
Awareness-based Collaboration Driving
Process-based Coordination

Dimitrios Georgakopoulos, Marian Nodine, Donald Baker, Andrzej Cichocki
Telcordia Technologies, 106 E. Sixth Street, Suite 415

Austin, Texas 78701, USA
{dimitris, nodine, dbaker, andrzej}@research.telcordia.com

Abstract—Awareness-Enabled Coordination (AEC) is a platform
designed to address the problem of scaling collaboration to large
multi-organizational teams. Such collaboration is inhibited by the
complexity in multi-organizational environments and lack of
efficiency in achieving team objectives. AEC provides a
contextualization mechanism that deals with such complex, real
world environments where teams involve humans, tools, software
services, and agents that come from different organizations, are
subject to multiple jurisdictions, and provide diverse expertise.
To provide efficiency in achieving team objectives, AEC provides
situation- and project-related awareness, as well as process-based
coordination and automation. We describe the AEC architecture
and discuss AEC models and mechanisms for computing
awareness and coordinating action. We use examples from the
homeland security domain to illustrate these AEC technical
capabilities and their benefits.

Keywords—awareness; process; coordination; collaboration

I. INTRODUCTION
Many of the technologies and software products that have

been developed to support virtual team collaboration
[15][27][12][13] have problems with scaling to large multi-
organizational teams. This is due to the complexity in multi-
organizational environments and lack of efficiency in achieving
team objectives. While some existing technologies support
many users, they provide only limited help for users and virtual
teams to deal with the complexity of the environment in which
they operate. Additionally, they do not provide models and
corresponding mechanisms geared towards significantly
increasing efficiency in achieving team objectives.

Awareness-Enabled Coordination (AEC) is a platform
designed to support effective collaboration of large multi-
organizational teams, possibly operating in dynamically
changing situations (e.g., disaster response). Collaborating
team members may be geographically distributed, be employed
by or be serving multiple agencies or organizations, and may
have different processes and resources, even for doing similar
activities; these factors conspire to make the collaboration
environment very complex. Unlike other existing technologies
for supporting collaboration, AEC supports the ability of its

users to deal with the complexity of their environments;
specifically, the events, processes, and resources that often
arise from various contexts that reflect different organizations,
jurisdictions, teams, and activities. AEC deals with such
complexities by providing capabilities for modeling such
contexts, as well as contextualization mechanisms for
automatically mapping events, activities and resources from
one context to another, and combining these in composite
events and processes across virtually any network of contexts
that reflects the real world environments being supported by
AEC.

AEC’s context management capability provides models,
tools and repositories that organizations, jurisdictions, teams,
and persons can use to model (and store for reference) the types
of events, processes, and resources that are of interest within
their own scope, as well as their relationships with other
contexts. Typically, the modeling of organization, jurisdiction,
and team contexts is accomplished by experts within each of
these contexts. The personal context of each user is maintained
by its owner. The required initial effort for context modeling is
worthwhile, since it enables AEC to automate the
contextualization of events, resources, and activities.

Events are evaluated, activities are performed, and
resources are utilized under the aegis of one or more contexts,
with which they are related, either directly or transitively.
When a user declares his/her need to be alerted of a complex
event or his/her intent perform an activity, dynamic
contextualization utilizes this related context information to
automatically determine possible ways for mapping the related
events that originate in other contexts to one or more (possible
complex) events in the user’s context or suggesting ways for
doing the intended activity, the resources it may use, and the
events that may apply to it. Contextualization effectively
reduces the space the user has to consider by helping users
focus only on the events, processes, resources, and events that
relate to their own context and filtering out those contexts and
their contents that do not apply.

To increase team communication and coordination
efficiency, AEC takes advantage of contextualization in
providing the following synergistic capabilities:

• Provide situational and team awareness to each team
member by utilizing contextualized, possibly complex
events: AEC provides awareness both with respect to

This material is partially based upon work supported by Air Force Research
Laboratory, Information Directorate, Rome, NY under Contract No. F30602-
03-C-0006.
© 2006 Telcordia Technologies, Inc.

Published in the Proceedings of the Second International Conference on Collaborative Computing (CollaborateCom 2006),
Atlanta, Georgia, USA, Novermber 2006

Federal

Austin

FBI

DHS

CBPTexas NY
2

1

2

5 6

1

1

5

…

…
Task Force

3

… 4

John AliceXavier YianniCarolBob

… 6

32
4

1

Federal

Austin

FBI

DHS

CBPTexas NY
2

1

2

5 6

1

1

5

…

…
Task Force

3

… 4

John AliceXavier YianniCarolBob

… 6

32
4

1

n Resources:
1 - Terrorist

Database
2 - NJ Search

Warrant
Database

k
Activities/processes:

1 - CBP Admission
2 - DHS Notification
3 - Search Warrant
4 - Database Search
5 - Investigation
6 - Event subscription

m
Events:

1 - Alien enters country
2 - Group active
3 - Person belongs to group
4 - Person belongs to active group
5 - Threatening person
6 - Threatening person enters country

Activity, Policy &
Resource flow

Event flow

Context
Relations n Resources:

1 - Terrorist
Database

2 - NJ Search
Warrant
Database

k
Activities/processes:

1 - CBP Admission
2 - DHS Notification
3 - Search Warrant
4 - Database Search
5 - Investigation
6 - Event subscription

m
Events:

1 - Alien enters country
2 - Group active
3 - Person belongs to group
4 - Person belongs to active group
5 - Threatening person
6 - Threatening person enters country

Activity, Policy &
Resource flow

Event flow

Context
Relations

Activity, Policy &
Resource flow

Event flow

Context
Relations

Figure 1. Context network example.

the progress of the team towards the completion of an
activity, and any situational changes that may impact
their work. Awareness is computed using user-defined
awareness specifications. Evaluation of awareness
specifications involves the automatic monitoring the
information in all contexts and other external event
sources, analyzing them to detect specified events and
event patterns, and delivering such awareness via alerts
to the targeted users. Efficient team communication is
accomplished via contextualized, possibly complex
events indicating potential problems or progress.

• Provide process-based coordination and automation of
team actions by utilizing awareness: AEC supports the
specification/modeling and automation of
organizational, team, and information sharing
processes. AEC-supported processes are flexible. They
accommodate team and individual styles of work
ranging from highly structured business processes to
dynamically self-organized work. This increases
efficiency of team coordination and action.

The remainder of this paper discusses these capabilities,
provides examples, and describes related tools provided by
AEC. It is organized as follows: Section II provides an
overview of AEC context management. Section III describes
dynamic event contextualization, while Section IV discusses
the specification and computation of awareness. Section V
describes process-based coordination and automation. Section
VI focuses on the contextualization of activities and processes.
Section VII gives a brief overview of the AEC architecture. We
describe related work and conclude in Sections VIII and IX,
respectively.

II. CONTEXT MANAGEMENT
A context is a mosaic of information, knowledge, resources,

and programs that are gathered together for a particular
purpose. Examples of contexts supported by AEC include those
that gather the events, process, and resources for organizations,
jurisdictions, real-word objects and locations, teams, and
individuals. These are the elements each specific context
provides to help AEC users achieve the context’s purpose.
Administrators with appropriate authority and training use
AEC context management tools to populate and maintain their
contexts, storing their current information and knowledge in
AEC repositories, and making it accessible within their own
context and to related contexts.

An AEC context consists of a scope and a set of context
elements. Currently, AEC context elements include directly
accessible events, resources, and methods that have meaning
relative to the context. Context elements may include
references to or copies of elements in other contexts. The
context scope provides referential relationships to other
contexts containing relevant events, resources, methods, etc.
The intent of the scope is to provide boundaries on the
visibility and accessibility of elements in other contexts. A set
of contexts that are interconnected with context references
forms a context network.

Fig. 1 depicts an example of an AEC context network from
the homeland security domain, shown as a set of contexts and a

set of relationships. Two types of relationships are shown as
arrows in Fig. 1: event flow, and resource and activity, policy
and resource flow. Referential relationships are defined in the
opposite direction of the arrows in Fig. 1. For example, the
event and resource flow relationship between the contexts of
Department of Homeland Security (DHS) and the Customs and
Border Protection (CBP) is defined by including DHS in CBP’s
scope. Event flow is determined by publish/subscribe
relationships as shown by the dotted arrows in Fig. 1.

Each organization (e.g., government agency) has its own
organizational context that typically includes its resources,
events, and processes. Large organizations may have a
hierarchy of organizational contexts related via (possibly
typed) referential relationships that mirror its organizational
structure. For example, in Fig. 1 the CBP organization is a part
of the DHS. All DHS processes apply to CBP, and DHS
resources may be usable by the CBP (unless they are access
restricted). This is reflected in the relationship between the two
contexts.

Jurisdictional contexts (e.g., the Federal, Texas, NJ, and
Austin contexts in Fig. 1) maintain the laws, events, processes,
and resources (e.g., the database of people entering the US, and
the roles of judges for issuing search warrants), and other
information for each jurisdiction. The Federal context is
typically at the top of the government’s jurisdictional context
network. Changes in both jurisdictional and organizational
contexts are relatively infrequent. As with all contexts, their
resources, activities, and policies flow to other contexts within
their scopes, as needed.

Contexts for real-word objects and locations may include
resources (i.e. actors or other objects of interest) and their
attributes; state changes of the resources; time intervals of state
changes; spatial coordinates of the entities (if any); and
relations of these entities to other information in such contexts.
For example, the context of the disaster response organization
for the city of Austin includes available resources (e.g., police
cars, fire tracks, people, and teams of these) and their up-to

date spatial coordinates, event types for monitoring their state
changes, as well processes for deploying such resources for
each kind of anticipated emergency.

The contexts at the bottom of Fig. 1 are personal contexts
for the individuals that belong in different organizations. These
individuals may be subject to multiple jurisdictions. For
example, Carol’s context in Fig. 1 is subject to the processes
and events in FBI, Texas, and New Jersey. This is indicated by
the “event and resource flow” relationship between Carol’s
context and the FBI, Texas, and NJ contexts.

Increasingly complex context interrelationships apply in
situations where multi-organizational teams (such as a task
forces and emergency preparedness teams) include members
that operate under multiple jurisdictions and organizational
processes. The Task Force in Fig. 1 is an example of such a
multi-organizational team. For example, suppose that the Joint
Team consists of FBI and CBP agents and is has been formed
to investigate a suspected terrorist that enters the US. The
scope of the Task Force context includes the FBI and CBP
contexts (as well as DHS via CBP). The Task Force members
(i.e., Xavier, Yianni and John) are subject to the processes and
can use the resources specified in the new team context, their
organizational contexts (i.e., FBI and CBP), as well as the
jurisdictional contexts of the states they operate. Processes,
resources, and events in these contexts that are relevant to the
team-related activities performed by the Task Force members
will be determined via dynamic contextualization.

III. DYNAMICALLY CONTEXTUALIZING EVENTS
To describe event contextualization, we first need to define

events. In AEC, events are packets of information describing an
occurrence. Packetizing information in an event allows it to
have a lifetime separate of the occurrence it describes.
Therefore, events allow reasoning about the event occurrence
to be disconnected in time and place from the occurrence itself,
a requirement in situations where event sources are distributed.
A primitive event describes a real-world occurrence that can be
either detected directly by AEC (e.g., completion of an activity
or a change in the status a resource managed by AEC) or it is
detected by an external event source that is monitored by AEC
(e.g., a sensor, a person). Therefore, resources, programs, and
human activities are sources of primitive events. A composite
event describes a constellation of related events (either
primitive or composite) that has meaning as a complex
occurrence (e.g. a project completing with its deadline and
budget constraints). An alert is a composite event that is
delivered to a user. Such alerts are the basis of awareness in
AEC.

The first step in making these primitive events
understandable to the end users is to relate them to one or more
contexts. We call this event transformation contextualization.
Another issue with external event sources such as sensors or
people is that the same real-world event might be “seen” by
multiple sources with each source providing partial, but
overlapping information about the occurrence. Such redundant

(possibly heterogeneous) information must be fused. To
provide near-real time awareness, contextualization and fusion
must be performed in a data-driven fashion as new primitive
events arrive. Finally, because some event sources may need
unknown/unanticipated time to produce events,
contextualization and fusion of primitive events must not
embody expectations concerning delays, such as computational
time windows.

To addresses these needs, AEC provides a suite of Event
Contextualization (EC) and Awareness Computation (AC)
capabilities. Fig. 2 uses a subset of the contexts we introduced
in Fig. 1 to illustrate the utility of these capabilities. In the
following paragraphs, we focus on EC. AC is described further
in Section IV.

The purpose of Event Contextualization in AEC is to
automate the transformation of primitive events that are
gathered from external event sources to one or more AEC
contexts. For example, event contextualization is applied in our
example in Fig. 2 to automatically transform and fuse event
reported by Xavier and Alice to their personal contexts in AEC.
Event contextualization is also applied to automatically
transform and fuse events detected in one AEC context to
events of different types in other AEC context that subscribe to
the source context (e.g., subscriptions are illustrated as event
flow relationships in Fig. 2). For example, events detected in
the DHS and CBP contexts in Fig. 2 are contextualized (i.e.,
transformed and fused) into events of interest to the FBI
context. Therefore, a contextualized event is an event (re)cast in
terms of the concepts represented in a target context. Such an
event may have parameters that identify the actors, their
activities, and the space and time they occur.

FBI

DHS

CBP

1

6

1

Task Force
Alice

Xavier

Carol

5

32

4

FBI

DHS

CBP

1

6

1

Task Force
Alice

Xavier

Carol

5

32

4

Context

Awareness computation

Event flow

Event contextualization

External primitive event source
m Events:

1 - Alien enters country (contextualized)
2 - Group active (contextualized)
3 - Person belongs to group (contextualized)
4 - Person belongs to active group (composite)
5 - Threatening person (re-contextualized)
6 - Threatening person enters country (composite)

ContextContext

Awareness computationAwareness computation

Event flow

Event contextualizationEvent contextualization

External primitive event sourceExternal primitive event source
m Events:

1 - Alien enters country (contextualized)
2 - Group active (contextualized)
3 - Person belongs to group (contextualized)
4 - Person belongs to active group (composite)
5 - Threatening person (re-contextualized)
6 - Threatening person enters country (composite)

m Events:
1 - Alien enters country (contextualized)
2 - Group active (contextualized)
3 - Person belongs to group (contextualized)
4 - Person belongs to active group (composite)
5 - Threatening person (re-contextualized)
6 - Threatening person enters country (composite)

Figure 2. Event contextualization and awareness computation in AEC contexts.

Upon receipt of an event, an Event Contextualization
capability must perform the following activities:

1. Contextualize the event by correlating event
parameters and event source metadata (e.g. the AEC
resource, user, process, external event source, and
location) with the information of related contexts. (e.g.,
the organizational and personal contexts).

2. Incrementally fuse the primitive event with
information already present in the context for the
specific entities related to the event. This results in an
update to the context (e.g., when multiple sources
report the occurrence of an event, the information
carried by the events they produce is fused into a single
event in the context).

3. Incrementally publish the resulting event(s) to the
subscribing contexts.

Event contextualization is unnecessary and is not performed
in situations were the source and subscribing contexts use the
same event types (e.g., in Fig. 2 the CBP context subscribes to
the same events as Alice’s personal context).

AEC’s Awareness Computation capabilities are applied
only on contextualized events as we describe next.

IV. COMPUTING AWARENESS
We define awareness as the stream of events that carry

highly relevant information to a specific user role and situation.
Because a human's attention is a finite resource that must be
optimized, awareness events must be digested and delivered to
exactly the users who need them via alerts. The information in
the awareness event must be related to the context that gave
rise to it. Note that, if awareness events provide less
information or they are targeted improperly, users will act
inappropriately or be less effective. Users receiving too many
or uninteresting events must deal with an information overload
that adds to their work and masks important information.

To compute awareness, AEC provides an Awareness
Computation (AC) capability that consumes contextualized
events in each context and detect complex events of interest to
users or other subscribing contexts. When it detects such
complex events, AC embodies them in alerts targeted to users
playing context specific roles.

Our approach in AEC is that the awareness that users
receive must be explicitly specified in advance. AEC detects
complex events and generates the corresponding alert and task
requests based on user-authored awareness specifications.
Awareness specifications are comprised of context-specific
interconnected computational units called event operators.

The inputs and outputs of event operators are streams of
contextualized events, either primitive or composite.
Connections between operators are only allowed between
semantically compatible event types, as described by the event
ontology (AEC’s event ontology is represented in full OWL
[18]). This restriction helps ensure compatibility between
producing and consuming event operators, but it also ensures
semantic compatibility, so that the overall awareness

specification computes complex events/alerts relative to the
author’s understanding.

Authorized AEC users utilize a graphical editor to author
awareness specifications for each context, as needed. To author
an awareness specification a user would create event operators
from a palette of operator types, interconnect the event
operators’ input and output event streams, and customize the
operators’ computational behavior via dialog boxes. AEC
provides a suite of generic operators that can be customized for
each context. Operator customization in AEC may be
performed via dialog boxes or via a programming language.

Fig. 3 shows the AEC awareness editor being used to
specify a Threatening Person Enters Country event in the FBI
context. The FBI context, its event sources (i.e., CBP, and Task
Force contexts) and subscriber (Carol’s personal context) are
illustrated in Fig. 2. To define the awareness specification for
detecting Threatening Person Enters Country events, AEC
users drag operator instances into the specification from a
palette of operator types, as shown on the left side of Fig. 3.
The graph diagram for this specification is depicted in the right
side of Fig. 3 and involves four operators. The operator
Threatening Person detects events of type Person belongs to
active group that are computed in the Task Force Context.
Such events are contextualized as a Threatening Person event
in the FBI context. The Alien Enters Country operator simply
detects events of the same time that are detected in the CBP
context (since both the FBI and CBP context share this event
type, Alien Enters Country events do not need to be
contextualized in the FBI context. The Threatening Person
Enters Country operator continuously joins the event streams
for Threatening Person and Alien Enters Country and emits
events of type Threatening Person Enters Country whenever
there is a match between threatening people and aliens that just
entered the country. The root operator in Fig. 3 sends alerts to
the subscribing party (i.e., in Fig. 2 this is Carol) via her
personal context. Fig. 2 does not illustrate the contextualization
of Threatening Person Enters Country events in Carol’s
context.

AEC operator types can be categorized in broad functional
categories:

• set manipulations – operators that perform set
operations over the events on their input streams;

• temporal operators – combining constituent events into
temporal sequences;

Figure 3. An awareness specification in AEC.

• joining – combining related events from multiple input
streams into composite events on the output stream;

• filtering – culling of uninteresting events from the
input in the output;

• grouping and aggregation – grouping of multiple input
events from a single stream into aggregated output
events; and

• alert operators – delivery of composite events to
context-specific roles.

With proper training, AEC users can extend the palette of
event operators with customized, domain-specific operators.
Such operators can be added to an AEC palette at any time.
Operator customization is necessary for the following reasons:

• Events in AEC carry information in the form of event
parameters concerning the situation described in their
source context. Users need to customize operators to
pull the most relevant information out of the
constituent/input event(s) and summarize such
information in the parameters of the computed
composite/output event. Information provided on alerts
is available at alert delivery time for user inspection.
This computation of event parameters by event
operators enables AEC to automatically generate the
information on an alert that the user is most likely to
need.

• Users need to associate each awareness specification to
a specific context. In addition, alert operators need to
be assigned to a specific role in the operator context.

• To improve ease of use by non-experts, it is desirable
to provide operators relevant to domain-specific
functions that they can understand easily. For example,
the ThreateningPersonEnters Country event operator
in Fig. 3 has been specifically created for the FBI
context. Its advantage is that it has a clear meaning in
the FBI context and it requires little or no
customization when it is used in this context.

The edges between the operators represent the flow of
events from producer to consumer; as shown on the right side
of Fig. 3. The leaf operators of an awareness specification
derive events from AEC contexts. Interior operators combine
one or more such basic events and generate composite events
that describe a situation that is more specific than the situations
giving rise to the input events. EventDelivery operators at the
roots of an awareness specification graph act as delivery
instructions for their input events. As shown in the dialog box
in Fig. 3, the EventDelivery operator can be customized to
change the title of the alerts and a role of people to whom to
direct the alerts. Awareness operators computed output events
related to a specific context. For instance, all operators in the
awareness specification in Fig. 3 are context-specific, i.e., they
compute awareness from resources of the FBI context and
deliver it to a role defined in this context.

Awareness is computed incrementally and continuously.
Incremental computation enables awareness to be delivered to
targeted users in a timely fashion. Alerts are not just generated

once, but can evolve over time as relevant information is
updated. Awareness specifications can also be edited “on the
fly” with the resulting alerts immediately recomputed.

The goal of computing awareness in AEC is to enable
effective decision making. When decisions require action,
actions typically involve activities and processes that
coordinate and automate team work. In the rest of this paper we
focus on AEC support for flexible processes that AEC provides
as the means for coordinated action.

V. COORDINATING AND AUTOMATING ACTIVITIES
Coordination and automation of team activities enhances

efficiency. Flexibility permits timely action in response to
important events that arise while an activities or an entire
process is being executed. Such awareness-enabled action
typically involves dynamic process refinement and change.
AEC provides a flexible processes model and corresponding
context-based process management mechanisms to enhance the
efficiency of coordinating and information sharing among
members of multi-organizational teams in a dynamic setting.
When processes or parts of processes are well-structured and
well-defined, AEC provides the option to automate them,
reducing the work load on team members. In the following
paragraphs we describe AEC’s flexible process model, and
describe in more detail its novel capabilities for process-based
coordination and automation.

AEC’s flexible process model permits interleaved
definition, refinement, and execution of activities and
processes. A process activity in AEC is a collection of child
activities, possibly constrained by dependencies on their
execution. A child activity may be intended to be done by
humans, be a program or service that is accessed directly
(either with the help of a human or in an automated fashion), or
in turn be a nested processes. Semantic activity types, called
activity intents, are defined in AEC’s activity ontology, whose
purpose is to provide a common semantic type system that
allows AEC users to indicate their intent when they start a new
activity (e.g., by selecting the appropriate semantic activity
type in the ontology). Activity intents do not define how an
activity is to be done. Thus, the activity’s method must be
defined before activity becomes concrete (i.e., executable by
AEC). Thus, a single intent can be associated with multiple
methods that satisfy that intent.

In addition to dynamically refining a process activity
starting from the intent, AEC supplies method catalogue for
selecting a method to satisfy the intent of an activity. Each
context has an indexed catalogue of suggested (or required)
specifications for methods related to specific intents. The user
can access the method catalogue from the activity’s context
based on the intent of the activity, and choose the appropriate
entry in the catalogue to use as a basis for his/her own activity.
The user may use the selected method as a starting point for
further refinement, or may be required to follow a method
strictly (for instance, if it is a traditional business process).

Child activities of an AEC process may be constrained in
terms of when they can be executed. Like in many traditional
process models [29][5][12][8], AEC’s process model supports
control flow dependencies that order the execution of activities,

forcing one activity to precede the other. Resource selection
dependencies define the resource types required by each
activity in AEC. Resource flow dependencies in AEC are
constraints in the flow of resources to or from the context of
each activity. If a process has control flow dependencies
between all its child activities and methods for all activity
intents, we call it a (fully) structured process. Partially
structured processes only have control flow dependencies
between some child activities, while the child activities of
unstructured processes have no control dependencies (i.e., there
basically set of activities and of these activity can be performed
at any time). Both partially structured and unstructured
processes can have activity intents that must be associated with
methods by end users before their execution. We use the term
predefined to refer to activities or processes that have all their
methods specified, control flow, resource selection, and
resource flow dependencies defined before they are executed.
We refer to activities and processes being defined (e.g., by
adding a method, changing control and resource flow or adding
a resource selection) after the execution of their parent process
starts as dynamically refined.

AEC’s flexible process model supports a wide variety of
process-based coordination styles ranging from fully structured
to unstructured processes. Furthermore, the AEC flexible
process model permits dynamic refinement and change of any
process during its execution. For example, just as in many other
process management systems (e.g., workflow systems and EAI
integration platforms [8][3][12]) AEC supports the
specification and automation of business processes for
organizations, jurisdictions, and teams. Using the terms we
defined above, business processes are predefined and structured
AEC processes that apply to organizational and jurisdictional
AEC contexts. Specified business processes can be analyzed
and measured to assess and improve their efficiency. Process
automation can drastically reduce overhead and cost for
assigning tasks to people, coordinating activities, tracking
progress towards achieving goals, and maintaining
accountability information. AEC provides all these benefits of
business process management; however, since we follow well-
understood methodologies, we will not discuss these
capabilities further in this paper. These automation capabilities
give AEC a distinct efficiency advantage over the ad hoc
coordination advocated by many groupware (e.g., as in [15].)

Fig. 4 shows a partially completed process for investigating
a terrorist group for which FBI agent Carol we introduced in
Fig. 2 is a participant. A number of activities have completed,
including an initial database search and reviewing the leads that
turned up from that search. These activities are performed in
the FBI and the Task Force contexts, respectively, that are
depicted in Fig. 2. Based on the leads, Carol decided to expand
the database search and to obtain a search warrant that would
aid in the gathering of information as to the current
whereabouts of a particular suspected terrorist. Both of these
activities are ongoing as indicated by the "R" for running in the
top left corner of the activities’ icons.
Upon receipt of the alert concerning a potential terrorist
entering the country, Carol decides to change the direction of
the investigation process. She knows that the search warrant
will not be needed as the alert provides her that information.
She terminates the activity to obtain a search warrant and
creates and starts a new activity to obtain a wiretap on the
phone in his known location. The revised process is shown in
Fig. 5.

Dynamic refinement and change during process execution
permits AEC process execution to start even if a process is only
partially defined. The process may be further refined as
progress is made towards accomplishing its intent. For
example, refinement may occur when decisions concerning the
method are made during execution, when a resource is assigned
to a child activity immediately before it is executed, or when
external events require abandoning planned activities and
initiating new unplanned activities in response. For processes,
dynamic process refinement modifies the specification of the
child activities and the control flow dependencies between
them to make the activity more concrete. To accommodate
such refinement, an AEC process can include activities that are
only specified at the level of what the activity intends to
accomplish. (As we discussed earlier activity intents are
defined according to a domain-specific activity ontology in
AEC). As AEC users obtain more information concerning the
details of what needs to be done, the activity may be refined
until it is fully-specified.

AEC automates processes to provide further coordination
efficiency. Flexible process execution in AEC is performed by
AEC’s coordination capability, which is process engine
functionality that is distributed in all contexts maintained by

Figure 4. A running AEC process.

Figure 5. Dynamic process change in AEC.

AEC. When a flexible process starts in a context C, the AEC
process engine in C enables the execution of each of its child
activities once the following conditions are met on that activity:

• The child activity is defined well enough that execution
can begin. Otherwise, the user must refine the activity
until it reaches the point where the execution can
begin. This may involve defining a process or selecting
a preexisting method (e.g., a one that is available in an
organizational context).

• The child activity has access to all of the resources on
which it depends. Otherwise, the user whose role is
specified in the activity is asked to select and bind
resources in its context to resources in its environment.
The selection of available resources is determined via
dynamic contextualization.

• All of the activities’ incoming control flow
dependencies are enabled.

Once a child activity is ready for execution, it can either run
automatically (if it is flagged as automatic), or be started by the
intervention of some responsible team member. The process
may be monitored by any team member, but a specific
responsible party (this is a specified activity role) is given the
task of dealing with any issues during process execution.
AEC’s provides tools (including the process editing tool
illustrated in Fig. 5) for defining, refining, and monitoring
flexible processes. Since AEC activities generate events,
AEC’s awareness tools can used to monitor more detailed
aspects for processes.

VI. DYNAMICALLY CONTEXTUALIZING ACTIVITIES
Just like events in AEC, every activity in AEC is performed

within the direct scope of one or more contexts and is
contextualized by AEC. This is necessary because contexts
constrain how the activity may be performed by providing the
resources and methods that are relevant to the activity. The
determination of the set resources, methods, and events that
may apply to the activity at the current time is called dynamic
activity contextualization.

When a user states his or her intent to perform an activity,
AEC’s activity contextualization mechanism performs the
following steps:

1. Dynamically determines the environment of the
activity. This involves computing the transitive
closure of the contexts that are visible from the
context of the activity.

2. Reduces the environment of the activity to the set of
resources and methods that are compatible to the
activity. That is, AEC suggests methods having a type
compatible with the activity type, and resources of a
type that can be utilized by the activity type. In
addition, AEC highlights events that refer to the
activity type. Where alternatives exist, AEC either
automatically selects preferred alternatives (where
they are well-defined) or allows users to make the
choice explicitly.

In the presence of dynamic change, contextualization
involves having each activity constantly track the contexts and
context relationships, adapting the activity to relevant changes,
establishing access to new elements in other contexts, and
dropping references to elements that became inaccessible.

VII. RUN TIME ARCHITECTURE
The AEC platform is comprised of a collection of contexts

distributed over a set of nodes that support these contexts. The
AEC architecture is depicted in Fig. 6.

Contexts visible to the AEC users are depicted in the upper
plane in Fig. 6. As we discussed in earlier sections, examples of
AEC contexts include those for organizations, jurisdictions,
activities, and individuals.

The arrows between contexts represent the event, resource,
and control flow relationships specified between them. The
contexts themselves reside on nodes distributed across the
network, hosted in different locations and by different
organizations or agencies. Each node hosts one or more
contexts and provides a set of system services to them, such as
messaging, naming, event, etc. Nodes are illustrated in the
lower plane in Fig. 6.

VIII. RELATED WORK
We described AEC innovations related to context,

contextualization, awareness, flexible processes, and dynamic
adaptability. In the following paragraphs we contrast our work
to existing work in similar areas.

AEC uses the term “context” to refer not only to the
immediate context of an activity, but also to the network of
jurisdictional, organizational, and other contexts that reflect the
environment in which the activity is taking place. Our work
concretizes and expands on early work done in the area of
organizational contexts and awareness [24]. The domains
discussed by Uszok, et al. [26] with respect to KAoS policies
are similar to our jurisdictional and organizational contexts.
Agent communication contexts in Ricci, et al. [21], when
restricted to a single activity of an agent, would maintain
similar information to an agent's personal context in AEC.

Figure 6. AEC architecture.

Also, the information that we place in our context network
relates to the types of information you would expect to see at
the upper levels of institutions, within the work on representing
norms and institutions, e.g. in [9]. However, while related
projects compact the contextual policies within the domain or
institution, AEC creates a composite context containing related
individual, and autonomously-updatable, contexts that can be
maintained explicitly by the organizations and jurisdictions
whose processes and resources they represent. In addition,
AEC provides mechanisms and tools for both automatic and
user driven contextualization.

AEC builds on our earlier awareness work [1][2] in process
management systems, an advanced process-oriented system.
Here, we extend that work to recognize the importance of
contextualization as an important aspect of computing
awareness. Ultimately, our concept of awareness follows in the
spirit of Paul Dourish who advocated the raising the level of
abstraction through judicious simplification of the “story a
system tells about itself” [10]. We have greatly extended his
approach by using situational and contextual relevance to
improve the quality of awareness.

The event operators we have advocated for use in the
Awareness Computation capability of AEC are based on event
processing technologies. Indeed, AEC as a whole can be
viewed as an example of an Event Driven Architecture (EDA)
[19]. Early event processing systems, such as Snoop [7]
developed event algebra based models, with generic event
operators such a filter, sequence, and count. CEDMOS [6]
moved toward self-contained events and the need for
computation of event parameters for complex events. Although
these systems have explored basic event processing ideas,
usability, efficiency, and contextualization were not addressed.

With respect to process-based coordination and automation,
many existing workflow systems (e.g., COSA [8], FileNet
[12]), Enterprise Integration platforms (e.g., WebLogic
Integrator [3], and NetWeaver [23]) as well as standards for
process workflow management [29] and process-based web
service integration [5] are all geared towards modeling and
automating processes that are predefined and fully structured.
Therefore, these technologies and standards lack the flexibility
of AEC’s flexible process model that is necessary to support
teamwork in changing environment. The Collaboration
Management Infrastructure (CMI) system [14] and it
commercial derivative ATLAS [25], as well as others [4][17],
have explored relaxing control flow constraints to support some
partially structured processes. Other researchers have designed
systems such as Caramba [11] that permit either structured or
ad hoc activities, or have proposed formal frameworks for
dealing with dynamic process change [27][21]. None of these
technologies supports contextualization or dynamic change
[13].

Existing groupware tools such as Groove [15] typically rely
on informal human coordination. When such tools are used for
large scale collaboration, the overhead involved in exchanging
coordination messages hinders collaboration efficiency.
Another problem is that their basic capabilities for
contextualizing messages and information do not scale up as
well. AEC addresses this issue by scoping activities, events and

resources into appropriate contextual settings. Document
sharing systems such as Vignette [27] support the sharing of
documents and other resources, but provide only token support
for coordination.

Finally, although various workflow systems support process
monitoring and groupware tools provide limited awareness on
the status of shared resources, (e.g., [16]), none of these
technologies provides models and mechanisms for customizing
situation, and work related awareness to serve the needs of
each user. ATLAS [25] and its precursor CMI [14] provide
such capabilities but lack contextualization and unrestricted
dynamic change.

IX. CONCLUSION
AEC supports the efficient collaboration of large multi-

organizational teams. Unlike existing collaboration systems,
AEC achieves collaboration efficiency by improving the
following collaboration aspects:

1. AEC provides team/project and situational awareness
via composite events that combine information from
various contexts. Only events that are relevant to the
situation and activities of each individual team
member are automatically contextualized to his/her/its
personal context and delivered automatically via
alerts.

2. AEC support awareness-enabled coordination. It
facilitates human understanding of dynamic change by
harnessing changes to resources and other time-based
information into information that is highly relevant to
the work and roles of each user. Properly informed
users can make better decisions and they are
empowered to do so through authoring processes,
selecting activities to execute, refining the processes
in which they play a part, or changing the structure of
resources or even organizations.

These aspects of AEC are in turn supported by provided
mechanisms for contextualization and the flow of events,
resources, and control. The combination of these capabilities
helps users and virtual teams deal with the complexity of their
environment, and provide efficiency in achieving team
objectives. These capabilities make AEC suitable for
supporting large scale collaboration.

The capabilities described in this paper are part of our
working AEC research prototype. While AEC has yet to be
deployed, we have developed a number of scenarios and
demonstrations of AEC’s capabilities for our government
customer. One such scenario was developed by an external
organization comprised of intelligence analysts that captured
the extensive, but fictional cross-organizational interactions
that might occur in a counter terrorism response. We were able
to capture the organizations, events, teams, and processes
successfully for this scenario in AEC with relatively small
effort. We view this as a small but nontrivial validation of our
approach. We are currently looking for early AEC adopters.

REFERENCES
[1] D. Baker, D. Georgakopoulos, H. Schuster, and A. Cichocki,

“Customized Process and Situation Awareness,” International Journal
of Cooperative Information Systems, March 2002.

[2] D. Baker, D. Georgakopoulos, M. Nodine, and A. Cichocki, “From
Events to Awareness,” Proceedings of International Workshop on Event-
driven Architecture, Processing, and Systems (EDA-PS'06) ICWS/SSCS
2006, Sept. 2006.

[3] BEA: WebLogic Integrator, http://www.bea.com/, 2006.
[4] D. Bogia, and S. Kaplan, “Flexibility and Control for Dynamic

Workflows in the wOrlds Environment,” Proceedings of ACM
Conference on Organizational Computing Systems, 1995.

[5] “Business Process Execution Language for Web Services Version 1.1,”
http://www-106.ibm.com/developerworks/webservices/library/
ws-bpel.

[6] A. Cassandra, D. Baker, and M. Rashid, “CEDMOS, Complex Event
Detection and Monitoring System,” MCC Technical Report CEDMOS-
002-99, Microelectronics and Computer Technology Corporation, 1999.

[7] S. Chakravarthy, “Snoop: An Expressive Event Specification Language
for Active Databases,” Data and Knowledge Engineering, 14(10), 1994.

[8] COSA Solutions: COSA Product Suite, http://www.cosa.de/, 2003.
Damianou, N., N. Dulay, E. Lupu and M. Sloman, “The Ponder Policy
Specification Language,” Proceedings of Workshop on Policies for
Distributed Systems and Networks, Springer LNCS, 2001.

[9] F. Dignum, “Abstract Norms and Electronic Institutions,” Proceedings
of Int'l Workshop on Regulated Agent-Based Systems: Theories and
Applications, 2002.

[10] P. Dourish, “Accounting for System Behavior: Representation,
Reflection, and Resourceful Action,” Computers and Design in Context,
1995.

[11] S. Dustdar, “Caramba: A process-Aware Collaboration System
Supporting Ad hoc and Collaborative processes in Virtual Teams,”
Distributed and Parallel Databases, D. Georgakopoulos (ed.), Vol. 15,
No. 1, Jan.2004.

[12] FileNet: Business Process Manager, http://www.filenet.com/, 2006.
[13] D. Georgakopoulos, “Teamware: An Evaluation of Key technologies

and Open Problems,” Distributed and Parallel Databases, D.
Georgakopoulos (ed.), Vol. 15, No. 1, Jan. 2004.

[14] D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki, “Managing
Escalation of Collaboration Processes in Crisis Mitigation Situations,”
Proceedings 16th International Conference on Data Engineering
(ICDE’00), San Diego, 2000.

[15] Groove: Groove Virtual Office, http://www.groove.net, 2006.
[16] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace Awareness in

Real-Time Distributed Groupware: Framework, Widgets, and
Evaluation, People and Computers,” Proceedings of HCI’96, 1996.

[17] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke, “A
Comprehensive Approach to Flexibility in Workflow Management
Systems,” Proceedings of the Intl. Joint Conf. on Work Activities
Coordination and Collaboration (WACC’99), 1999.

[18] D. McGuinness, D., and van Harmelen, F. (Eds.), “OWL Web Ontology
Language Overview,” http://www.w3.org/TR/owl-features/, 2004.

[19] B. Michelson, “Event Driven Architecture Overview: Event-Driven
SOA Is Just Part of the EDA Story,” Technical Report 10.1571/bda2-2-
06cc, Patricia Seybold Group, 2006. Available via
http://dx.doi.org/10.1571/bda2-2-06cc.

[20] M. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and A. Unruh,
“Active Information Gathering in InfoSleuth,” Intl. Journal of
Cooperative Information Systems, Vol. 9, No. 1, 2000.

[21] A. Ricci, M. Viroli and A. Omicini, “Role-based Access Control in
MAS using Agent Coordination Contexts,” Proceedings of Workshop on
Agent Organizations: Theory and Practice, AAAI Press, 2004.

[22] S. Rinderle, M. Reichert, P. Dadam, “Flexible Support of Team
Processes by Adaptive Workflow Systems,” Distributed and Parallel
Databases, Vol. 16, No. 1, July 2004.

[23] SAP: NetWeaver, http://www.sap.com, 2006.

[24] K. Schmidt, and L. Bannon, (Eds,) “Issues of Supporting Organizational
Context in CSCW Systems,” Lancaster University, 1993.

[25] Telcordia Technologies: ATLAS, http://www.argreenhouse.com/
ATLAS/, 2003.

[26] A. Uszok, et al, “KAoS Policy and Domain Services: Toward a
Description-Logic Approach to Policy Representation, Deconfliction
and Enforcement,” Proceedings of IEEE International Workshop on
Policies for Distributed Systems and Networks, IEEE Press, June 2003.

[27] Vignette Solutions: Content Management and Portal,
http://www.vignette.com, 2006.

[28] M. Weske, “Flexible Modeling and Execution of Workflow Activities,”
Proceedings 31st Hawaii Int. Conf. on System Sciences, Software
Technology Track, 1998.

[29] Workflow Management Coalition, www.wfmc.org, 2006.

http://www.bea.com/�
http://www-106.ibm.com/developerworks/webservices/library/%0bws-bpel�
http://www-106.ibm.com/developerworks/webservices/library/%0bws-bpel�
http://www.cosa.de/�
http://www.filenet.com/�
http://www.groove.net/�
http://www.w3.org/TR/owl-features/�
http://dx.doi.org/10.1571/bda2-2-06cc�
http://www.sap.com./�
http://www.argreenhouse.com/%0bATLAS/�
http://www.argreenhouse.com/%0bATLAS/�
http://www.vignette.com/�
http://www.wfmc.org/�

	Introduction
	Context Management
	Dynamically Contextualizing Events
	Computing awareness
	Coordinating and automating activities
	Dynamically contextualizing activities
	Run time architecture
	Related work
	Conclusion
	References

