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Object-Oriented Development
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Abstract—Object-oriented development is a partial-lifecycle software
development method in which the decomposition of a system is based
upon the concept of an object. This method is fundamentally different
from traditional functional approaches to design and serves to help
manage the complexity of massive software-intensive systems. The pa-
per examines the process of object-oriented development as well as the
influences upon this appreach from advances in abstraction mecha-
nisms, programming languages, and hardware. The concept of an ob-
ject is central to object-oriented development and so the properties of
an object are discussed in detail. The paper concludes with an exami-
nation of the mapping of object-oriented techniques to Ada® using a
design case study

Index Terms—Abstract data type, Ada, object, object-oriented de-
velopment, software development method.

I. INTRODUCTION

ENTSCH predicts that ‘‘object-oriented program-

ming will be in the 1980°s what structured program-
ming was in the 1970’s” [1]. Simply stated, object-ori-
ented development is an approach to software design in
which the decomposition of a system is based upon the
concept of an object. An object is an entity whose behav-
ior is characterized by the actions that it suffers and that
it requires of other objects.

Object-oriented development is fundamentally different
from traditional functional methods, for which the pri-
mary criteria for decomposition is that each module in the
system represents a major step in the overall process. The
differences between these approaches becomes clear if we
consider the class of languages for which they are best
suited.

The proper use of languages like Ada and Smalltalk re-
quires a different approach to design than the approach
one typically takes with languages such as Fortran, Cobol,
C, and even Pascal. Well-structured systems developed
with these older languages tend to consist of collections of
subprograms (or their equivalent), mainly because that is
structurally the only major building block available. Thus,
these languages are best suited to functional decomposi-
tion techniques, which concentrate upon the algorithmic
abstractions. But as Guttag observes, ‘‘unfortunately, the
nature of the abstractions that may be conveniently
achieved through the use of subroutines is limited. Sub-
routines, while well suited to the description of abstract
events (operations), are not particularly well suited to the
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description of abstract objects. This is a serious draw-
back’ [2].

Languages like Ada also provide the subprogram as an
elementary building block. However, Ada additionally of-
fers the package and task as major structural elements.
The package gives us a facility for extending the language
by creating new objects and classes of objects, and the
task gives us a means to naturally express concurrent ob-
jects and activities. We can further extend the expressive
power of both subprograms and packages by making them
generic. Together, these facilities help us to better build
abstractions of the problem space by permitting a more
balanced treatment between the nouns (objects) and verbs
(operations) that exist in our model of reality.

Of course, one can certainly develop Ada systems with
the same methods as for these more traditional languages,
but that approach neither exploits the power of Ada nor
helps to manage the complexity of the problem space.

In general, functional development methods suffer from
several fundamental limitations. Such methods

* do not effectively address data abstraction and infor-
mation hiding;

¢ are generally inadequate for problem domains with
natural concurrency;

® are often not responsive to changes in the problem
space.

With an object-oriented approach, we strive to mitigate
these problems.

Before we get too detailed, let us consider alternate de-
signs for a simple real-time system using functional and
object-oriented techniques. :

A cruise-control system exists to maintain the speed of
a car, even over varying terrain [3]. In Fig. 1 we see the
block diagram of the hardware for such a system. There
are several inputs:

If on, denotes that the
cruise-control  system
should maintain the car
speed.

If on, denotes that the car
engine is turned on; the
cruise-control system is
only active if the engine
is on.

A pulse is sent for every
revolution of the wheel.

Indication of how far the
accelerator has been
pressed.

® System on/off

* Engine on/off

e Pulses from wheel

® Accelerator
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Fig. 1. Cruisel-control system hardware block diagram.

¢ Brake On when the brake is
pressed; the cruise-con-
trol system temporarily
reverts to manual con-
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if the brake is

pressed.

¢ Increase/Decrease Speed Increase or decrease the
maintained speed; only
applicable if the cruise-
control system is on.

* Resume Resume the last main-
tained speed; only ap-
plicable if the cruise-
control system is on.

¢ Clock Timing pulse every milli-

second.

There is one output from the system:
¢ Throttle Digital value for the en-
gine throttle setting.

How might we approach the design of the software for
the cruise control system? Using either functional or ob-
ject-oriented approaches, we might start by creating a data
flow diagram of the system, to capture our model of the
problem space. In Fig. 2, we have provided such a dia-
gram, using the notation by Gane and Sarson [4].

With a functional method, we would continue our de-
sign by creating a structure chart. In Fig. 3, we have used
the techniques of Yourdon and Constantine [5] to decom-
pose the system into modules that denote the major func-
tions in the overall process.

With an object-oriented approach, we proceed in an en-
tirely different manner. Rather than factoring our system
into modules that denote operations, we instead structure
our system around the objects that exist in our model of
reality. By extracting the objects from the data flow dia-
gram, we generate the structure seen in Fig. 4. We will
more fully explain the process and the meaning of the
symbols used in the figure later. For the moment, simply
recognize that the amorphous blobs denote objects and the
directed lines denote dependencies among the objects.

Immediately, we can see that the object-oriented de-
composition closely matches our model of reality. On the
other hand, the functional decomposition is only achieved
through a transformation of the problem space. This latter
design is heavily influenced by the nature of the subpro-
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Fig. 2. Cruise-control system data flow diagram.
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gram and so emphasizes only the algorithmic abstractions
that exist. Hence, we can conclude that a functional de-
composition is imperative in nature: it concentrates upon
the major actions of a system and is silent on the issue of
the agents that perform or suffer these actions.

The advantages of the object-oriented decomposition are
also evident when we consider the effect of change (and
change will happen to any useful piece of software). One
side-effect of the functional decomposition is that all in-
teresting data end up being global to the entire system, so
that any change in representation tends to affect all sub-
ordinate modules. Alternately, in the object-oriented ap-
proach, the effect of changing the representation of an ob-
ject tends to be much more localized. For example,
suppose that we originally chose to represent car speed as
an integer value denoting the number of wheel revolutions
per some time unit (which would not be an unreasonable
design decision). Suppose that we are now told to add a
digital display that indicates the current speed in miles per
hour. In the functional decomposition, we might be forced
to modify every part of the system that deals with the rep-
resentation of speed, as well as to add another major mod-
ule at the highest level of the system to manage the display.
However, in the object-oriented decomposition, such a
change directly affects only two objects (current speed and
desired speed) and would require the addition of one more
object (the display) that directly parallels our modification
of reality.

Regarding an even more fundamental change, suppose
that we chose to implement our cruise-control system
using two microcomputers, one for managing the current
and desired speeds and the second to manage the throttle.
To map the functional decomposition to this target archi-
tecture requires that we split the system design at the high-
est level. For the object-oriented approach, we need make
no modification at this level of the design to take advan-
tage of the physical concurrency.

II. OBJECT-ORIENTED DEVELOPMENT

Let us examine the process of object-oriented develop-
ment more closely. Since we are dealing with a philosophy
of design, we should first recognize the fundamental cri-
teria for decomposing a system using object-oriented tech-
niques:

Each module in the system denotes an object or class
of objects from the problem space.

Abstraction and information hiding form the foundation
of all object-oriented development [6], [7]. As Shaw re-
ports, “‘an abstraction is a simplified description, or spec-
ification, of a system that emphasizes some of the sys-
tem’s details or properties while suppressing others™ [8].
Information hiding, as first promoted by Parnas, goes on
to suggest that we should decompose systems based upon
the principle of hiding design decisions about our abstrac-
tions [9].

Abstraction and information hiding are actually quite
natural activities. We employ abstraction daily and tend
to develop models of reality by identifying the objects and
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operations that exist at each level of interaction. Thus,
when driving a car, we consider the accelerator, gauges,
steering wheel, and brake (among other objects) as well
as the operations we can perform upon them and the effect
of those operations. When repairing an automobile en-
gine, we consider objects at a lower level of abstraction,
such as the fuel pump, carburetor, and distributor.

Similarly, a program that implements a model of reality
(as all of them should) may be viewed as a set of objects
that interact with one another. We will study the precise
nature of objects in the following section, but next, let us
examine how object-oriented development proceeds. The
major steps in this method are as follows:

¢ ]dentify the objects and their attributes.

¢ Jdentify the operations suffered by and required of
each object.

e Establish the visibility of each object in relation to
other objects.

¢ Establish the interface of each object.

* Implement each object.

These steps are evolved from an approach first proposed
by Abbott [10]. .

The first step, identify the objects and their attributes,
involves the recognition of the major actors, agents, and
servers in the problem space plus their role in our model
of reality. In the cruise-control system, we identified con-
crete objects such as the accelerator, throttle, and engine
and abstract objects such as speed. Typically, the objects
we identify in this step derive from the nouns we use in
describing the problem space. We may also find that there
are several objects of interest that are similar. In such a
situation, we should establish a class of objects of which
there are many instances. For example, in a multiple-win-
dow user interface, we may identify distinct windows
(such as a help window, message window, and command
window) that share similar characteristics; each object
may be considered an instance of some window class.

The next step, identify the operations suffered by and
required of each object, serves to characterize the behav-
ior of each object or class of objects. Here, we establish
the static semantics of the object by determining the op-
erations that may be meaningfully performed on the object
or by the object. It is also at this time that we establish
the dynamic behavior of each object by identifying the
constraints upon time or space that must be observed. For
example, we might specify that there is a time ordering of
operations that must be followed. In the case of the mul-
tiple-window system, we should permit the operations of
open, close, move, and size upon a window object and
require that the window be open before any other opera-
tion be performed. Similarly, we may constrain the max-
imum and minimum size of a particular window.

Clearly, the operations suffered by an object define the
activity of an object when acted upon by other objects.
Why must we also concern ourselves with the operations
required of an object? The answer is that identifying such
operations lets us decouple objects from one another. For
example, in the multiple-window system we might assume
the existence of some terminal object and require the op-
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erations of Move Cursor and Put. As we will see later,
languages such as Ada provide a generic mechanism that
can express these requirements. The result is that we can
derive objects that are inherently reusable because they
are not dependent upon any specific objects, but rather
depend only upon other classes of objects.

In the third step, to establish visibility of each object in
relation to other objects, we identify the static dependen-
cies among objects and classes of objects (in other words,
what objects see and are seen by a given object). The pur-
pose of this step is to capture the topology of objects from
our model of reality.

Next, to establish the interface of each object, we pro-
duce a module specification, using some suitable notation
(in our case, Ada). This captures the static semantics of
each object or class of objects that we established in a
previous step. This specification also serves as a contract
between the clients of an object and the object itself. Put
another way, the interface forms the boundary between
the outside view and the inside view of an object.

The fifth and final step, implement each object, involves
choosing a suitable representation for each object or class
of objects and implementing the interface from the pre-
vious step. This may involve either decomposition or com-
position. Occasionally an object will be found to consist
of several subordinate objects and in this case we repeat
our method to further decompose the object. More often,
an object will be implemented by composition; the object
is implemented by building on top of existing lower-level
objects or classes of objects. As a system is prototyped,
the developer may chose to defer the implementation of all
objects until some later time and just rely upon the spec-
ification of the objects (with suitably stubbed implemen-
tations) to experiment with the architecture and behavior
of a system. Similarly, the developer may chose to try sev-
eral alternate representations over the life of the object,
in order to experiment with the behavior of various imple-
mentations.

We must point out that object-oriented development is
a partial-lifecycle method; it focuses upon the design and
implementation stages of software development. As Ab-
bott observes, ‘‘although the steps we follow in formal-
izing the strategy may appear mechanical, it is not an au-
tomatic procedure. . . [it] requires a great deal of real world
knowledge and intuitive understanding of the problem”
[11]. It is therefore necessary to couple object-oriented de-
velopment with appropriate requirements and analysis
methods in order to help create our model of reality. We
have found Jackson Structured Development (JSD) to be
a promising match [12] and recently, there has been in-
terest in maping requirements analysis techniques such as
SREM to object-oriented development [13].

Systems designed in an object-oriented manner tend to
exhibit characteristics quite different than those designed
with more tranditional functional approaches. As Fig. 5
illustrates, large object-oriented systems tend to be built
in layers of abstraction, where each layer denotes a col-
lection of objects and classes of objects with restricted vis-
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Fig. 5. Canonical structure of large object-oriented systems.

ibility to other layers; we call such a collection of objects
a subsytem. Furthermore, the components that form a sub-
system tend to be structurally flat (like we saw in Fig. 4),
rather than being stricly hierarchical and deeply nested.

It is also the case that the global flow of control in an
object-oriented system is quite different from that of a
functionally decomposed system. In the latter case, there
tends to be a single thread of control that follows the hi-
erarchical lines of decomposition. In the case of an object-
oriented system, because objects may be independent and
autonomous, we typically cannot identify a central thread
of control. Rather, there may be many threads active
simultaneously throughout a system. This model is ac-
tually not a bad one, for it more often reflects our abstrac-
tion of reality. We should add that the subprogram call
profile of an object-oriented system typically exhibits
deeply nested calls; the implementation of an object op-
eration most often involves invoking operations upon other
objects.

There are many benefits to be derived from an object-
oriented approach. As Buzzard notes, ““‘there are two ma-
jor goals in developing object-based software. The first is
to reduce the total life-cycle software cost by increasing
programmer productivity and reducing maintenance costs.
The second goal is to implement software systems that
resist both accidental and malicious corruption attempts”
[14]. Giving empirical evidence that supports these points,
a study by Boehm-Davis notes that ‘‘the completeness,
complexity, and design time data would seem to suggest
that there is an advantage to generating program solutions
using. . .object-oriented methods” [15]. Regarding the
maintainability of object-oriented systems, Meyer observ-
ers that “‘apart from its elegance, such modular, object-
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oriented programming yields software products on which
modifications and extensions are much easier to perform
than with programs structured in a more conventional,
procedure-oriented fashion” [16]. In general, understand-
ability and maintainability are enhanced due to the fact
that objects and their related operations are localized.

Perhaps the most important benefit of developing sys-
tems using object-oriented techniques is that this ap-
proach gives us a mechanism to formalize our model of
reality. As Borgida notes, “‘the chief advantage of object-
oriented frameworks is that they make possible a direct
and natural correspondence between the world and its
model” [17]. This even applies to problems containing
natural concurrency, for as the Boehm-Davis study re-
ports, ‘‘the object-oriented method seemed to produce
better solutions for [a problem] which involved real-time
processing’” [18].

III. THE PROPERTIES OF AN OBJECT

The notion of an object plays the central role in object-
oriented systems, but actually, the concept is not a new
one. Indeed, as MacLenna reports, ‘“‘programming is ob-
ject-oriented mathematics [19]. Lately, we have ob-
served a confluence of object-oriented work from many
elements of computer science. Levy suggests that the fol-
lowing events have influenced object-oriented develop-
ment [20]:

* advances in computer architecture, including capa-
bility systems and hardware support for operating systems
concepts;

¢ advances in programming languages, as demon-
strated in Simula, Pascal, Smalltalk, CLU, and Ada;

¢ advances in programming method, including modu-
larization and information hiding and monitors.

We would add to this list the work on abstraction
mechanisms by various researchers.

Perhaps the first person to formally identify the impor-
tance of composing systems in levels of abstraction was
Dijkstra [21]. Parnas later introduced the concept of in-
formation hiding [9] which, as we will discuss later, is
central to the nature of an object. In the 1970’s, a number
of researchers, most notably Liskov, Guttag, and Shaw,
pioneered the development of abstract data type mecha-
nisms [22]-[24]. The late 1970’s and early 1980’s also
saw the application of a number of software development
methods (such as JSD) that were declarative rather than
imperative in nature.

- The greatest influence upon object-oriented develop-
ment derives from a small number of programming lan-
guages. SIMULA 67 first introduced the class as a lan-
guage mechanism for encapsulating data, but, as Rentsch
reports, ‘‘the Smalltalk programming system carried the
object-oriented paradigm to a smoother model.” Indeed,
“the explicit awareness of the idea, including the term ob-
ject-oriented, came from the Smalltalk effort” [1]. Other
object-oriented languages such as Ada and Clascal fol-
lowed the more tranditional path of SIMULA, but in the
early 1980°s we also saw a number of languages merge
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the concepts of Lisp and Smalltalk; thus evolved lan-
guages such as Flavors and LOOPS. It is also clear that
Lisp alone may be effectively used to apply object-ori-
ented techniques [25]. More recently, there has.been work
to add Smalltalk constructs to C, resulting in a language
named Objective-C [26]. Languages such as Smalltalk
have collectively been called actor languages, since they
emphasize the role of entities as actors, agents, and serv-
ers in the structure of the real world [27].

Interestingly, the concept of an object has precedence
in hardware. Work with tagged architectures and capabil-
ity-based systems has led to a number of implementations
that we can classify as object-oriented. For example,
Myers reports on two object-oriented architectures,
SWARD and the Intel 432 [28]. The IBM System 38 is
also regarded as an object-oriented architecture [29].

Every source we have introduced presents a slightly dif-
ferent view of object-oriented systems, but from this
background we can extract the common properties of the
concept. Thus, we may define an object as an entity that:

® has state;

¢ is characterized by the actions that it suffers and that
it requires of other objects;

¢ is an instance of some (possibly anonymous) class;

¢ is denoted by a name;

* has restricted visibility of and by other objects;

* may be viewed either by its specification or by its
implementation.

The first and second points are the most important: an
object is something that exists in time and space and may
be affected by the activity of other objects. The state of
an object denotes its value plus the objects denoted by this
value. For example, thinking back to the multiple-window
system we discussed in the first section, the state of a win-
dow might include its size as well as the image displayed
in the window (which is also an object). Because of the
existence of state, objects are not input/output mappings
as are procedures or functions. For this reason, we distin-
guish objects from mere processes, which are input/out-
put mappings.

From Smalltalk, we get the notion of a method, which
denotes the response by an object to a message from an-
other object. The activity of one method may pass mes-
sages that invoke the methods of other objects. Abstract
data types deal with operations is a related way. Liskov
suggests that such operations be divided *‘into two groups:
those which do not cause a state change but allow some
processes. Whereas a aspect of the state to be ob-
served. . .and those which cause a change of state” [30].
In practice, we have encountered one other useful class of
operations, the iterator, which permits us to visit all sub-
components of an object. The concept of an iterator was
formalized in the language Alphard [31]. For example,
given an instance of a terminal screen, we may wish to
visit all the windows visible on the screen.

Together, we may classify these operations as follows:

e Constructor: An operation that alters the state of an

object.
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e Selector: An operation that evaluates the current
object state.

An operation that permits all parts of
. an object to be visited.

To enhance the reusability of an object or class of ob-
jects, these operations should be primitive. A primitive
~operation is one that may be implemented efficiently only
if it has access to the underlying representation of the ob-
ject. In this sense, the specification of an object or class
of objects should define ‘“‘the object, the whole object, and
nothing but the object.”

We may classify an object as an actor, agent, or server,
depending upon how it relates to surrounding objects. An
actor object is one that suffers no operations but only op-
erates upon other objects. At the other extreme, a server
is one that only suffers operations but may not operate
upon other objects. An agent is an object that serves to
perform some operation on the behalf of another object
and in turn may operate upon another object.

Another important characteristic of objects is that each
object is a unique instance of some class. Put another way,
a class denotes a set of similar but unique objects. A class
serves to factor the common properties of a set of objects
and specify the behavior of all instances. For example, we
may have a class named Window from which we create
several instances, or objects. It is important to distinguish
between an object and its class: operations are defined for
the class, but operations only have an effect upon the ob-
ject.

Of course, and this gets a little complicated, one can
treat a class as an object (forming a metaclass), with op-
erations such as creating an instance of the class. This
strange loop in the definition is not only academically in-
teresting, but also permits some very elegant programs.

The term class comes from SIMULA 67 and Smalltalk;
in other languages, we speak of the rype of an object. Also
from Smalltalk, we get the concept of inheritance, which
permits a hierarchy of classes. In this sense, all objects
are an instance of a class, which is a sublcass of another
class (and so on). For example, given an object, its class
may be Text Window, which is in turn a subclass of the
more general class Window. An object is said to inherit
the methods of this chain of classes. Thus, all objects of
the class Text Window have the same operations as de-
fined by the class Window (and we may also add opera-
tions, modify existing operations, and hide operations
from the superclass).

Now, and this is an area of much emotional debate, we
suggest that inheritance is an important, but not neces-
sary, concept. On a continuum of ‘“‘object-orientedness,”’
development without inheritance still constitutes object-
oriented development. On the other hand, object-oriented
development is more than just programming with abstract
data types, although abstract data types certainly serve as
an important influence; indeed, we can characterize the
behavior of most objects using the mechanisms of abstract
data types. Whereas development with abstract data types

e [terator:

tends to deal with passive objects (that is, agents and serv-
ers), object-oriented development also concerns itself with
objects that act without stimulus from other objects (we
call such objects actors). Another difference between pro-
gramming with abstract data types and object-oriented de-
velopment is that, in both cases, we concern ourselves
with the operations suffered by an object, but in the latter
case, we also concern ourselves with the operations that
an object requires of other objects. As we have mentioned,
the purpose of this view is to decouple the dependencies
of objects, especially when coupled with a language
mechanism such as Ada generic units.

Another way to view the relationship between object-
oriented development and programming with abstract data
types is that object-oriented development builds on the
concepts of the latter, but also serves as a method that
exposes the interesting objects and classes of objects from
our abstraction of reality.

In some cases, the class of an object may be anony-
mous. Here, the object does have a class but its class is
not visible. The implication is that there may be only one
object of the class (since there is no class name from which
instances may be declared). Practically, we implement
such objects as abstract state machines instead of in-
stances of a class.

Another important consideration of any object-oriented
system is the treatment of names. The rule is simple: ob-
jects are unique instances of a class, and names only serve
to denote objects. As Liskov observes, “variables are just
the names used in a program to refer to objects™ [32].
Thus, an object may be denoted by one name (the typical
case) or by several names. In the latter situation, we have
an alias such that operation upon an object through one
name has the side-effect of altering the object denoted by
all the aliases. For example, we may have several variables
in our window system that denote the same window ob-
ject; operating upon an object through one name (such as
destroying the window) has the effect of altering the ob-
ject denoted by all other names. This one object/many
name paradigm is a natural consequence of the notion of
an object, but depending upon the manner of support of-
fered by the underlying language, is the source of many
logical errors. The key concept to remember is that sup-
plying a name to an constructor does not necessarily alter
the value of the name, but instead, alters the object de-
noted by the name.

The names of objects should have a restricted scope.
Thus, in designing a system, we concern ourselves with
what objects see and are seen by another object or class
of objects. This in fact is the purpose of one of the steps
in our method, that of establishing the visibility among
objects. In the worst case, all objects can see one another,
and so there is the potential of unrestricted action. It is
better that we restrict the visibility among objects, so as
to limit the number of objects we must deal with to un-
derstand any part of the system and also to limit the scope
of change.
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Finally, every object has two parts, and so may be
viewed from two different ways: there is an outside view
and an inside view. Whereas the outside view of an object
serves to capture the abstract behavior of the object, the
inside view indicates how that behavior is implemented.
Thus, by seeing only the outside view, one object can in-
teract with another without knowing how the other is rep-
resented or implemented. When designing a system, we
first concern ourselves with the outside view.

The outside view of an object or class of objects is its
specification. The specification captures all of the static
and (as much as possible) dynamic semantics of the object.
In the specification of a class of objects, we export a num-
ber of things to the rest of the system, including the name
of the class and the operations defined for objects of the
class. Ideally, our implementation language enforces this
specification, and prevents us from violating the proper-
ties of the specification.

Whereas the outside view of an object is that which is
visible to other objects, the inside view is the implemen-
tation and so is hidden from the outside. In the body of
an object or object class, we must chose one of many pos-
sible representations that implements the behavior of the
specification. Again, if the language permits it, we may
replace the implementation of an object or class of objects
without any other part of the system being affected. The
benefits of this facility should be clear: not only does this
enforce our abstractions and hence help manage the com-
plexity of the problem space, but by localizing the design
decisions made about an object, we reduce the scope of
change upon the system.

IV. ApA AND OBJECT-ORIENTED DEVELOPMENT

Clearly, some languages are better suited than others to
the application of object-oriented development; the major
issue is how well a particular language can embody and
enforce the properties of an object. Smalltalk and its im-
mediate relatives provide the best match with these con-
cepts, but it is also the case that languages such as Ada
may be applied in an object-oriented fashion. Specifically,
in Ada:

® Classes of objects are denoted by packages that ex-
port private or limited private types.

® Objects are denoted by instances of private or limited
private types or as packages that serve as abstract state
machines.

* Object state resides either with a declared object (for
instances of private or limited private types) or in the body
of a package (in the case of an abstract state machine).

® Operations are implemented as subprograms ex-
ported from a package specification; generic formal sub-
program parameters serve to specify the operations re-
quired by an object.

® Variables serve as names of objects; aliases are per-
mitted for an object.

.*® Visibility is statically defined through unit context
clauses.
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Fig. 6. Names, objects, and classes.

* Separate compilation of package specification and
body support the two views of an object.

¢ Tasks and task types may be used to denote actor ob-
jects and classes of objects.

Fig. 6 illustrates the interaction of these points.

It is also the case that we can provide a form of inher-
itance using derived types. Thus, we could define a class
of objects in a package that exports a nonprivate type, and
then build on top of this class by deriving from the first
type. The derivation inherits all the operations from the
parent type. Because we have used an unencapsulated type
(a type that is not private or limited private), we may add
new operations, replace existing operations, and hide op-
erations from the parent class. However, we must realize
that there is a tradeoff between safety and flexibility. By
using an unencapsulated type, we avoid much of the pro-
tection offered by Ada’s strong typing mechanism. Small-
talk favors the side of flexibility; we prefer the safety of-
fered by Ada, especially when applied to massive software-
intensive systems.

Earlier, we used a few simple symbols to represent the
design of the cruise-control system. It should come as no
surprise that some people can grasp the essence of a de-
sign just by reading package specifications, while others
are more effective if they are first given a graphical rep-
resentation of the system architecture; we fall into the lat-
ter category. Since neither structure charts nor data flow
diagrams capture the interesting properties of an object,
we offer the set of symbols in Fig. 7, evolved from our
earlier work [33]. We have found them to be an effective
design notation that also serve to directly map from data
flow diagrams to Ada implementations.

As Fig. 7 represents, these symbols are connected by
directed lines. If we draw a line from object 4 to object
B, this denotes that A depends upon the resources of B in
some way. In the case of Ada units, we must make a dis-
tinction regarding the parts of a unit that exhibit these de-
pendencies. For example, if the specification of package
X depends upon Y, we start the directed line from the col-
orless part of the symbol for X; if the body of X depends
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=

Package Generic Package
Subprogram Generic Subprogram
. Subsystem ]

Fig. 7. Symbols for object-oriented design.

upon Y, we start the directed line from the shaded part of
X.

V. DEsIGN CASE STuDY

Let us apply the object-oriented method to one more
problem, adapted from the study of Boehm-Davis [15].

There exists a collection of free-floating buoys that pro-
vide navigation and weather data to air and ship traffic at
sea. The buoys collect air and water temperature, wind
speed, and location data through a variety of sensors. Each
buoy may have a different number of wind and tempera-
ture sensors and may be modified to support other types
of sensors in the future. Each buoy is also equipped with
a radio transmitter (to broadcast weather and location in-
formation as well as an SOS message) and a radio receiver
(to receive requests from passing vessels). Some buoys are
equipped with a red light, which may be activated by a
passing vessel during sea-search operations. If a sailor is
able to reach the buoy, he or she may flip a switch on the
side of the buoy to initiate an SOS broadcast. Software for
each buoy must:

® maintain current wind, temperature, and location in-
formation; wind speed readings are taken every 30 sec-
onds, temperature readings every 10 seconds and location
every 10 seconds; wind and temperature values are kept
as a running average.

® broadcast current wind, temperature, and location
information every 60 seconds.

® broadcast wind, temperature, and location informa-
tion from the past 24 hours in response to requests from
passing vessels; this takes priority over the periodic broad-
cast.

Puise
Clock
Calculate Calculate Calcuiate Calculate
Pulse Average Average Average Location
Average Average Average value
Value Value Value
——I Sensor Data Base
J wind/Locatlon Data
v
wind/Location Data Rad!
Request Broadcast > adio
2 M S05 Message Trans-
’ mitter
\__}__)
S S0S Request

Emergency
Switch

Fig. 8. Host at sea buoy data flow diagram.

® activate or deactivate the red light based upon a re-
quest from a passing vessel.

® continuously broadcast an SOS signal after a sailor
engages the emergency switch; this signal takes priority
over all other broadcasts and continues until reset by a
passing vessel.

To formalize our model of reality, we begin by devising
a data flow diagram for this system, as illustrated in Fig.
8. The design proceeds by first identifying the objects and
their attributes. Drawing from this level of the data flow
diagram, we include all sources and destinations of data
as well as all data stores. In general, data flows have a
transitory state; we will typically not treat them as ob-
jects, but rather just as instances of a simple type. Addi-
tionally, wherever there is a major process that transforms
a data flow, we will allocate that process to an object that
serves as the agent for that action. Thus, our objects of
interest at this level of decomposition include the follow-
ing:

® Clock Provides the stimulus

for periodic actions.
Maintains a running

average of wind

speed.
Maintains a running

average of air tem-

* Wind Speed Sensors

® Air Temperature Sensors

perature.
¢ Water Temperature Sensors Maintains a running
average of water

temperature.
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Maintains the current
buoy location.

Serves to store weather
and location history.

Provides a channel for
requests from pass-
ing vessels.

Provides a channel for
broadcast of weather
and location reports
as well as SOS mes-
sages.

Provides the stimulus
for the SOS signal.
Controls the activity of

the emergency light.
Serves to generate and
arbitrate various
broadcast messages.

e ] ocation Sensor

Sensor Database

Radio Receiver

Radio Transmitter

Emergency Switch

Red Light

Message Switch

Next, we consider the operations suffered by and re-
quired of each object. We will take a first cut by simply
listing the operations that characterize fundamental be-
havior. First, we identify the operations suffered by each
object from within the system; these operations roughly
parallel the state change caused by a data flow into an
object:

¢ Clock None
¢ Wind Speed Sensors Take Sample
* Air Temperature Sensors Take Sample
¢ Water Temperature Sensors Take Sample
¢ Location Sensor Take Sample
¢ Sensor Database Put Value
Get Value
¢ Radio Receiver None
¢ Radio Transmitter Broadcast ~ Weather/

Location Report
Broadcast SOS

* Emergency Switch None
¢ Red Light Set State
® Message Switch Request History Re-
port
Request Periodic Re-
port

Request SOS

Notice that for the Sensor Database, we have the oper-
ation Get Value which seems to go against the data flow
implied by all other operations. In practice, we will en-

_ counter some objects that are passive in nature, especially

those that denote data stores. Whereas Get Value does not
change the state of the object, it returns a value of the state
of the object. Since a passive object such as the Sensor
Database cannot know when a value is needed, we must
supply this operation to permit the state to be retrieved by
another object.

Second, we must identify the operations required of each
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Location
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Water
Temp
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Sensor Data
Base

Radio
Trans-
mitter

Message
Radio
Switch

Fig. 9. Host at sea buoy objects.

object; these operations roughly parallel the action of a
data flow from an object:

¢ Clock Force Sample

Force Periodic Report

* Wind Speed Sensors Put Value
® Air Temperature Sensors Put Value
* Water Temperature Sensors Put Value
¢ Location Sensor Put Value
¢ Sensor Database None

¢ Radio Receiver

Force History Report
Set Light State

¢ Radio Transmitter None
* Emergency Switch Force SOS
e Red Light None
* Message Switch Send  Weather/Loca-
tion Report
Send SOS

Notice that we have a balance between the operations
suffered by and required of all objects. For each operation
suffered by an object, we have some other object or set of
objects that requires that action. ‘

This analysis leads us directly to the next two steps,
establishing the visibility of each object in relation to other
objects and its interface. Using the symbols we introduced
earlier, we may start by indicating the dependencies among
objects, as denoted in Fig. 9. In general, the dependencies
follow the direction of the operations required of each ob-
ject.

.
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Fig. 10. Host at sea buoy objects.

In the previous section, we noted the correspondence
between Ada units and objects. Hence, we may transform
the design in Fig. 9 to an Ada representation. This trans-
formation is simple: we denote each object or class of ob-
jects as a package, and for all but the most primitive data
flows, we also provide a package that exports the type of
the data flow, made visible to both the source and the des-
tination of the flow. Fig. 10 illustrates this design after the
transformation. Notice that there is a one-to-one corre-
spondence between the objects in Fig. 9 with the packages
in Fig. 10. We have only introduced one new package,
Reports, which provides types that denote messages
broadcast from the system.

Continuing our object-oriented development, we would
next write the Ada specification for every package and
then implement each unit. For example, we might write
the specification of the Air Temperature Sensors as:

generic

type Value is digits < >;

with procedure Put_ Value (The Value: in Value);
package Air Temperature  Sensors is

type Sensor is limited private;

procedure Take Sample (The Sensor: in out
Sensor);

private
type Sensoris . . .
end Air . Temperature Sensors;

In this package, we export a limited private type (so as
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to provide a class of sensors) as well as one operation
(Take__Sample). We also import one operation
(Put__ Value), that each sensor requires of the Sensor Da-
tabase.

There are some interesting generalities we can draw
from the design in Fig. 10. Notice that each package that
denotes a sensor has the same set of dependencies and
roughly the same set of operations that characterize its
behavior. Therefore, it would be possible for us to factor
out the similarities among these objects, produce one ge-
neric Sensor package and then treat each sensor object as
an instance of this component. Furthermore, if we already
have a simple data base package, we might adapt it to pro-
vide the Sensor Database instead of creating a new one
for this application. Finally, if we are careful, we could
write the Radio Transmitter and Radio Receiver packages
such that they could be applied in other problems that use
similar equipment.

In all these cases, we have identified the need for a reus-
able software component. Indeed, we find that there is a
basic relationship between reusable software components
and object-oriented development:

Reusable software components tend to be objects or
classes of objects.

Given a rich set of reusable software components, our
implementation would thus proceed via composition of
these parts, rather than further decomposition.

VI. CONCLUSION

We must remember that object-oriented development
requires certain facilities of the implementation language.
In particular, we must have some mechanism to build new
classes of objects (and ideally, a typing mechanism that
serves to enforce our abstractions). It is also the case that
object-oriented development is only a partial-lifecycle
method and so must be coupled with compatible require-
ments and specification methods. We believe that object-
oriented development is amenable to automated support;
further research is necessary to consider the nature of such
tools. :

Perhaps the greatest strength of an object-oriented ap-
proach to development is that it offers a mechanism that
captures a model of the real world. This leads to improved
maintainability and understandability of systems whose
complexity exceeds the intellectual capacity of a single de-
veloper or a team of developers.
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