
868 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 14. NO 6. JUNE 19x8

A Comparison of Some Structural Testing Strategies
SIMEON C. NTAFOS, MEMBER, IEEE

Abstract-h this paper we compare a number of structural testing
strategies in terms of their relative coverage of the program’s structure
and also in terms of the number of test cases needed to satisfy each
strategy. We also discuss some of the deficiencies of such comparisons.

Index Terms-Data flow, program testing, structural testing.

I. INTRODUCTION

S TRUCTURAL testing [7] is probably the most widely
used class of program testing strategies. These strat-

egies use the control structure of the program as the basis
for developing test cases as opposed to alternative classes
of strategies that emphasize the specifications (black-box
testing), specific types of errors, or combinations thereof.
The popularity of structural testing strategies is mainly
due to their simplicity and the resulting availability of
software tools to assist with them.

The main shortcomings of structural testing strategies
result from their dependence on the control structure of
the program. An obvious problem is that the control struc-
ture itself may be incorrect. This makes it difficult, if not
impossible, to detect errors in the specifications that are
not reflected in the program structure. Another problem is
that most structural strategies do not provide any guide-
lines for selecting test data from within a path domain and
many errors along a path can be detected only if the path
is executed with values from a small subset of its domain.

Despite the shortcomings, interest in structural testing
continues unabated with more and more strategies been
proposed and studied. Lagging are evaluations of the ef-
fectiveness of these strategies and comparisons of their
relative power. This is due to the lack of generally ac-
cepted models for measuring testing effectiveness and
cost. An indication of the relative power of the strategies
can be obtained by ordering strategies according to the
relation “strategy A includes (subsumes) strategy B.”
Such comparison are reported in [2,] [131, [141, [161 for
some strategies based on data flow analysis. A similar
comparison that includes some strategies based on testing
expressions is reported in [151. The fact that a strategy A
includes strategy B does not mean that strategy A is better
than strategy B since cost is not considered. An estimate
of the relative cost of the strategies can be obtained by
determining the number of test cases needed to satisfy the

Manuscript received November 29, 1985. This work was supported in
part by the National Science Foundation under Grant MCS-8202593.

The author is with the Computer Science Program, University of Texas
at Dallas, Richardson, TX 75080.

IEEE Log Number 8820975.

requirements of each strategy. In this paper we compare
a number of structural strategies in terms of inclusion and
in terms of the worst case complexity of the test sets re-
quired by each strategy. We also discuss some of the lim-
itations of such comparisons.

II. THE TESTING STRATEGIES

Best known among the structural testing strategies are
segment (statement), branch, and path testing [7]. Seg-
ment testing requires each statement in the program to be
executed by at least one test case. Brunch testing asks that
each transfer of control (branch) in the program is exer-
cised by at least one test case and is usually considered to
be a minimal testing requirement. Path testing requires
that all execution parts in a program are tested but is im-
practical since even small programs can have a huge (pos-
sibly infinite) number of paths. Most of the other struc-
tural testing strategies fill the gap between branch and path
testing. They include structured path testing [6], bound-
ary-interior path testing [S], strategies based on LCSAJ’s
(linear code sequence and jump [171) and strategies based
on data flow analysis [4], [8]-[lo], [12], [14].

Structured path testing and boundary-interior path test-
ing are restricted versions of path testing in which the
number of test cases is limited by grouping together paths
that differ only in the number of times that they iterate
loops and then testing a few representative paths from each
such group. In boundary-interior testing we consider two
classes of paths from each group of similar paths with
respect to each loop. Paths in the first class enter the loop
but do not iterate it (boundary tests) while paths in the
second class iterate the loop at least once (interior tests).
Among the boundary tests we perform those that follow
different paths inside the loop. Among the interior tests
we perform those that follow different paths through the
first iteration of the loop. For example, consider a
WHILE-DO loop that contains a single IF-THEN-ELSE.
There are two boundary tests for this loop (one for each
branch of the IF-THEN-ELSE) and both will exit the loop
immediately. The number of interior tests is four and all
of them will execute the body of the loop a second time.
The four interior tests correspond to the four permutations
of branches in the first two executions of the IF-THEN-
ELSE (True-True, True-False, False-True, False-False).
After the second execution of the body of the loop, each
interior test path may exit the loop or iterate it any addi-
tional number of times taking either one of the branches
in the IF-THEN-ELSE.

0098-5589/88/0600-0868$01 .OO 0 1988 IEEE

NTAFOS: COMPARSION OF STRUCTURAL TESTING STRATEGIES 869

In structured path testing, the representative paths that
are selected from each group of similar paths are those
that do not iterate a loop more than k times, where k is
usually a small integer. Both structured path testing and
boundary-interior path testing are based on the program-
ming notion of a loop which may be open to interpretation
in arbitrary control flow graphs. For the purposes of this
discussion we will use the graph theoretic notion of a loop
in defining structured path testing, i.e., structured path
testing will test all paths P, where P does not contain any
subpath p such that P consists of some subpath 01, fol-
lowed by more than k repetit ions ofp, followed by some
subpath p. For boundary-interior path testing, we will
keep the definition of the previous paragraph for well
structured loops and assume that boundary-interior path
testing is equivalent to structured path testing with k = 1
for all other loops. Note that, if a program does not con-
tain any loops, both structured path testing and boundary-
interior testing are equivalent to path testing.

LCSAJ’s (linear code sequence and jump) are def ined
in terms of the program text. An LCSAJ is a sequence in
consecut ive statements in the program text, starting at an
entry point or after a jump and terminating with a jump
or at an exit point. In [171, a class of test effectiveness
ratios (TER,) is def ined to each of which corresponds a
testing strategy that asks that TER,, = 1. TER,, TER, are
equal to 1 if segment and branch testing are achieved re-
spectively. TER,+2 = 1 if all subpaths containing up to
n LCSAJ’s are tested.

Strategies based on data flow analysis look at interac-
tions involving definitions to program variables and sub-
sequent references that are affected by these definitions
and ask that certain such interactions be tested. A variable
X is referenced in a segment if the first action involving
X within the segment requires that a value for X be ob-
tained. Variable X is def ined in a segment if a value is
assigned to it in the segment and that action is followed
by zero or more references. A definition of X in segment
i reaches a reference to X in segment j if there is a path
from i to j a long which the variable X is not redefined or
undefined. For the purposes of defining data flow based
strategies we assume that every segment contains a data
flow action (e.g., constants are treated as variables de-
f ined at the start of the program).

The simplest type of data flow interaction involves a
definition to a program variable and a reference reached
by that definition. W e call such an interaction a 2-dr in-
teraction [12]. The first strategy based on data flow was
reported in [4] and amounts to testing each 2-dr interac-
tion. The main shortcoming of this strategy is that it does
not guarantee that branch testing is achieved. The re-
quired pairs strategy [lo], [121 uses data f low analysis to
construct a set of required pairs which are then covered
by test cases. At least one required pair is produced for
each 2-dr interaction. For each 2-dr interaction involving
a reference in a branch predicate we produce one required
pair for each outcome of the branch predicate. If the def-

inition or the reference of the interaction occurs in a loop,
two iteration counts for that loop are considered in pro-
ducing the required elements, one specifying that the loop
be exited at the first opportunity, while the other asks that
the loop should be iterated some larger number of times.

In [141, a distinction is made between references to
variables in a computat ion (c-use) and in a predicate
(p-use). The p-uses are associated with branches corre-
sponding to the outcomes of the predicate. Six strategies
are proposed of which the “all uses” strategy is the cen-
tral one. All-uses asks that all interactions between a c-use
or a p-use and a definition that reaches it be tested. Four
of the strategies are limited versions of “all uses” asking
that: 1) each definition be tested with a path along which
the definition reaches a c-use or p-use (all-defs), 2) each
interaction between a p-use and a definition that reaches
it be tested (all-p-uses), 3) each interaction between a
c-use and a definition that reaches it be tested and each
definition be tested by some path along which it reaches
a use (al l-c-useslsome-p-uses) and 4) each interaction be-
tween a p-use and a definition that reaches it be tested and
each definition be tested by some path along which it
reaches a use (al l-p-uses/some-c-uses). The sixth strat-
egy, all-du-paths, asks that each interaction between a
p-use or a c-use and a definition that reaches it be tested
along all cycle-free paths connect ing the appropriate
statements (including simple cycles from a definition to a
reference that occurs in the same segment as the definition
1141).

In [8], two testing strategies are proposed. The first
strategy is the same as that proposed in [4], i.e., it re-
quires that all 2-dr interactions are tested. The second
strategy requires that each elementary data context of
every instruction be tested at least once. An elementary
data context of an instruction is a complete set of defini-
t ions for the variables referenced in the statement such
that the definitions reach the statement. A more extensive
strategy called ordered data contexts is also ment ioned in
[8]. It requires that the definitions in each elementary data
context be visited in all possible orders.

A number of other strategies based on data flow are pro-
posed in [9] and [121. The required k-tuples strategies [121
are extensions of the required pairs strategy. They ask that
all sequences of k - 1 (or less) related 2-dr interactions
be tested. In a sequence rl, I-,, * * *, rk-, of 2-dr inter-
actions, the ith 2-dr interaction is related to the (i + 1)st
2-dr interaction if the reference in the ith interaction is
used directly in the definition associated with the (i +
1)st interaction, 0 < i < k - 1, The first definition and
the last reference in the sequence are treated the same way
as in the required pairs strategy. By varying k we get a
class of testing strategies with the property that required
k-tuples subsumes required m-tuples for any m < k. This
definition clarifies the definition of the required k-tuples
strategy in [121. There, it is stated erroneously that the k
data flow actions must occur in distinct segments. It is
clear from the rest of the discussion that the word “dis-

870 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING, VOL. 14. N O 6. JUNE 1988

tinct” should, not appear in the definition (e.g., it contra-
dicts the definition of required pairs, and it is a very un-
natural restriction to place on the k-tuples).

A strategy called definition-tree testing is proposed in
[9]. A subset of the program variables is selected and then
the data fow for them is traced back from the output
through a series of definitions until the beginning of the
program or a cyclic use is reached. The required k-tuples
strategies and definition-tree testing allow us to follow a
sequence of computations related by data flow and, as
pointed out in [9], [121, they may provide a connection
to the program specification and other information so that
more effective testing strategies can be formulated. Look-
ing at required k-tuples as purely structural strategies it
has been noted [I l] that they quickly run into the law of
diminishing returns as k increases. A similar phenomenon
was reported for the TER, = 1 strategies and as a result
TER, = 1 with n > 4 are rarely used.

III. COMPARISONS OF THE STRATEGIES

Comparisons of testing strategies in terms of inclusion
have been made since the early days of software devel-
opment (e.g., branch testing subsumes segment testing).
More recently, this type of comparison was used by Rapps
and Weyuker to delineate the six data flow based strate-
gies they introduced. Independently, in [2] and [131, these
comparisons were extended to include other data flow
based strategies. In this section we further extend the par-
tial orderings of structural strategies reported in [2], [131,
[141 to include structured and boundary-interior path test-
ing and the TER, = 1 strategies. The ordering is based
on inclusion, i.e., a strategy X (strictly) includes strategy
Y if any test set that satisfies X also satisfies Y and there
is some test set that satisfies Y but not X [1.51. Fig. 1 shows
the resulting ordering for our set of structural strategies.

We start by pointing out three differences in the order-
ing of Fig. 1 from the orderings presented in [2], [151.
All of them have to do with changes to or different inter-
pretations of the definitions of some data flow based strat-
egies. First, in [151, the all-uses strategy is redefined by
associating all the p-uses for a predicate with the segment
in which the predicate occurs. The effect is that this ver-
sion of all-uses does not include branch testing. The def-
inition of p-uses in [14] is perfectly clear and no justifi-
cation is given in [15] for changing it. The second
difference has to do with the required k-tuples class of
strategies which are extensions of the required pairs strat-
egy. In [2], required k-tuples are defined so that they ex-
clude testing of k-tuples that visit the same node more
than once (based on the erroneous definition in [121). The
definition of required k-tuples was clarified in [131 and in
the previous section and is much more natural than the
version used in [2]. As far as Fig. 1 is concerned, the
difference is that the proper version of required pairs in-
cludes all-uses while the version used in [2] does not. The
third difference has to do with whether or not testing 2-dr
interactions includes segment testing. This depends on
how we handle data flow anomalies and segments in which

path testing

ordered
data contexts

branch testing \‘
se+ent testing

Fig. 1. Partial ordering of some structural testing strategies.

there is no data flow action (e.g., an output statement in
which only constants are used). Both of these conditions
can be easily detected by static data flow analysis and need
not affect the definitions of data flow based strategies
(e.g., in [15], many of the results are stated with the dis-
claimer “except for constant references”). The approach
we took in required pairs, was to assume that every seg-
ment contains a data flow action, that everything is de-
fined at the start of the program and referenced at the end
of the program. We feel that this is easily handled and fits
better with the intent of the flow based strategies. Using
versions that do not include segment testing begs the in-
troduction of versions that do, and serves no purpose ex-
cept the dubious one of increasing the number of data flow
based strategies.

In the following lemmas we establish the inclusion re-
lations for structured path testing, boundary-interior path
testing and the TER, = 1 class of strategies. These strat-
egies were not considered in the comparisons reported in
VI, 1141, 1151.

Lemma I: Structured path testing with k = 4 includes
boundary-interior, required pairs, TER3 = 1, and ordered
data contexts.

Proof In structured path testing (k = 4), each loop
will be iterated up to four times. Thus, the requirements
of boundary-interior path testing will be satisfied while
the converse is not true.

In the required pairs strategy, the treatment of loops
depends on the patterns of definitions and references in
the loop. The most extensive testing of a loop occurs in
situations where a definition within the loop reaches a ref-
erence that precedes it within the body of the loop. Con-
sider the partial flowchart shown in Fig. 2. The set of
required pairs of this code will include the following:

NTAFOS: COMPARSION OF STRUCTURAL TESTING STRATEGIES 871

1.
2.
3.
4.
5.

SEG SEG VAR
1 2 X
1 2 X
1 2 X
3 2 X
3 2 X

DEF

Lr
Lr

REF
Py-Le
Pn-Le
Pn-Lr
Pn-Le
Py-Lr

Py: Predicate is true
Pn: Predicate is false
Le: Exit Loop
Lr: Repeat Loop

These require that the loop be iterated 0, 1, 2, 3, and 4
times, respectively. Since structured path testing with
k = 4 will also iterate the loop up to four times, it follows
that it includes required pairs testing. Required pairs does
not include structured path testing for any k since it can
be satisfied without testing all paths from some segment
i to another segment j.

According to [3], to satisfy TER, = 1 each loop must
be iterated at least once and also three or more times.
TERs can be achieved by iterating each loop up to three
times. Thus, structured path testing (k = 4) includes
TERs while the converse is not true for any k.

The order data contexts strategy does not include struc-
tured path testing (for any k) since it does not always test
all paths from a definition to a reference. Structured path
testing includes the ordered data contexts strategy since
the latter never needs to iterate a subpath. Note that in
code like the one shown in Fig. 3, elementary data con-
texts requires that we iterate the loop (in the programming
sense) but can be satisfied by taking different paths
through the loop, i.e., we do not need to iterate a
subpath. Q.E.D.

In both the required n-tuples (n > 2) and TER, = 1
(n > 3) strategies, some loop may be iterated more than
4 times depending on whether or not a 2-dr interaction or
an LCSAJ is al lowed to appear more than once in a se-
quence. Still, structured path testing with appropriate
k will include both required n-tuples and TER, = 1 while
the converse is not true for any k (even with k = 0) since
they will not test all paths in a program without loops.

Lemma 2: Boundary-interior path testing includes the
“all-du-paths” strategy.

Proof The all-du-paths strategy never requires that
a loop be interated more than one time. Thus, boundary-
interior path testing includes all-du-paths. The converse
is not true since all-du-paths requires only that loop free
paths from a definition to a reference be tested while
boundary-interior path testing will also interate any inter-
vening loops. Q.E.D.

Lemma 3: Boundary-interior path testing is incompa-
rable with the data contexts strategies, the required
k-tuples strategies and the TER, = 1 strategies.

Proof The data contexts, required k-tuples, and
TERk = 1 strategies do not include boundary-interior path
testing since, in a program without loops, they do not need
to test all paths connect ing two segments. Conversely,
boundary-interior path testing does not include required
pairs and TERs = 1 because some loop may need to be
iterated three or more times. Also, it does not include the
elementary data contexts strategy as shown in Fig. 3 where
elementary data contexts requires that a path like 1-2-3-

4-5 be tested which is not necessary in order to satisfy
boundary-interior path testing. Q.E.D.

Lemma 4: Required k-tuples, the data contexts strate-
gies, all-defs and all-p-uses are incomparable with TERk
= 1 for any k > 2.

Proof Consider the code segments shown in Figs. 4
-and 5. In Fig. 4, there are two alternation structures form-
ing a total of four paths. The set of LCSAJ’s for this code
is: { l-2 --t 5, l-2-3-4 + 6, 5-6 + 9, 5-6-7-8 -+ 10, 6 -+
9, 6-7-8 + 10, 9-lo}. To cover this set, we must use the
path l-2-5-6-9-10. However, ,note that there is no data
flow interaction between statements 5 and 9 and therefore
none of the data flow based strategies needs to select this
path.

Consider the code segment shown in Fig. 5. This code
contains the following set of LCSAJ’s: { l-2 + 7, 1-2-3-
4 + 7, l-2-3-4-5-6 -+ 10, 7-8 -+ 10, 7-8-9-10). These
LCSAJ’s can be covered with the paths l-2-7-8-9-10,
l-2-3-4-7-8-10, and l-2-3-4-5-6-10. Note that there is a
reference to variable B in statement 9 and B is def ined in
statement 3. Thus, all-defs requires that a path through
both 3 and 9 be used and it follows that TER3 = 1 does
not include all-defs. Consider again the code shown in
Fig. 5 and replace X3 with the test B > 0. Then, the set
of test paths that satisfy TERs = 1 will fail to test the
interaction between the definition of B in statement 3 and
the p-use associated with the “false” branch of the pred-
icate B > 0 in statement 8. Thus, TERs = 1 does not
include all-p-uses.

Note that TER4 = 1 will require a path through state-
ments 3 and 9 in the code segment of Fig. 5 in order to
cover the pair consisting of the LCSAJ’s l-2-3-4 + 7 and
7-8-9-10. However, one can easily extend this example so
that, given any n, TER,, = 1 can be achieved without
satifying all-defs or all-p-uses. Q.E.D.

Proofs for the remaining relations shown in Fig. 1, ap-
pear in [2], [131, [141, or follow from the above lemmas
and the definitions. The definition-tree strategy [9], is not
included in Fig. 1 because the inclusion relations for it
depend on which variables are traced back. Technically,
it is incomparable to almost all the strategies in Fig. 1. It
bears the most resemblance to the required k-tuples strat-
egy with a sufficiently high k.

A serious shortcoming of comparisons in terms of in-
clusion is that the cost of the various strategies is not ac-
counted for. Factors contributing to the cost of testing are
the cost of generat ing a test set, the cost of running the
test cases and the cost of checking the outputs. A common
contributor to all these factors is the number of test cases
needed to satisfy each strategy. W e can use the number
of test cases needed as a crude measure of cost. It would

872 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING, VOL. 14, NO. 6. JUNE 1988

Fig. 2.

1:

2:

Y

I

x=1

n

x>o

N

3: x+x-1

Pattern resulting in the most extensive testing
pairs testing.

(1) ;A;
2=3

t

ofa loop by required

1

Fig. 3. Elementary data contexts requires that a path like I-2-3-4-5 be
tested. Boundary-interior path testing does not need to include such a
path.

1.

3:
4.
5.
6.
7.
a.
9.

10.

10
20

30
40

READ(X,Y)
IF X GOT0 10
Z=l
GOT0 20
W=l
IF Y GOT0 30
z=w*z
GOT0 40
z=z-2
END

Fig. 4. This code segment has a total of four paths all of which are needed
to satisfy TER, = I. There is no data flow interaction along the path
through statements 5 and 9 and this path is not needed to satisfy data
flow based strategies.

1. A=1
2. IF Xl GOT0 40
3. B=l
4. IF X2 GOT0 40
5. A=2
6. GOT0 50
7. 40 A=A+B
8. IF X3 GOT0 50 {IF B > 0 GOT0 50)
9. B=B+l

10. 50 WRITE (A, B)

Fig. 5. This code contains five LCSAJ’s that can be covered with three
paths none of which covers the data flow interaction between statements
3 and 9 {or statements 3 and 8 with B < = 0).

be more appropriate to make this comparison in terms of
the “average” number of test cases needed. However,
establishing what the average number of test cases needed
for each strategy requires extensive statistical data on the
control and data flow in real programs and no such data
are available. Still, it is easy to determine the number of

test cases needed in the worst case for each strategy and
this does give us a good indication of the relative cost of
the strategies.

Lemma 5: Let n be the number of segments in a pro-
gram. Then in the worst case, we have that:

1) Path testing may require an infinite number of test
paths.

2) Structured path testing (for any k), boundary-inte-
rior path testing, all-du-paths may require a number of
test cases that is an exponential function of n.

3) Required pairs, TERs = 1, all-uses, the data con-
texts strategies, 2-dr interactions, all p-uses/some c-uses,
all c-uses/some p-uses, all p-uses each may require 0 (n2)
test paths.

4) All-defs, branch and segment testing may require
O(n) test paths.

Proof Most of these bounds have been established
or implied by the authors that proposed the various strat-
egies. Worst cases for the data flow strategies proposed
in [141 are reported in [161. Claim 1) follows from the
existence of programs that do not halt. For 2), consider a
program consisting of a sequence of n IF-THEN-ELSE
structures, each of which defines and references a variable
X. Then, structured and boundary-interior path testing as
well as all-du-paths may require 2” test paths.

Required pairs involves the selection of up to 2 out of
II segments in order to form a 2-dr interaction. Let m be
the maximum number of variables that are referenced in
any segment. Then, we can have 0(m * n 2, required
pairs. Since it is common practice to assume that m is
bounded by a constant, required pairs never needs more
than 0(n2) test paths. A program with a sequence of n
IF-THEN-ELSE structures and a variable X that is de-
fined and referenced in each one of them achieves this
upper bound. Ordered data contexts will usually require
more test paths in order to test the up to m! orders in which
m variables that are referenced in a segment can appear
in the data context. However, if m is bounded by a con-
stant (which is normally the case), the number of test paths
needed is no worse than 0(n*). TER3 = 1 requires that
each LCSAJ is tested. A program can have 0(n *)
LCSAJ’s and 0(n 2, test paths may be required to cover
them (e.g., consider a sequence of IF COND GOT0
statements where each such statement is also a target of a
GOTO).

All-defs and segment testing may require 0 (n) test
cases (e.g., consider a long sequence of nested IF-THEN-
ELSE’s). The bound for branch testing follows from the
fact that the number of branches is 0 (n) since the out-
degree of each vertex is the control flow graph of a pro-
gram is normally bounded by a small constant (one can
construct control flow graphs with 0(n 2, branches but
that would involve compound statements that should be
treated as sequences of simpler statements). Q.E.D.

It should be noted that, while programs can be con-
structed that achieve these worst case bounds, in practice
the number of test cases needed usually is considerably
less than what is implied by the bounds.

NTAFOS: COMPARSION OF STRUCTURAL TESTING STRATEGIES 873

IV. CONCLUSIONS

We presented a comparison of a number of structural
testing strategies in terms of the relation “strategy A in-
cludes strategy B” and in terms of the number of test cases
needed in the worst case by each strategy. It turns out that
the comparison in terms of the number of test cases needed
in the worst case provides a much more meaningful
grouping of the various strategies than Fig. 1 does. The
most interesting group is the one including the strategies
that may require 0(n2) test paths as most of them offer
needed improvement over branch testing and their cost
remains reasonable.

The comparison in terms of inclusion is useful but has
a number of weaknesses. First, as can be seen from Fig.
1, many of the strategies are incomparable. Usually this
is due to the details in the definitions of the strategies
rather than a reflection of different approaches to struc-
tural testing. As a result, Fig. 1 tends to emphasize trivial
differences rather than common approaches. Also, slight
modifications in the definitions of the various strategies
can alter the inclusion relations. As seen in the previous
section, the required n-tuples and the TER, = 1 strategies
can easily be made incomparable with structured path
testing (with k = 4). If we define boundary-interior test-
ing so that it does not test all combinations of branches in
the first two executions of the body of a loop, then we
have that boundary-interior path testing is incomparable
with all-du-paths and most of the other data flow based
strategies. Also, if we use the programming notion of a
loop in defining structured path testing, then it becomes
incomparable with most of the data flow based strategies.

Some of the strategies are properly defined to allow var-
ious choices and the particular choices that are selected
can alter the inclusion relations. As an example, consider
the treatment of arrays in data flow based strategies. In
our discussion we have assumed that all elements of an
array are treated as occurrences of the same variable (since
the data flow interactions between distinct elements can
not be determined with static analysis). If we consider the
elements of an array as distinct variables (using run-time
instrumentation to verify coverage) then the data flow
based strategies become incomparable with structured path
testing (for any k) since they may require that a loop be
iterated n times (where IZ is the size of the array).

Another problem with comparisons in terms of inclu-
sion is that even when we can determine that one strategy
includes another, we have no quantitative measure of the
difference between the two strategies (i.e., how much bet-
ter is path testing than structured path testing?). It is not
at all clear that adopting a more extensive strategy is pref-
erable to using a combination of simpler strategies or ex-
tending a simpler strategy. For example, consider testing
an IF-THEN structure using branch and segment testing.
To achieve branch testing we need to use two paths while
segment testing can be achieved with just one path. As-
suming that test data are selected in a similar fashion from
the path domains, we can claim that branch testing will

be more effective than segment testing. However, if we
use two independent test cases for segment testing, it fol-
lows that segment testing will be more effective than
branch testing in detecting errors within the body of the
THEN branch. This points out a major deficiency that all
structural testing strategies share. Many errors along a
path can only be detected if the path is executed with val-
ues from some subset of its subdomain. Purely structural
testing strategies provide no guidelines for selecting the
actual values with which to execute a test path. Then, it
may well be that effectiveness increases by testing a
smaller set of test paths with more inputs as compared to
testing a larger subset of paths with one input per test
path.

Another way in which the various strategies can be
evaluated and compared is to determine what types of er-
rors they are effective in detecting and types of errors for
which they are ineffective. Some results along these lines
are reported in [3], [8], [1 I]. Experiments with the por-
table mutation system [l] reported in [1 I] show that the
main weakness of required pairs is in detecting errors hav-
ing to do with small shifts in domain boundaries and the
handling of special values. These are types of errors for
which all the structural strategies are relatively ineffec-
tive. It should be noted that strategies that totally disre-
gard the program structure can be equally ineffective for
other types of errors (e.g., consider errors in code that is
entered under conditions specific to a particular imple-
mentation of an algorithm but do not appear in the spec-
ifications). Thus, it is important that strategies that com-
bine structural testing with other approaches to testing be
used. This has been noted by many of the researchers in
the field. For example, data flow strategies were proposed
in [9], [12] as a basis for combining structural with black
box and error driven strategies and in [3], it is reported
that the TERs = 1 strategy is used after applying func-
tional testing.

REFERENCES

[l] T. A. Budd, “The portable mutation testing suite,” Univ. Arizona,
Tech. Rep. TR83-8, Mar. 1983.

[2] L. A. Clarke, A. Podgurski, D. Richardson, and S. Zeil, “A com-
parison of data Row path selection criteria,” in Proc. 8th ICSE. Aug.
1985, pp. 244-251.

[3] M. Hennel, D. Hedley, and 1. J. Riddell, “Assessing a class of soft-
ware tools, ” in Proc. 7th Int. Cant SoJiware Engineering, Mar. 1984,
pp. 166-277.

[4] P. M. Herman, “A data flow analysis approach to program testing.”
Australian Comput. J., vol. 8. no. 3, pp. 92-96, Nov. 1976.

[5] W. E. Howden, “Methodology for the generation of program test
data,” IEEE Trans. Comput.. vol. C-24, no. 5. pp. 554-559, May
1975.

[6] -, “Symbolic testing-design techniques. costs and effectiveness,”
NTIS PB-268518, May 1977.

[7] J. C. Huang, “An approach to program testing.” ACM Cornput. Sur-
veys, vol. 7, no. 3, pp. 114-128, Sept. 1975.

[8] J. Laski and B. Korel, “A data flow oriented program testing strat-
egy,” IEEE Trans. Software Eng., vol. SE-9, no. 3, pp. 347-354,
May 1983.

[9] J. Laski, “On data flow guided program testing,” SlCPLAN Notices,
vol. 17, pp. 62-71, Sept. 1982.

[lo] S. Ntafos, “On testing with required elements.” in Proc. COMP-
SAC-H. Nov. 1981, pp. 1422149.

874 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL. 14, NO. 6. JUNE 1988

[111 -, “An evaluation of required element testing strategies,” in Proc.
7th ht. Conj: Sojbvare Engineering, Mar. 1984, pp. 250-256.

(121 -, “On required element testing,” IEEE Trans. Software Eng.,
vol. 10, no. 6, pp. 795-803, Nov. 1984.

[13] -, “A comparison of some structural testing strategies,” in Proc.
19th Hawaii ht. Conf. System Sciences, Jan. 1986, pp. 803-811.

[14] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Trans. Software Eng., vol. SE-II, no. 4,
pp. 367-375, Apr. 1985.

[15] M. D. Weiser, J. D. Gannon, and P. R. McMullin, “Comparison of
structured test coverage metrics,” IEEE Software, vol. 2, no. 2, pp.
80-85, Mar. 1985.

[16] E. J. Weyuker, “The complexity of data flow criteria for test data
selection,” Information Processing Lett., vol. 19, pp. 103-109, Aug.
1984.

1171 M. R. Woodward, D. Hedley, and M. A. Hennell, “Experience with
path analysis and testing of programs,” IEEE Trans. Software Eng.,
vol. SE-6, pp. 278-286, May 1980.

