents.”

Most of these librarians made comments to the effect that most or all of the databases
they had access to were controlled vocabulary.

Finally, a more recent conversation with one of these librarians, one who does reference
work, elicited the comment that best-match searching is “ smoke and mirrors” , and why
should she trust a machine more than herself?

In fact, our discussions with librarians confirm our general impression that expert
searchers generally say one or both of two things when asked why they use Boolean
systems instead of best-match ones: that Boolean evaluation is what they are used to,
and/or that they feel much more in control with Boolean systems.

We believe that, with current user interfaces, Boolean retrieval is more explainable than
best-match in the sense that it is easy to explain why a Boolean system retrieved or
didn’t retrieve a given document, regardless of its actual relevance. The same cannot be
said of a best-match system. For example, with the query “ Monarch” AND “ butterfly” ,
a Boolean system will retrieve all documents that use both words and no other
documents, and it will be obvious why any given document was or was not retrieved.
Compare this to giving the roughly-analogous query “ Monarch butterfly” to a
probabilistic system. Not only is the system likely to retrieve documents that discuss
either queens and kings, or butterflies in general, without mentioning Monarch

5/31/00, 2:03 PM 4

butterflies; but— much worse— it stands a good chance of ranking some of these
documents above any document that really does refer to Monarch butterflies. Of course,
in this case, proximity restrictions would likely solve the precision problem without
hurting recall significantly, but in other cases, they might not.

Is there a way to “ have your cake and eat it too” , i.e., a way to get the superior control of
Boolean retrieval without giving up the greater effectiveness of ranked systems? We
believe there is.

2. Hypothesis
Exact-match systems estimate the relevance of each document with simple methods
given explicitly by the user. A full understanding of these methods requires only a
knowledge of elementary Boolean algebra: to be sure, something beyond most end
users. But best-match systems— whether on the probabilistic or vector-space models—
are much harder to understand: they estimate relevance with complex algorithms that
are barely under user control at all, even if the user is an IR expert. This problem is with
what might be called both active and passive forms of control. Best-match systems lack
active control in that the user can’t easily influence what they do; they lack passive
control in that it is difficult to tell what they are doing. To understand these methods
fully requires far more knowledge than do Boolean methods, knowledge perhaps
equivalent to a degree in IR. Therefore, user-interface mechanisms that clarify the
behavior of these algorithms, and not just their results, are essential.

The distinction between concepts and words underlies all the difficulties of text
retrieval. To satisfy the vast majority of information needs, what is important is
concepts, but— until they can truly understand natural language— all computers can
deal with is words. A diagram can clarify this. Ovals represent processes; rectangular
and rounded boxes represent objects. Specifically, rectangular boxes correspond to
“ well-defined” objects, in this case character strings or documents, while rounded boxes
correspond to mental objects, which are never well-defined.

5/31/00, 2:03 PM 5

Query
concepts

Database
concepts

Query Database

How people find information.

Query Database

(no understanding) (no understanding)

Stemming, stopping,
query expansion, etc.

How computers find information.

understanding
understanding

Results

Results

matching

matching

Figure 1. Finding information: people vs. computers

Concepts are inherently “ fuzzy” (we use the term in an informal sense); so is the
relationship between a given concept and a given word. But even when someone really
does want words (usually for a so-called “ known-item” search, i.e., looking for a specific
document they already know of), slightly-fuzzy searches may be better. This is because
(1) the user might be wrong about one or more of the words, and they or documents in
the database might have spelled something differently (either by mistake or as a
variant), so a small amount of fuzziness can improve recall considerably; and (2) a little
fuzziness is not likely to hurt precision much.

5/31/00, 2:03 PM 6

Now, best-match evaluation is inherently fuzzy; exact-match (Boolean) is not. Therefore
best match is “ better” , i.e., it matches human thought better. But the fuzziness makes it
harder to understand why certain documents were retrieved but certain others were
not, and this makes users uncomfortable. Note that if the results were superb, i.e., if our
“ magic” were powerful enough, this would not be an issue: users would know that a
given document was retrieved because it was relevant, or not retrieved because it was
not relevant. But this, of course, is far beyond the state of the art.

What we have said up to this point is independent of query length, but very short
queries may be different. It has been pointed out that with two or three terms queries, a
document that satisfies the strictest Boolean evaluation— intersecting all the terms— is
probably more likely to be relevant than a document that best-match evaluation rates
highly but which omits some of the terms.

Therefore, while best-match is the better model, it can be improved for short queries by
giving some consideration to Boolean factors. One way to do this is by expanding short
queries with combinations of search terms and using Boolean factors to adjust weights
on the combinations, as in THOMAS (Croft, Cook, and Wilder, 1995). A more
thoroughgoing attempt to combine Boolean and best-match evaluation is described by
Rose and Stevens (1997).

Here is a very rough summary, with “ letter” grades (A is the best; F means “ failure”):

Small database Large database

Exact-match Effectiveness: C-
Explainability : B

effectiveness: F
explainability : B

Best-match Effectiveness: C
Explainability : D

effectiveness: C
explainability : D

In other words, for small databases, exact match searching is nearly as effective as best
match, and it is much more explainable. For large databases, exact match is so
ineffective, its advantage in explainability is worthless; this is unfortunate, because the
explainability of best match is barely acceptable.

We hypothesize that appropriate visualizations can improve the explainability of best-match
systems enough that both expert and ordinary users will prefer them over exact-match systems.

Note that different standards must be used to judge the success of an interface for
experts and for “ ordinary” users. For experts, we want to establish that a best-match
system that gives users more control than existing best-match systems can be as
satisfying as existing Boolean systems. For average users, a more appropriate standard
of comparison is the type of interface the major Web-search services provide in their
usual (i.e., not “ advanced”) modes.

3. Approaches to Visualizing IR
To verify the above hypothesis, we identified a set of information aspects whose
visualization seems likely to improve the best-match system’s explainability. Next we
designed a software system, MIRV (Multiple Information Retrieval Visualizations), that

5/31/00, 2:03 PM 7

employs visualizations throughout. We implemented parts of MIRV and ran an
experiment to determine whether the explainability of the system was indeed improved.
This section will briefly overview the set of information aspects and the features of the
visualizations.

In principle, an interface that gives users substantially more control over best-match
searches should be useful to the average person as well as to the expert searcher.
However, different groups of users have different needs (Shneiderman 1998, pp. 67–70).
As a result, optimal implementation choices vary significantly from user to user.
Furthermore, as we have said, different standards must be used to judge the success of
interfaces for experts and for “ ordinary” users.

It might be objected that no visualization can by itself give users more control, since—
even if the visualization provides just the information a user wants— there might be no
effective way for them to take advantage of that knowledge. This is a strong objection,
and in fact we do provide some means of active control (see definition above). But we
also believe that more information about what is happening in itself gives users more
control, assuming that that information is presented in a way they can understand. If
nothing else, greater understanding of what an IR system is doing with a user’s query
might help a user decide more quickly that they will not be able to find the information
they want and that, therefore, they should abandon the attempt. And the desirability of
giving users a feeling of control is a truism among workers in human/computer
interaction. In the words of Hix and Hartson 1993 (pp. 32–33), “ Keep the locus of control
with the user” .

Several aspects of the information involved might be visualized. A minimal list of
sensible visualizations, with their primary application phases in italics, might look like
this (phases are named in the terms of Shneiderman et al 1997 and Shneiderman et al
1998):

Vquery. the query alone: formulation

Vquery-DB. the query in relation to the database(s): formulation

Vquery-doc. the query in relation to individual retrieved documents: review of results

Vdoc-doc. the retrieved documents in relation to each other: review of results

Each of these visualizations can be done in many ways. First, in most cases, different
pieces of information might be visualized. For instance, Vquery-doc might show the
numbers of occurrences of each query term (as in the commercial system CALVIN), the
contributions of each term to the document’s score (as in Shneiderman et al 1997, Fig. 2),
or the progression of appearances of terms in the document (as in Hearst’s tilebars: see
Hearst 1995). At its most basic, it might give term-occurrence information in Boolean
form simply by listing the terms that appear in the document at all (as in PRISE: see
Harman 1992).

Second, there are various ways to realize a visualization of given information
graphically, some simpler, some more complex. For example, Vdoc-doc might be
realized in either 2-D or 3-D.

Third, while the term “ visualization” suggests a passive display, visualizations can also
be interactive, with affordances to let the user control the system. In our case, it is
certainly possible (and it may well be desirable) to offer control of the full query-
expressing power of a modern IR system in the framework of Vquery and Vquery-DB.

5/31/00, 2:03 PM 8

Finally, for performance reasons, one might prefer to visualize an approximation to the
desired information. For Vquery-DB in particular, one can show the query against the
actual databases to be used, or against a “ proxy” query-formulation database. This is a
special local “ database” — actually, a database index alone, without associated
documents— whose terms and term frequencies approximate those of the databases to
be searched. Naturally, it is preferable to use the actual databases, but the proxy is often
much more practical, especially in a client/server situation (and most especially on the
World Wide Web). This is essentially the “ query previews” idea of Doan et al (1996).
The query-formulation “ database” contains no document text, and its index does not
need location information; for both reasons, it can be small enough to fit easily on a local
disk.

Also note that some of these visualizations might be more or less tightly integrated: for
example Vquery and Vquery-DB could be shown on a single set of axes.

MIRV employs all of these visualizations except Vdoc-doc; in fact, it employs two
versions each of some. We now outline MIRV in some detail.

A Note on the MIRV Project

As we have said, MIRV was originally envisaged as adding appropriate visualizations
at every stage of the text-retrieval task. Unfortunately, only a subset of it has been
implemented, and in that subset, the implementation differs from the original design.
Also, only a subset of the subset has undergone formal usability testing. As a result, this
paper first describes and illustrates the original design; then it describes the
implementation. Finally it describes testing thus far, and plans for testing the entire
MIRV system when it is implemented.

4. MIRV: The Original Design

Assumptions

We assume:

• Everything is in English: databases, queries, and user interface.

• Users are adult native speakers of English, with normal color perception and at least
some experience with computers. In terms of experience with online searching, they
may run the gamut from novices to experienced amateurs to experts.

• Environment:
• Either standalone, or client/server with a high-bandwidth link, e.g., Ethernet.

Modem speed (56 Kbps at the very best) may not be adequate.
• Significant client-side software, e.g., Java programs.
• Good client-side hardware, e.g., Pentium 200 or better, and 800x600-pixel or

better color monitor.

• We will support what might be called Boolean and probabilistic types of desirable
terms— “ required” and “ preferred” terms, respectively— but only the probabilistic
type of undesirable terms— ” avoid” terms. This is because Boolean undesirable

5/31/00, 2:03 PM 9

terms (“ forbidden” ones) “ are rarely useful in practice: much more often, they
simply give users a way to hurt themselves by lowering recall without necessarily
gaining precision” (Allan 2000).

• NLP-based techniques will be used, but only to a very limited extent: most of these
techniques are not robust enough for our purposes. Considering such clues as
punctuation, capitalization, and use of prepositions, we expect NLP to perform with
reasonable accuracy part-of-speech tagging; recognize names of organizations and
individuals; and identify words that act as Boolean operators (“ and” , “ or” , “ not” ,
“ but” , etc.) and their scopes. We might be able to use NLP on a query like
“ Lafayette’s role in the American Revolution” to recognize the vital importance of
“ Lafayette” in relevant documents. We might also be able to use NLP to find
quotations and identify who they are by and/or about, but it is doubtful that the
effort would be worthwhile for a general-purpose IR system.

• In addition to indexing, for performance reasons, databases may undergo
preprocessing for NLP and perhaps for identification of information needs they are
suitable for, i.e., “ collection selection” .

Note the implications for the World Wide Web of the requirements for high-bandwidth
links and for control of databases: the bandwidth requirement excludes the Web in
many situations, but the database-control requirement excludes it entirely.

User Interaction as Originally Designed

MIRV uses a conventional GUI interface. Most interaction takes place in the query entry
window or the query interpretation window.

Figs. 1 through 6 are snapshots of possible interaction as a user formulates a query for a
single information need, runs it, and looks at the documents retrieved. The user here is
interested in information about multimedia information retrieval, but they are less
interested if the information pertains to IBM.

The concept of a query-formulation database, henceforth called a “ QF” database, has
already been mentioned, and the discussion below assumes one.

The Figures

Recent versions of standard word-processing programs like Microsoft Word finally
include well-thought-out devices to give users control of potential typos, especially by
drawing attention to suspicious “ words” as soon as they’re typed with a wavy red
underline. Our situation is similar and we adopt the same UI.

Fig. 1 shows the system’s initial display. In Fig. 2, the user has entered the query
“ multimedia retrieval but not any IBM reserach” in the query-entry window. The
system indicated with the wavy red underline that “ reserach” does not appear in the QF
database: this suggests a possible typo or other problem. However, the user ignored this
feedback and chose the Interpret button; the system responded with the two
visualizations in the query interpretation window shown on the bottom: Vquery
(labelled “ QUERY”) above, Vquery-DB-hat (labelled “ QUERY AND DATABASES”)
below. Vquery-DB-hat is a query-formulation database. Since Vquery-DB-hat is shown
rather than Vquery-DB and the difference can be important, the word “ Estimated”

5/31/00, 2:03 PM 10

appears prominently. Note that the bars in Vquery are of unequal lengths, reflecting the
system’s estimates of the corresponding terms’ importance (in a typical best-match
system, log idf), and are labelled accordingly. Both visualizations are interactive.
Vquery provides control simply by making it easier for users to see and (by dragging
the endpoints of bar segments) adjust the relative importance assigned to components
of the query.

Vquery-DB-hat shows approximately how well the query terms match the databases:
the number next to each indexed term is its total frequency in the database. Simply
seeing clearly how many occurrences the databases have of each phrase, term,
synonym, and variant can greatly help users in avoiding problems of vocabulary
mismatch, of spelling errors, and of query terms that— because of their high
frequency— are of little value in discriminating among documents. However, this
visualization also affords control over several aspects of the query, specifically:

1. Variants conflated by stemming. To see and change treatment of variants, click on
one of the horizontal triangles: see discussion of Fig. 3 for details.

2. Words that do not appear in the QF database and will therefore— depending on how
accurately the QF database reflects the actual databases— probably be ignored when
the search is run. These words fall into two categories: those that appear in a list of
stop words (“ STOPPED”), and those that are neither stopped nor indexed
(frequency “ ZERO”).

3. Relative weights of occurrences of different terms. In Vquery, the horizontal extent
of each bar segment shows the effective term weight that will be used in evaluating
documents: the contributions of the weight assigned by the user and the weight
assigned by the system (typically log idf) are not differentiated. (This might be
called the “ standard view” of Vquery. We have also considered an “ expert view” , in
which the horizontal extent of each bar segment shows the user weight, and the
vertical extent shows the system-assigned weight. The product of these—
graphically, the segment’s area— is the effective weight. However, it is not clear that
this distinction would often be useful for even expert searchers, though it probably
would be for IR researchers.)

In Fig. 3, the user has clicked on a horizontal triangle to see the variants of “ retrieval” .
The system replaced the horizontal triangle with a vertical triangle and added to the
display a list of variants in the QF database, with their frequencies. The user can select
items from this list and remove them: in the figure, “ retrieving” is selected. Note that if
stemming is done at indexing time, information on what variants of a given term appear
in the databases will be extremely difficult to get, so control this fine-grained is probably
not practical. Also note that a given raw term may map to different stems in different
databases; we have not addressed this concern.

The user next adds the term “ interface” , corrects the spelling of “ research” and makes it
DESIRABLE instead of UNDESIRABLE, and tells the system to consider “ multimedia
retrieval” a phrase: the new query might be expressed as “ ’multimedia retrieval’
interface research but not IBM” . Then they add synonyms for several words, with the
result shown in Fig. 4. Now the “ QUERY AND DATABASES” box depicts a more
complex situation, including synonyms and phrases as well as variants conflated by
stemming. Words listed vertically next to a single bar are synonyms, for example “ IBM”
and “ Big Blue” , or “ retrieval” , “ search” , and “ index” .

5/31/00, 2:03 PM 11

In Fig. 5, the user has actually run the query (by clicking Start Search). The system
responded by showing the beginning of a result list, with a form of Vquery-doc
(“ Vquery-doc1”) to its left. (This visualization is briefly discussed in Shneiderman at al
1997.) For each document in the result list, the best passage is shown in a slightly
“ fisheye” view, i.e., text lines after the first are shown in smaller and smaller sizes.
Clicking on one of the colored bar segments in Vquery-doc1 shows the best passage in
the document for that term. This display supports user control by:

1. Showing the relative contributions of query terms to document scores. In the
“ Monarch butterfly” case, the retrieval engine might rate some documents with only
one or two mentions of “ Monarch” but 50 mentions of “ butterfly” above documents
with comparable numbers of each. The user would probably be much more
interested in the more balanced documents, and it would be obvious at a glance
which were which.

2. Automatically showing the best overall passage for each document. IR systems
generally show the beginning of each document in a result list, but (both intuitively
and according to such recent studies as Tombros and Sanderson 1998) the best
passage is a much better answer to the questions “ Why was this document ranked
as it was?” and “ Why was this document retrieved at all?”

3. Letting the user easily view the best passage for each term. This should help
determine whether the document discusses the desired concepts, regardless of
whether the requested words are used.

In Fig. 6, the user has opened a document from the result list; it is displayed in a
separate window in the form shown. The vertical scrollbar contains a second form of
Vquery-doc. The colored icons (with matching color highlighting) for occurrences of
query terms in this “ Vquery-doc2” give the same information as Hearst’s Tilebars, but at
no cost in screen “ real estate” , and in a form that should let users browse through
documents as efficiently as possible. In fact, Vquery-doc2 should help the user
determine whether the document discusses the desired concepts with far more
confidence than either Vquery-doc1 or tilebars do. If the document does in fact discuss
those concepts, Vquery-doc2 should also help determine whether it discusses the
concepts in relation to each other with at least as much confidence as tilebars, and with
much more confidence than Vquery-doc1.

5/31/00, 2:03 PM 12

Figure 1 (original design). Initial Display (on startup)

5/31/00, 2:03 PM 13

Figure 2 (original design). Start: user types/pastes/chooses a query, clicks Interpret =>
Vquery and Vquery-DB-hat

5/31/00, 2:03 PM 14

Figure 3 (original design). User clicks the triangle before “retrieval” to see variants
(presumably from stemming)

5/31/00, 2:03 PM 15

Figure 4 (original design). User makes “multimedia retrieval” a phrase, adds words to
the query, corrects “reserach”, and adjusts weights

5/31/00, 2:03 PM 16

Figure 5 (original design). User runs the query => Vquery-DB-hat is replaced with
Vquery-DB, and a result list appears, showing Vquery-doc1

5/31/00, 2:03 PM 17

Figure 6 (original design). Document viewer, showing Vquery-doc2

The MIRV UI Paradigm

The sequence of user interaction underlying the above scenario is as follows:

a. The user enters a query in free-text form (Figs. 1 and 2).

b. The system optionally interprets the query and responds with a direct-manipulation
visualization of the query in the abstract (Vquery), and a passive visualization of the

5/31/00, 2:03 PM 18

query against the actual database(s) to be used (Vquery-DB) or against a query-
formulation database (Vquery-DB-hat) (Fig. 2).

c. The user refines the query by editing the free text, in which case the system updates
the visualization, or by editing the visualization directly. (Figs. 3 and 4.) In the latter
case, the system probably does not respond by updating the free text: in general, that
would be extremely difficult to do. This is especially true because, if the system were to
update it, it would be very desirable to minimize user disorientation by changing as
little as possible of the user’s original version, but that makes the task even more
difficult.

d. The user starts the search, and the system displays a summary of results with a
“ condensed” visualization of the query against each retrieved document (Vquery-doc)
giving the same information as in Fig. 2 of Shneiderman et al 1997 (see our Fig. 5). It
may also show a simple visualization of the retrieved documents in relation to each
other (Vdoc-doc), e.g., via self-organizing map. If it can be done quickly and was not
done in step 2, the system also shows a visualization of the query against the actual
database(s) used (Vquery-DB).

e. The user browses retrieved documents, each of which is displayed with an
accompanying detailed visualization against the query giving the same information
Tilebars give (Vquery-doc), and refines the query with techniques like relevance
feedback (Fig. 6).

Note the possibility of using dynamic-query techniques (Shneiderman et al 1997). The
system might well be able to do step b as the user types, and it might also be able to do
step d as the user types and/or as they edit. But doing so is desirable only if system
response is fast enough: this is no small concern. The above figures depict a
conventional “ static query” UI, in which no action is taken until the user specifically
asks for it. After entering a query, evidently the user can choose either Interpret to see a
visualization, or they can immediately Start Search. But the UI could support dynamic
queries, both for Interpret and for Start Search. Most likely the user interface for
choosing the static or the dynamic interface would simply be a pair of choices in a
Preferences command: if dynamic queries is selected for either choice, the Interpret or
Start Search button would be either hidden or disabled. Given a local query-formulation
database, running the Interpret process dynamically should work well, but— for
response-time reasons— running Start Search dynamically will probably not be practical
in many environments.

More important, these designs probably will not work well with large queries
containing more than, say, six terms; such queries are unlikely to be entered directly by
a user but they could easily result from query-expansion techniques like relevance
feedback, LCA, etc. We leave this issue for later study.

5/31/00, 2:03 PM 19

5. MIRV Implementation
The Center for Intelligent Information Retrieval’s InQuery retrieval engine is written in
C; more recently, the Center has developed JITRS (for Java InQuery Text Retrieval
System), a Java class library that uses the JNI (Java Native Interface) package to allow
Java programs to communicate with InQuery on a client/server basis. JITRS also
includes a “ default” text-retrieval client, “ JDC” , that employs the Swing package (part
of Sun’s Java Foundation Classes) for its user interface. JITRS was designed according to
the well-known Model/View/Controller (MVC) paradigm. The MVC design makes it
easy to modify any component without affecting the others.

We implemented a subset of MIRV on top of JITRS and of JDC, writing in Java and
using Swing extensively. Swing contains an object-oriented GUI toolkit, and the
capability it offered of overriding methods of GUI objects greatly eased implementation
of one visualization (see Byrd 1999). For simplicity, the initial version of the system does
not support any form of query expansion (relevance feedback, LCA, etc.); however, it
has been designed so that query expansion can easily be added.

In implementing the MIRV subset, we made several changes to the visualizations: these
are described below.

The GUI also uses components from JDC that let the user choose an active database and
that show the returned documents (both in a result list and in a separate text-display
area). These components correspond to visualization Vquery-doc (the query in relation to
individual retrieved documents).

User Interaction as Implemented: An Example

This section briefly describes a scenario of the system’s use. See “ User Interaction as
Originally Designed” and “ The MIRV UI Paradigm” above for background. The
visualization of the query alone (Vquery) has been broken into two separate
components: Vquery1 (Fig. 7) and Vquery2 (Fig. 8). The first component includes the
text-input area and a pop-up list of previously entered queries for quick access
(Vquery1). It also contains three buttons that allow clearing the input area, starting
search, or visually depicting search parameters for the current query.

The second component (Vquery2, Fig. 8) graphically depicts weights assigned to terms
of the current query. The weights of the other terms of the query are changed
correspondingly so that their combined weight stays at 100.

First, the user enters a query, in this case “ apple computer stock” , into a text area in the
Vquery1 component (Fig. 7). Next the user chooses the Interpret button; the system
responds with the two visualizations: Vquery2 above (Fig. 8), Vquery-DB below (Fig. 9).
Both visualizations are interactive. Vquery2 provides control simply by making it easier
for users to see and (by dragging the endpoints of bar segments) adjust the relative
importance assigned to components of the query.

In Fig. 9, the user has clicked on a horizontal triangle to see the variants of “ stock” . The
system replaced the horizontal triangle with a vertical triangle and added to the display
a list of variants in the QF database: in the implementation, frequencies of variants are

5/31/00, 2:03 PM 20

not shown. The user can select items from this list and remove them by pressing the
Delete key: in the figure, “ stockings” is selected. Note that if stemming is done at
indexing time, information on what variants of a given term appear in the databases
will be very difficult to get, and in that case control this fine-grained is probably not
practical. Also note that a given raw term may map to different stems in different
databases; we have not addressed this concern.

In Fig. 10, the user has actually run the query (by clicking Start Search). The system
responds by showing the beginning of a result list. As we have said, MIRV’s result list is
intended to have a form of query/document visualization (“ Vquery-doc1”) to the left of
the result list, but we have not yet not implemented it.

Finally, in Fig. 11, the user has opened a document from the result list; it is displayed in
a separate window in the form shown. The vertical scrollbar contains the second form of
query/document visualization, “ Vquery-doc2” , with colored query terms and confetti
scrollbar.

Figure 7 (implementation). Combination of query input area (with Vquery1) and
empty result list

5/31/00, 2:03 PM 21

Figure 8 (implementation). Visualization of term weights (Vquery2)

Figure 9 (implementation). Visualization of term frequences and variants (Vquery-
DB)

5/31/00, 2:03 PM 22

Figure 10 (implementation). Combination of query input area (Vquery1) and result
list

5/31/00, 2:03 PM 23

Figure 11 (implementation). Document viewer with scrollbar visualization (Vquery-
doc2)

6. Evaluation

A. Evaluation Completed: Vquery-doc2 with Ordinary Users

Although our motivation for beginning this work involved expert searchers, we are
equally interested in “ ordinary” users, and Byrd (1999) describes in some detail a formal
user study of Vquery-doc2 with a population of students. Here is a summary of the
study and its conclusions.

THE EXPERIMENT

We compared an experimental system with visualization to a control system. Note that
we were interested only in the document viewer, where the Vquery-doc2 visualization
would be used, and the experimental system’s document viewer incorporated the full
visualization. The control system’s viewer had no visualization except for highlighting
words in the text in a single color. We made two types of measurements: objective,
including comparisons of participants’ relevance judgements to the “ official” ones, and
how quickly they could judge documents; and subjective, i.e., how much they liked
using the visualization. To minimize irrelevant differences between the experimental
and control systems, the code for the control system’s scrollbar was identical to that for
the experimental system except that the control system skipped drawing the icons.

5/31/00, 2:03 PM 24

Suitable objective measures include the time users need to find specified information,
and how much of the available information they find. Measuring actual proportions of
information found— i.e., recall— is possible only if one has exhaustive relevance
judgements. But now that test collections considered appropriate for IR research are in
the gigabyte range and above, exhaustive relevance judgements are hardly available for
any collection. However, we needed only to compare how well our participants did
with the experimental system to how well they do with the control system; we did this
simply by ignoring any unjudged documents users retrieved, effectively assuming that
these documents will have roughly the same precision as judged documents.

Participants

All participants were students, adult native speakers of English, from 18 to 30 years old,
with at least some experience with computers, and with normal color perception. All
had experience with online searching (averaging over three years), but none had
professional training or professional experience as a searcher. We ran a pilot study with
six participants, four male and two female; the full study had 20 participants.

Tasks

The study was modeled after the TREC 6 Interactive track experiment (Byrd et al 1997).
Each participant did the same 10 tasks in the same order; the tasks involved identifying
relevant documents in a given database.

Specifically, for each task, we gave the participant a description of an information need,
plus— since we were interested only in the document viewer— a fixed query and a fixed
number of documents, namely 30, to retrieve. The combination of fixed database, fixed
query, and fixed number of documents to retrieve means that, effectively, a result list
was predefined for each query. We asked participants to consider each result list and to
judge relevance of as many as documents as possible in five minutes.

Database and Topics. For the usual reasons (so we could use TREC relevance
judgments, etc.), we used part of the TREC document collection (about 5 GB in all) with
information needs from the TREC topic collection (350 topics). These topics run against
these documents have extensive, though by no means complete, relevance judgements
that are generally believed to be of high quality.

Note that the content-displaying scrollbar is not likely to be of much use with short
documents, since a user can browse through such documents very quickly with no more
aid than conventional single-color highlighting of query terms. But we wanted to
encourage users to rely on our scrollbar icons as much as possible, so we needed long
documents. The Federal Register consists of official U.S. government documents. In
general, these documents are long; the longest are well over a megabyte. Also, they tend
to contain large amounts of “ bureaucratese” and/or trivial details, and they have no
titles that a program can recognize as such and display, even though most contain
something a human being can recognize as a title. All these factors make Federal
Register a very difficult place to find information and a potentially fruitful test
collection for a document viewer. For this study, we chose the 1989 Federal Register
(FR89), one of the TREC Volume 1 document collections.

Queries. Wanting short and unstructured queries, we used TREC topic titles (with
minor changes in two cases) as our 10 queries.

5/31/00, 2:03 PM 25

Although FR89 contains many long documents, not all queries will find them. We
selected queries whose top 30 documents had an average length against FR89 of over
1000 words.

There were several additional criteria for the queries we chose: maximum length of any
retrieved document not too high; neither too few nor too many non-stopped terms; top-
30 precision neither too high nor too low. For details, see Byrd 1999.

Procedure

First, each participant filled out a questionnaire to give us basic demographic
information (age, education, gender, and previous computer experience). Then they
took a standard psychometric test, a test of structural visualization. One unexpected and
interesting finding of our work in TREC 6 was that structural visualization, a form of
spatial ability, appears to be a good predictor of facility with a direct-manipulation
interface. Accordingly, we administered the same structural-visualization test we used
in TREC 6 (test VZ-2, “ paper folding” , from ETS; see Ekstrom et al 1976).

Next, the participant was given a tutorial to learn one system, then they worked on the
first five topics. After a short break they were switched to the other system, given a
tutorial, then worked on the other five topics. Each search had a 5-minute time limit,
and the participant was instructed to stop working if they had not finished in 5 minutes.

We gave the participant a short questionnaire after each search. After all the searches
were finished we gave them a final questionnaire, then “ debriefed” them.

We ran each participant through the entire study in a single essentially continuous
period of about two and a half hours. Half did the first five searches with the
experimental system, and the other half did the first five with the control system: thus,
there were two conditions.

Results

For objective measurements, we analyzed the participant’s relevance judgments by
comparing them to the official TREC judgments. We then performed an ANOVA
(ANalysis Of VAriance) using query, participant, and system as factors. For dependent
variables, we used

• Number of documents judged

• Number of documents correctly judged

• Accuracy

In both the pretest and the full study, query- and participant-dependent results were
significant. However, we found no system-dependent results. The differences between
the experimental system and the control system were what would be expected by
chance.

We also made subjective measurements by asking participants whether they preferred
the experimental or the control system, and how strong their preference was on a five-
point scale (“ not at all” to “ extremely”). Combining these questions gives nine values.
Responses on both the pilot and the full study showed beyond any reasonable doubt a
strong preference for the experimental system: in fact, on the full study, the preference
for the experimental system was significant at p < .0001.

5/31/00, 2:03 PM 26

Participants made a number of illuminating comments. Two who preferred the
experimental system commented that— while the visualization wasn’t always useful—
when it was not useful, it did not get in the way. One went on to say that he could not
understand why anyone would not prefer the scrollbar icons: “ if you want, you can just
ignore them.”

B. Evaluation Proposed: All Visualizations with Both User Groups

We wish now to evaluate the success of the complete MIRV system with each group—
expert searchers and ordinary users — independently. Both objective and subjective
measures can be done as in our previous experiment.

Experimental Design

To learn very much from this research, we need to evaluate the contributions of the
different visualizations separately, at least to the extent possible. The independent
variables we want to consider are:

1. User Group (type of user). The two values are (1) expert searcher; (2) “ ordinary”
user.

2. Interface for Query Formulation. The three values are (1) experimental system: free
text input, with Vquery and Vquery-DB; (2) control 1: free text input with no
visualization; (3) control 2: Boolean input with no visualization.

3. Interface for Result List (summary). The two values are (1) experimental system:
Vquery-doc1 and show best passage, etc.; (2) control: no visualization and show
beginning of document.

4. Interface for Document Viewer. The two values are (1) experimental system:
Vquery-doc2 plus highlighting query terms in the text in the same colors as Vquery-
doc2; (2) control: no visualization except highlighting words in the text in a single
color. (It might also be interesting to study a value “ past” the second, i.e., no
visualization at all. We will ignore this possibility for now.)

With respect to Interface for Query Formulation, the styles now used by expert
searchers are very different from those used by end users. Therefore, we intend to
compare our experimental query-formulation system to two different controls: one
Boolean system with a syntax similar to, say, Alta Vista advanced search (the type of
retrieval system, though not the syntax, that expert searchers generally use), and one
best-match system with a syntax similar to, say, Alta Vista basic search (typical of what
end users employ on the World Wide Web tens of millions of times per day).

Unfortunately, a straightforward experiment with all four variables would be quite
difficult: the full factorial design involves 2 x 3 x 2 x 2 = 24 conditions, and it is not easy
to argue that any of the variables are independent so that cells could be omitted.
However, an alternative is to do three simpler experiments: User Group against each of
the other variables separately. This can be done in the following way:

Experiment A (variables: User Group, and Interface for Query Formulation => 6
conditions). Give the participant several information needs, and ask them to come
up with the best query they can for each. Based on experience, 10 is probably the
minimum number of information needs that would yield meaningful results, but 15

5/31/00, 2:03 PM 27

or 20 would be much better. Evaluate results with standard IR and interactive-IR
measures like precision, recall, and top-n precision, after both the first iteration and
the last.

Experiment B (variables: User Group, and Interface for Result List => 4
conditions). Give the participant an online list of pre-defined queries— perhaps one
for each information need in Experiment A— and ask them to run each query, and to
find a fixed number of relevant documents as quickly as possible. Alternatively, ask
them to find all relevant documents, and evaluate the results on both the amount of
information they locate and on elapsed time.

Experiment C (variables: User Group, and Interface for Document Viewer => 4
conditions). Give the participant an online list of queries and associated result lists.
Ask the participant to choose each result list and to find the most relevant passages
for the associated query across all documents as quickly as possible. Alternatively,
define a number of “ subqueries” for each query that are more tightly focused; ask
the participant to choose each result list and to find the most relevant passages for
each subquery across all documents as quickly as possible. Alternatively, give the
participant a number of queries that produce result lists in which nearly all
documents appear relevant, but in which many or most are not; ask them to choose
each result list and to find a fixed number of relevant documents for the associated
query as quickly as possible. For this experiment, the documents should be long
ones, since the visualization we are testing is obviously of much less value for short
documents.

More specifically, the experiments will look like this. PO = “ ordinary participant” , PE =
“ expert participant” , T = “ task” . We assume four participants per group per experiment,
and five tasks per cell, though these numbers are subject to change. (For comparison, the
TREC-7 Interactive track task specification also calls for participants in groups of four,
but eight tasks instead of five.)

Experiment Test system Ordinary users Experts

A. Query Formulation Free text with Vis (PO1...PO4) x (T1,1...T1,5) (PE1...PE4) x (T1,1...T1,5)

Free text (PO1...PO4) x (T1,6...T1,10) (PE1...PE4) x (T1,6...T1,10)

Boolean (PO1...PO4) x (T1,11...T1,15) (PE1...PE4) x (T1,11...T1,15)

B. Result list With Vis (PO5...PO8) x (T2,1...T2,5) (PE5...PE8) x (T2,1...T2,5)

No Vis (PO5...PO8) x (T2,6...T2,10) (PE5...PE8) x (T2,6...T2,10)

C. Document viewer With Vis (PO9...PO12) x (T3,1...T3,5) (PE9...PE12) x (T3,1...T3,5)

No Vis (PO9...PO12) x (T3,6...T3,10) (PE9...PE12) x (T3,6...T3,10)

As shown, each participant will be in only one experiment. Thus, we will need a total of
4 x 3 = 12 participants per group, or 24 participants in all. This gives 4 x 5 = 20 data
points per cell, enough for a meaningful analysis of variance. Contrary to the simplified
presentation shown, to minimize order effects, we will randomize the order in which
participants are given the tasks. This might be done either for the five tasks within a cell
or for the ten or fifteen in an experiment; the former is simpler and should be adequate.

5/31/00, 2:03 PM 28

7. Conclusion
We have described an important problem in text IR; a user-interface-based framework
for solving it, with a partial implementation of that framework; a test of part of that
implementation; and ways to refine and to further test the implementation.

There are several significant issues that this paper does not address, among them:

• Control of the query-expansion process, e.g., for relevance feedback or LCA.

• Control over long queries (typically resulting from query expansion, or from pasting
full text from a document’s body). Few if any of our visualizations work well with
more than, say, six or seven terms in a query. (An obvious approach to this issue is
via clustering query terms, whether manually, automatically, or somewhere in
between.)

• Visualization of overlap of query terms in databases as a means of control. This
could be done with Venn diagrams, for example. On the other hand, this may not be
that significant: it is not clear that simply showing frequencies of overlapping terms
without context would help users.

• Handling field-specific aspects of the query.

• Handling database-specific aspects in a multidatabase situation. For example, as we
have said, a given raw term may map to different stems in different databases.

• Combining previous queries. This is both well-supported and heavily used in
typical Boolean systems.

Even for the issues addressed, we do not claim that the implementation described here
is optimal in any way. We present it simply as a starting point for learning more about
how to design IR interfaces that allow users of all types maximum satisfaction with best-
match searching. But since best-match searching is evidently superior in objective ways
to exact-match, this should allow users the greatest satisfaction of any kind of searching.

Acknowledgements
W. Bruce Croft first proposed to one of us (Byrd) re-thinking in terms of visualizations
the entire UI for text retrieval; he also gave us much advice on specific visualizations
and on experimental design. Leah Larkey gave us detailed advice at several stages of
the project, from user interface to experimental design to the content of this paper. Paul
Cohen made major contributions to the experimental design. Joanne Claussen of
Westlaw and Daniel Pliske of Lexis/Nexis provided information on Boolean versus
natural language usage of their respective services. Karen Priore and Andy Wolan
administered the user study described in Byrd (1999) and summarized above. Byrd
(1998) describes interviews with nine professional librarians, two in public libraries and
seven in a large university library; the university librarians were Eric Esau, Larry
Feldman, Emily Hurn, Naka Ishii, Pam Juengling, Barbara Morgan, and Emily
Silverman. Finally, we are grateful to Pat Billingsley, Jack Conrad, Barbara Morgan,
Mark Sanderson, and Susan Schneider for assistance and advice of various sorts.

5/31/00, 2:03 PM 29

References
Allan, James (2000). Private communication, April 2000.

Blair, David and Maron, M.E. (1985). An Evaluation of Retrieval Effectiveness for a Full-
text Document-Retrieval System. CACM 28,3 (March 1985), 289– 299.

Byrd, Donald (1998). Conversations with Librarians about Searching. Unpublished
manuscript.

Byrd, Donald (1999). A Scrollbar-based Visualization for Document Navigation.
Proceedings of Digital Libraries 99 Conference, ACM, New York.

Byrd, Donald, Swan, Russell, and Allan, James (1997). TREC-6 Interactive Track Report,
Part 1: Experimental Procedure and Initial Results. Tech report IR-117, Computer
Science Dept., University of Massachusetts/Amherst.

Claussen, Joanne (1999). Private communication, June 1999.

Croft, W. Bruce, Cook, Robert, and Wilder, Dean (1995). Providing government
information on the Internet: Experiences with THOMAS. Proceedings of Digital Libraries
95 Conference, ACM, New York. Also available at
http://csdl.tamu.edu/DL95/papers/croft/croft.html .

Doan, Khoa, Plaisant, Catherine, and Shneiderman, Ben (1996). Query Previews in
Networked Information Systems. Proceedings of Third Forum on Research and Technology
Advances in Digital Libraries, ADL ’96, IEEE CS Press, 120– 129. Also available as TR 95-16 at
http://www.cs.umd.edu/projects/hcil/Research/tech-report-list.html#1996 .

Ekstrom, R.B., French, J. W., Harman, H. H., and Dermen, D. (1976). Manual for Kit of Factor-
Referenced Cognitive Tests 1976. Educational Testing Service, Princeton, New Jersey.

Harman, Donna (1992). User-Friendly Systems Instead of User-Friendly Front Ends. JASIS
43, 164– 174.

Hersh, W.R., and Hickam, D.H. (1995). An evaluation of interactive Boolean and natural
language searching with an on-line medical textbook. JASIS 46, 478– 489.

Hearst, M.A. (1995). Tilebars: Visualization of term distribution information in full text
information access. Proceedings of ACM SIGCHI Conference on Human Factors in Computing
Systems.

Hix, Deborah, and Hartson, Rex (1993). Developing User Interfaces. New York: John Wiley
& Sons.

Pliske, Daniel (1999). Private communication, July 1999.

Rose, Daniel, and Stevens, Curt (1997). V-Twin: A Lightweight Engine for Interactive
Use. Proceedings of TREC-5.

Shneiderman, Ben (1998). Designing the User Interface, 3rd ed. Reading, Massachusetts:
Addison-Wesley.

Shneiderman, Ben, Byrd, Donald, and Croft, W.B. (1997). Clarifying Search: A User-
Interface Framework for Text Searches. D-Lib Magazine, January 1997. Available at
http://www.dlib.org .

Shneiderman, Ben, Byrd, Donald, and Croft, W.B. (1998). Sorting out Searching: A User-
Interface Framework for Text Searches. CACM 41,4 (April 1998), 95– 98.

5/31/00, 2:03 PM 30

Sparck Jones, Karen (1981). Retrieval system tests 1958– 1978. In Karen Sparck Jones,
editor, Information Retrieval Experiment, 213– 255.

Sparck Jones, Karen, and Willett, Peter (1997). Readings in Information Retrieval. San
Francisco: Morgan Kaufmann.

Tenopir, Carol, and Cahn, Pamela (1994). TARGET and FREESTYLE: DIALOG and
Mead join the relevance ranks. Online 18,3, 31– 47.

Tombros, Anastasios, and Sanderson, Mark (1998). Advantages of Query-Based
Summaries in Information Retrieval. Proceedings of SIGIR ‘98, 2– 10.

Turtle, Howard (1994). Natural Language vs. Boolean Query Evaluation: A Comparison
of Retrieval Performance. Proceedings of SIGIR ‘94, 212– 220.

