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A Comparison of Some Structural Testing Strategies 
SIMEON C. NTAFOS, MEMBER, IEEE 

Abstract-h this paper we compare a number of structural testing 
strategies in terms of their relative coverage of the program’s structure 
and also in terms of the number of test cases needed to satisfy each 
strategy. We also discuss some of the deficiencies of such comparisons. 

Index Terms-Data flow, program testing, structural testing. 

I. INTRODUCTION 

S TRUCTURAL testing [7] is probably the most widely 
used class of program testing strategies. These strat- 

egies use the control structure of the program as the basis 
for developing test cases as opposed to alternative classes 
of strategies that emphasize the specifications (black-box 
testing), specific types of errors, or combinations thereof. 
The popularity of structural testing strategies is mainly 
due to their simplicity and the resulting availability of 
software tools to assist with them. 

The main shortcomings of structural testing strategies 
result from their dependence on the control structure of 
the program. An obvious problem is that the control struc- 
ture itself may be incorrect. This makes it difficult, if not 
impossible, to detect errors in the specifications that are 
not reflected in the program structure. Another problem is 
that most structural strategies do not provide any guide- 
lines for selecting test data from within a path domain and 
many errors along a path can be detected only if the path 
is executed with values from a small subset of its domain. 

Despite the shortcomings, interest in structural testing 
continues unabated with more and more strategies been 
proposed and studied. Lagging are evaluations of the ef- 
fectiveness of these strategies and comparisons of their 
relative power. This is due to the lack of generally ac- 
cepted models for measuring testing effectiveness and 
cost. An indication of the relative power of the strategies 
can be obtained by ordering strategies according to the 
relation “strategy A includes (subsumes) strategy B.” 
Such comparison are reported in [2,] [ 131, [ 141, [ 161 for 
some strategies based on data flow analysis. A similar 
comparison that includes some strategies based on testing 
expressions is reported in [ 151. The fact that a strategy A 
includes strategy B does not mean that strategy A is better 
than strategy B since cost is not considered. An estimate 
of the relative cost of the strategies can be obtained by 
determining the number of test cases needed to satisfy the 
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requirements of each strategy. In this paper we compare 
a number of structural strategies in terms of inclusion and 
in terms of the worst case complexity of the test sets re- 
quired by each strategy. We also discuss some of the lim- 
itations of such comparisons. 

II. THE TESTING STRATEGIES 

Best known among the structural testing strategies are 
segment (statement), branch, and path testing [7]. Seg- 
ment testing requires each statement in the program to be 
executed by at least one test case. Brunch testing asks that 
each transfer of control (branch) in the program is exer- 
cised by at least one test case and is usually considered to 
be a minimal testing requirement. Path testing requires 
that all execution parts in a program are tested but is im- 
practical since even small programs can have a huge (pos- 
sibly infinite) number of paths. Most of the other struc- 
tural testing strategies fill the gap between branch and path 
testing. They include structured path testing [6], bound- 
ary-interior path testing [S], strategies based on LCSAJ’s 
(linear code sequence and jump [ 171) and strategies based 
on data flow analysis [4], [8]-[lo], [12], [14]. 

Structured path testing and boundary-interior path test- 
ing are restricted versions of path testing in which the 
number of test cases is limited by grouping together paths 
that differ only in the number of times that they iterate 
loops and then testing a few representative paths from each 
such group. In boundary-interior testing we consider two 
classes of paths from each group of similar paths with 
respect to each loop. Paths in the first class enter the loop 
but do not iterate it (boundary tests) while paths in the 
second class iterate the loop at least once (interior tests). 
Among the boundary tests we perform those that follow 
different paths inside the loop. Among the interior tests 
we perform those that follow different paths through the 
first iteration of the loop. For example, consider a 
WHILE-DO loop that contains a single IF-THEN-ELSE. 
There are two boundary tests for this loop (one for each 
branch of the IF-THEN-ELSE) and both will exit the loop 
immediately. The number of interior tests is four and all 
of them will execute the body of the loop a second time. 
The four interior tests correspond to the four permutations 
of branches in the first two executions of the IF-THEN- 
ELSE (True-True, True-False, False-True, False-False). 
After the second execution of the body of the loop, each 
interior test path may exit the loop or iterate it any addi- 
tional number of times taking either one of the branches 
in the IF-THEN-ELSE. 
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In structured path testing, the representative paths that 
are selected from each group of similar paths are those 
that do  not iterate a  loop more than k times, where k is 
usually a  small integer. Both structured path testing and  
boundary-interior path testing are based on  the program- 
ming notion of a  loop which may be  open  to interpretation 
in arbitrary control flow graphs. For the purposes of this 
discussion we will use the graph theoretic notion of a  loop 
in defining structured path testing, i.e., structured path 
testing will test all paths P, where P does not contain any 
subpath p  such that P consists of some subpath 01, fol- 
lowed by more than k repetit ions ofp, followed by some 
subpath p. For boundary-interior path testing, we will 
keep the definition of the previous paragraph for well 
structured loops and  assume that boundary-interior path 
testing is equivalent to structured path testing with k =  1  
for all other loops. Note that, if a  program does not con- 
tain any loops, both structured path testing and  boundary-  
interior testing are equivalent to path testing. 

LCSAJ’s (linear code sequence and  jump) are def ined 
in terms of the program text. An LCSAJ is a  sequence in 
consecut ive statements in the program text, starting at an  
entry point or after a  jump and  terminating with a  jump 
or at an  exit point. In [ 171,  a  class of test effectiveness 
ratios (TER,) is def ined to each of which corresponds a  
testing strategy that asks that TER,, =  1. TER,, TER, are 
equal  to 1  if segment  and  branch testing are achieved re- 
spectively. TER,+2 = 1  if all subpaths containing up  to 
n  LCSAJ’s are tested. 

Strategies based on  data flow analysis look at interac- 
tions involving definitions to program variables and  sub- 
sequent  references that are affected by these definitions 
and  ask that certain such interactions be  tested. A variable 
X is referenced in a  segment  if the first action involving 
X within the segment  requires that a  value for X be  ob- 
tained. Variable X is def ined in a  segment  if a  value is 
assigned to it in the segment  and  that action is followed 
by zero or more references. A definition of X in segment  
i reaches a  reference to X in segment  j if there is a  path 
from i to j a long which the variable X is not redefined or 
undefined. For the purposes of defining data flow based 
strategies we assume that every segment  contains a  data 
flow action (e.g., constants are treated as variables de- 
f ined at the start of the program). 

The simplest type of data flow interaction involves a  
definition to a  program variable and  a  reference reached 
by that definition. W e  call such an  interaction a  2-dr in- 
teraction [12]. The  first strategy based on  data flow was 
reported in [4] and  amounts to testing each 2-dr interac- 
tion. The main shortcoming of this strategy is that it does 
not guarantee that branch testing is achieved. The re- 
quired pairs strategy [lo], [ 121  uses data f low analysis to 
construct a  set of required pairs which are then covered 
by test cases. At least one  required pair is produced for 
each 2-dr interaction. For each 2-dr interaction involving 
a  reference in a  branch predicate we produce one  required 
pair for each outcome of the branch predicate. If the def- 

inition or the reference of the interaction occurs in a  loop, 
two iteration counts for that loop are considered in pro- 
ducing the required elements, one  specifying that the loop 
be  exited at the first opportunity, while the other asks that 
the loop should be  iterated some larger number  of times. 

In [ 141,  a  distinction is made  between references to 
variables in a  computat ion (c-use) and  in a  predicate 
(p-use). The p-uses are associated with branches corre- 
sponding to the outcomes of the predicate. Six strategies 
are proposed of which the “all uses” strategy is the cen- 
tral one.  All-uses asks that all interactions between a  c-use 
or a  p-use and  a  definition that reaches it be  tested. Four 
of the strategies are limited versions of “all uses” asking 
that: 1) each definition be  tested with a  path along which 
the definition reaches a  c-use or p-use (all-defs), 2) each 
interaction between a  p-use and  a  definition that reaches 
it be  tested (all-p-uses), 3) each interaction between a  
c-use and  a  definition that reaches it be  tested and  each 
definition be  tested by some path along which it reaches 
a  use (al l-c-useslsome-p-uses) and  4) each interaction be- 
tween a  p-use and  a  definition that reaches it be  tested and  
each definition be  tested by some path along which it 
reaches a  use (al l-p-uses/some-c-uses ). The  sixth strat- 
egy, all-du-paths, asks that each interaction between a  
p-use or a  c-use and  a  definition that reaches it be  tested 
along all cycle-free paths connect ing the appropriate 
statements (including simple cycles from a  definition to a  
reference that occurs in the same segment  as the definition 
1141).  

In [8], two testing strategies are proposed.  The first 
strategy is the same as that proposed in [4], i.e., it re- 
quires that all 2-dr interactions are tested. The second 
strategy requires that each elementary data context of 
every instruction be  tested at least once.  An elementary 
data context of an  instruction is a  complete set of defini- 
t ions for the variables referenced in the statement such 
that the definitions reach the statement. A more extensive 
strategy called ordered data contexts is also ment ioned in 
[8]. It requires that the definitions in each elementary data 
context be  visited in all possible orders. 

A number  of other strategies based on  data flow are pro- 
posed in [9] and  [ 121.  The required k-tuples strategies [ 121  
are extensions of the required pairs strategy. They ask that 
all sequences of k - 1  (or less) related 2-dr interactions 
be  tested. In a  sequence rl, I-,, * * *, rk-, of 2-dr inter- 
actions, the ith 2-dr interaction is related to the ( i +  1  )st 
2-dr interaction if the reference in the ith interaction is 
used directly in the definition associated with the (i +  
1  )st interaction, 0  <  i <  k - 1, The first definition and  
the last reference in the sequence are treated the same way 
as in the required pairs strategy. By varying k we get a  
class of testing strategies with the property that required 
k-tuples subsumes required m-tuples for any m < k. This 
definition clarifies the definition of the required k-tuples 
strategy in [ 121.  There, it is stated erroneously that the k 
data flow actions must occur in distinct segments.  It is 
clear from the rest of the discussion that the word “dis- 
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tinct” should, not appear in the definition (e.g., it contra- 
dicts the definition of required pairs, and it is a very un- 
natural restriction to place on the k-tuples). 

A strategy called definition-tree testing is proposed in 
[9]. A subset of the program variables is selected and then 
the data fow for them is traced back from the output 
through a series of definitions until the beginning of the 
program or a cyclic use is reached. The required k-tuples 
strategies and definition-tree testing allow us to follow a 
sequence of computations related by data flow and, as 
pointed out in [9], [ 121, they may provide a connection 
to the program specification and other information so that 
more effective testing strategies can be formulated. Look- 
ing at required k-tuples as purely structural strategies it 
has been noted [I l] that they quickly run into the law of 
diminishing returns as k increases. A similar phenomenon 
was reported for the TER, = 1 strategies and as a result 
TER, = 1 with n > 4 are rarely used. 

III. COMPARISONS OF THE STRATEGIES 

Comparisons of testing strategies in terms of inclusion 
have been made since the early days of software devel- 
opment (e.g., branch testing subsumes segment testing). 
More recently, this type of comparison was used by Rapps 
and Weyuker to delineate the six data flow based strate- 
gies they introduced. Independently, in [2] and [ 131, these 
comparisons were extended to include other data flow 
based strategies. In this section we further extend the par- 
tial orderings of structural strategies reported in [2], [ 131, 
[ 141 to include structured and boundary-interior path test- 
ing and the TER, = 1 strategies. The ordering is based 
on inclusion, i.e., a strategy X (strictly) includes strategy 
Y if any test set that satisfies X also satisfies Y and there 
is some test set that satisfies Y but not X [ 1.51. Fig. 1 shows 
the resulting ordering for our set of structural strategies. 

We start by pointing out three differences in the order- 
ing of Fig. 1 from the orderings presented in [2], [ 151. 
All of them have to do with changes to or different inter- 
pretations of the definitions of some data flow based strat- 
egies. First, in [ 151, the all-uses strategy is redefined by 
associating all the p-uses for a predicate with the segment 
in which the predicate occurs. The effect is that this ver- 
sion of all-uses does not include branch testing. The def- 
inition of p-uses in [14] is perfectly clear and no justifi- 
cation is given in [15] for changing it. The second 
difference has to do with the required k-tuples class of 
strategies which are extensions of the required pairs strat- 
egy. In [2], required k-tuples are defined so that they ex- 
clude testing of k-tuples that visit the same node more 
than once (based on the erroneous definition in [ 121). The 
definition of required k-tuples was clarified in [ 131 and in 
the previous section and is much more natural than the 
version used in [2]. As far as Fig. 1 is concerned, the 
difference is that the proper version of required pairs in- 
cludes all-uses while the version used in [2] does not. The 
third difference has to do with whether or not testing 2-dr 
interactions includes segment testing. This depends on 
how we handle data flow anomalies and segments in which 

path testing 

ordered 
data contexts 

branch testing \‘ 
se+ent testing 

Fig. 1. Partial ordering of some structural testing strategies. 

there is no data flow action (e.g., an output statement in 
which only constants are used). Both of these conditions 
can be easily detected by static data flow analysis and need 
not affect the definitions of data flow based strategies 
(e.g., in [15], many of the results are stated with the dis- 
claimer “except for constant references”). The approach 
we took in required pairs, was to assume that every seg- 
ment contains a data flow action, that everything is de- 
fined at the start of the program and referenced at the end 
of the program. We feel that this is easily handled and fits 
better with the intent of the flow based strategies. Using 
versions that do not include segment testing begs the in- 
troduction of versions that do, and serves no purpose ex- 
cept the dubious one of increasing the number of data flow 
based strategies. 

In the following lemmas we establish the inclusion re- 
lations for structured path testing, boundary-interior path 
testing and the TER, = 1 class of strategies. These strat- 
egies were not considered in the comparisons reported in 
VI, 1141, 1151. 

Lemma I: Structured path testing with k = 4 includes 
boundary-interior, required pairs, TER3 = 1, and ordered 
data contexts. 

Proof In structured path testing (k = 4 ), each loop 
will be iterated up to four times. Thus, the requirements 
of boundary-interior path testing will be satisfied while 
the converse is not true. 

In the required pairs strategy, the treatment of loops 
depends on the patterns of definitions and references in 
the loop. The most extensive testing of a loop occurs in 
situations where a definition within the loop reaches a ref- 
erence that precedes it within the body of the loop. Con- 
sider the partial flowchart shown in Fig. 2. The set of 
required pairs of this code will include the following: 
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1. 
2. 
3. 
4. 
5. 

SEG SEG VAR 
1  2  X 
1  2  X 
1  2  X 
3  2  X 
3  2  X 

DEF 

Lr 
Lr 

REF 
Py-Le 
Pn-Le 
Pn-Lr 
Pn-Le 
Py-Lr 

Py: Predicate is true 
Pn: Predicate is false 
Le: Exit Loop  
Lr: Repeat  Loop  

These require that the loop be  iterated 0, 1, 2, 3, and  4  
times, respectively. Since structured path testing with 
k =  4  will also iterate the loop up  to four times, it follows 
that it includes required pairs testing. Required pairs does 
not include structured path testing for any k since it can 
be  satisfied without testing all paths from some segment  
i to another segment  j. 

According to [3], to satisfy TER, = 1  each loop must 
be  iterated at least once and  also three or more times. 
TERs can be  achieved by iterating each loop up  to three 
times. Thus, structured path testing (k =  4) includes 
TERs while the converse is not true for any k. 

The order data contexts strategy does not include struc- 
tured path testing (for any k) since it does not always test 
all paths from a  definition to a  reference. Structured path 
testing includes the ordered data contexts strategy since 
the latter never  needs to iterate a  subpath.  Note that in 
code like the one  shown in Fig. 3, elementary data con- 
texts requires that we iterate the loop (in the programming 
sense) but can be  satisfied by taking different paths 
through the loop, i.e., we do  not need  to iterate a  
subpath.  Q.E.D. 

In both the required n-tuples (n > 2) and  TER, = 1  
(n >  3) strategies, some loop may be  iterated more than 
4  times depending on  whether or not a  2-dr interaction or 
an  LCSAJ is al lowed to appear  more than once in a  se- 
quence.  Still, structured path testing with appropriate 
k will include both required n-tuples and  TER, = 1  while 
the converse is not true for any k (even with k =  0) since 
they will not test all paths in a  program without loops. 

Lemma 2: Boundary-interior path testing includes the 
“all-du-paths” strategy. 

Proof The all-du-paths strategy never  requires that 
a  loop be  interated more than one  time. Thus, boundary-  
interior path testing includes all-du-paths. The converse 
is not true since all-du-paths requires only that loop free 
paths from a  definition to a  reference be  tested while 
boundary-interior path testing will also interate any inter- 
vening loops. Q.E.D. 

Lemma 3: Boundary-interior path testing is incompa- 
rable with the data contexts strategies, the required 
k-tuples strategies and  the TER, = 1  strategies. 

Proof The data contexts, required k-tuples, and  
TERk = 1  strategies do  not include boundary-interior path 
testing since, in a  program without loops, they do  not need  
to test all paths connect ing two segments.  Conversely, 
boundary-interior path testing does not include required 
pairs and  TERs = 1  because some loop may need  to be  
iterated three or more times. Also, it does not include the 
elementary data contexts strategy as shown in Fig. 3  where 
elementary data contexts requires that a  path like 1-2-3- 

4-5 be  tested which is not necessary in order to satisfy 
boundary-interior path testing. Q.E.D. 

Lemma 4: Required k-tuples, the data contexts strate- 
gies, all-defs and  all-p-uses are incomparable with TERk 
= 1  for any k >  2. 

Proof Consider the code segments shown in Figs. 4  
-and 5. In Fig. 4, there are two alternation structures form- 
ing a  total of four paths. The set of LCSAJ’s for this code 
is: { l-2 --t 5, l-2-3-4 + 6, 5-6 + 9, 5-6-7-8 -+ 10, 6  -+ 
9, 6-7-8 + 10, 9-lo}. To  cover this set, we must use the 
path l-2-5-6-9-10. However,  ,note that there is no  data 
flow interaction between statements 5  and  9  and  therefore 
none  of the data flow based strategies needs to select this 
path. 

Consider the code segment  shown in Fig. 5. This code 
contains the following set of LCSAJ’s: { l-2 +  7, 1-2-3- 
4  +  7, l-2-3-4-5-6 -+ 10, 7-8 -+ 10, 7-8-9-10). These 
LCSAJ’s can be  covered with the paths l-2-7-8-9-10, 
l-2-3-4-7-8-10, and  l-2-3-4-5-6-10. Note that there is a  
reference to variable B in statement 9  and  B is def ined in 
statement 3. Thus, all-defs requires that a  path through 
both 3  and  9  be  used and  it follows that TER3 = 1  does 
not include all-defs. Consider again the code shown in 
Fig. 5  and  replace X3 with the test B > 0. Then,  the set 
of test paths that satisfy TERs = 1  will fail to test the 
interaction between the definition of B in statement 3  and  
the p-use associated with the “false” branch of the pred- 
icate B > 0  in statement 8. Thus, TERs = 1  does not 
include all-p-uses. 

Note that TER4 = 1  will require a  path through state- 
ments 3  and  9  in the code segment  of Fig. 5  in order to 
cover the pair consisting of the LCSAJ’s l-2-3-4 + 7  and  
7-8-9-10. However,  one  can easily extend this example so 
that, given any n, TER,, =  1  can be  achieved without 
satifying all-defs or all-p-uses. Q.E.D. 

Proofs for the remaining relations shown in Fig. 1, ap-  
pear  in [2], [ 131,  [ 141,  or follow from the above lemmas 
and  the definitions. The definition-tree strategy [9], is not 
included in Fig. 1  because the inclusion relations for it 
depend  on  which variables are traced back. Technically, 
it is incomparable to almost all the strategies in Fig. 1. It 
bears the most resemblance to the required k-tuples strat- 
egy with a  sufficiently high k. 

A serious shortcoming of comparisons in terms of in- 
clusion is that the cost of the various strategies is not ac- 
counted for. Factors contributing to the cost of testing are 
the cost of generat ing a  test set, the cost of running the 
test cases and  the cost of checking the outputs. A common 
contributor to all these factors is the number  of test cases 
needed  to satisfy each strategy. W e  can use the number  
of test cases needed  as a  crude measure of cost. It would 
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Fig. 2. 

1: 

2: 

Y 

I 

x=1 

n 

x>o 

N  

3: x+x-1 

Pattern resulting in the most extensive testing 
pairs testing. 

(1) ;A; 
2=3 

t 

ofa loop by required 

1 

Fig. 3. Elementary data contexts requires that a path like I-2-3-4-5 be 
tested. Boundary-interior path testing does not need to include such a 
path. 

1. 

3: 
4. 
5. 
6. 
7. 
a. 
9. 

10. 

10 
20 

30 
40 

READ(X,Y) 
IF X GOT0 10 
Z=l 
GOT0 20 
W=l 
IF Y GOT0 30 
z=w*z 
GOT0 40 
z=z-2 
END 

Fig. 4. This code segment has a total of four paths all of which are needed 
to satisfy TER, = I. There is no data flow interaction along the path 
through statements 5 and 9 and this path is not needed to satisfy data 
flow based strategies. 

1. A=1 
2. IF Xl GOT0 40 
3. B=l 
4. IF X2 GOT0 40 
5. A=2 
6. GOT0 50 
7. 40 A=A+B 
8. IF X3 GOT0 50 {IF B > 0 GOT0 50 ) 
9. B=B+l 

10. 50 WRITE (A, B) 

Fig. 5. This code contains five LCSAJ’s that can be covered with three 
paths none of which covers the data flow interaction between statements 
3 and 9 {or statements 3 and 8 with B < = 0). 

be more appropriate to make this comparison in terms of 
the “average” number of test cases needed. However,  
establishing what the average number of test cases needed 
for each strategy requires extensive statistical data on the 
control and data flow in real programs and no such data 
are available. Still, it is easy to determine the number of 

test cases needed in the worst case for each strategy and 
this does give us a good indication of the relative cost of 
the strategies. 

Lemma 5: Let n be the number of segments in a pro- 
gram. Then in the worst case, we have that: 

1) Path testing may require an infinite number of test 
paths. 

2) Structured path testing (for any k), boundary-inte- 
rior path testing, all-du-paths may require a number of 
test cases that is an exponential function of n. 

3) Required pairs, TERs = 1, all-uses, the data con- 
texts strategies, 2-dr interactions, all p-uses/some c-uses, 
all c-uses/some p-uses, all p-uses each may require 0 ( n2 ) 
test paths. 

4) All-defs, branch and segment testing may require 
O(n) test paths. 

Proof Most of these bounds have been established 
or implied by the authors that proposed the various strat- 
egies. Worst cases for the data flow strategies proposed 
in [ 141 are reported in [ 161. Claim 1) follows from the 
existence of programs that do not halt. For 2), consider a 
program consisting of a sequence of n IF-THEN-ELSE 
structures, each of which defines and references a variable 
X. Then, structured and boundary-interior path testing as 
well as all-du-paths may require 2” test paths. 

Required pairs involves the selection of up to 2 out of 
II segments in order to form a 2-dr interaction. Let m be 
the maximum number of variables that are referenced in 
any segment. Then, we can have 0( m * n 2, required 
pairs. Since it is common practice to assume that m is 
bounded by a constant, required pairs never needs more 
than 0( n2) test paths. A program with a sequence of n 
IF-THEN-ELSE structures and a variable X that is de- 
fined and referenced in each one of them achieves this 
upper bound. Ordered data contexts will usually require 
more test paths in order to test the up to m! orders in which 
m variables that are referenced in a segment can appear 
in the data context. However,  if m is bounded by a con- 
stant (which is normally the case), the number of test paths 
needed is no worse than 0( n*). TER3 = 1 requires that 
each LCSAJ is tested. A program can have 0( n *) 
LCSAJ’s and 0( n 2, test paths may be required to cover 
them (e.g., consider a sequence of IF COND GOT0 
statements where each such statement is also a target of a 
GOTO).  

All-defs and segment testing may require 0 (n) test 
cases (e.g., consider a long sequence of nested IF-THEN- 
ELSE’s). The bound for branch testing follows from the 
fact that the number of branches is 0 (n) since the out- 
degree of each vertex is the control flow graph of a pro- 
gram is normally bounded by a small constant (one can 
construct control flow graphs with 0( n 2, branches but 
that would involve compound statements that should be 
treated as sequences of simpler statements). Q.E.D. 

It should be noted that, while programs can be con- 
structed that achieve these worst case bounds, in practice 
the number of test cases needed usually is considerably 
less than what is implied by the bounds. 
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IV. CONCLUSIONS 

We presented a comparison of a number of structural 
testing strategies in terms of the relation “strategy A in- 
cludes strategy B” and in terms of the number of test cases 
needed in the worst case by each strategy. It turns out that 
the comparison in terms of the number of test cases needed 
in the worst case provides a much more meaningful 
grouping of the various strategies than Fig. 1 does. The 
most interesting group is the one including the strategies 
that may require 0( n2) test paths as most of them offer 
needed improvement over branch testing and their cost 
remains reasonable. 

The comparison in terms of inclusion is useful but has 
a number of weaknesses. First, as can be seen from Fig. 
1, many of the strategies are incomparable. Usually this 
is due to the details in the definitions of the strategies 
rather than a reflection of different approaches to struc- 
tural testing. As a result, Fig. 1 tends to emphasize trivial 
differences rather than common approaches. Also, slight 
modifications in the definitions of the various strategies 
can alter the inclusion relations. As seen in the previous 
section, the required n-tuples and the TER, = 1 strategies 
can easily be made incomparable with structured path 
testing (with k = 4). If we define boundary-interior test- 
ing so that it does not test all combinations of branches in 
the first two executions of the body of a loop, then we 
have that boundary-interior path testing is incomparable 
with all-du-paths and most of the other data flow based 
strategies. Also, if we use the programming notion of a 
loop in defining structured path testing, then it becomes 
incomparable with most of the data flow based strategies. 

Some of the strategies are properly defined to allow var- 
ious choices and the particular choices that are selected 
can alter the inclusion relations. As an example, consider 
the treatment of arrays in data flow based strategies. In 
our discussion we have assumed that all elements of an 
array are treated as occurrences of the same variable (since 
the data flow interactions between distinct elements can 
not be determined with static analysis). If we consider the 
elements of an array as distinct variables (using run-time 
instrumentation to verify coverage) then the data flow 
based strategies become incomparable with structured path 
testing (for any k) since they may require that a loop be 
iterated n times (where IZ is the size of the array). 

Another problem with comparisons in terms of inclu- 
sion is that even when we can determine that one strategy 
includes another, we have no quantitative measure of the 
difference between the two strategies (i.e., how much bet- 
ter is path testing than structured path testing?). It is not 
at all clear that adopting a more extensive strategy is pref- 
erable to using a combination of simpler strategies or ex- 
tending a simpler strategy. For example, consider testing 
an IF-THEN structure using branch and segment testing. 
To achieve branch testing we need to use two paths while 
segment testing can be achieved with just one path. As- 
suming that test data are selected in a similar fashion from 
the path domains, we can claim that branch testing will 

be more effective than segment testing. However,  if we 
use two independent test cases for segment testing, it fol- 
lows that segment testing will be more effective than 
branch testing in detecting errors within the body of the 
THEN branch. This points out a major deficiency that all 
structural testing strategies share. Many errors along a 
path can only be detected if the path is executed with val- 
ues from some subset of its subdomain. Purely structural 
testing strategies provide no guidelines for selecting the 
actual values with which to execute a test path. Then, it 
may well be that effectiveness increases by testing a 
smaller set of test paths with more inputs as compared to 
testing a larger subset of paths with one input per test 
path. 

Another way in which the various strategies can be 
evaluated and compared is to determine what types of er- 
rors they are effective in detecting and types of errors for 
which they are ineffective. Some results along these lines 
are reported in [3], [8], [ 1 I]. Experiments with the por- 
table mutation system [l] reported in [ 1 I] show that the 
main weakness of required pairs is in detecting errors hav- 
ing to do with small shifts in domain boundaries and the 
handling of special values. These are types of errors for 
which all the structural strategies are relatively ineffec- 
tive. It should be noted that strategies that totally disre- 
gard the program structure can be equally ineffective for 
other types of errors (e.g., consider errors in code that is 
entered under conditions specific to a particular imple- 
mentation of an algorithm but do not appear in the spec- 
ifications). Thus, it is important that strategies that com- 
bine structural testing with other approaches to testing be 
used. This has been noted by many of the researchers in 
the field. For example, data flow strategies were proposed 
in [9], [12] as a basis for combining structural with black 
box and error driven strategies and in [3], it is reported 
that the TERs = 1 strategy is used after applying func- 
tional testing. 
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