i

—_— IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NG. 2. FEBRUARY 19%6

An Overview of JSD

JOHN R. CAMERON

45strart—The Jackson System Development (JSD) method addresses
=t of the software lifecycle. JSD specifications consist mainly of a
diseributed network of processes that communicate by message-passing
ard By read-only inspection of each other’s data. A JSD specification
= therefore directly executable, at least in principle. Specifications are
deseloped middle-out from an initial set of *‘model™ processes. The
mode] processes define a set of events, which limit the scope of the sys-
~zrm., define its semantics, and form the basis for defining data and out-
zuts. lmplementation often involves reconfiguring or transforming the
Tetwork to run on a sinaller number of real or virtual processors. The
Tmin phases of JSD are introduced and illustrated by a small example
srstem. The rationale for the approach is also discussed.

Index Terms—Design methodology, system design, systems analysis.

I. INTRODUCTION

'HE Jackson System Development (JSD) approach

aims to address most of the software lifecycle either
zIrectly or by providing a framework into which more spe-
zlized techniques can fit. JSD can be used from the stage
7 2 project when there is only a general statement of re-
zztirements right through to the finished system and its
sZosequent maintenance. Many projects that have used
ZSD actually started slightly later in the lifecycle, doing
e first steps largely from existing documents rather than
Zirectly with the users. '

A JSD specification consists (mainly) of a distributed
~=twork of sequential processes. Each process can contain
:zs own local data. The processes communicate by reading
z=d writing messages and by read-only access to one an-
zizer's data. The specification is developed middle-out
smarting with a particular set of ‘‘model” processes. Most
== the data in the system belongs to these model processes.
~Nzw processes are added to the specification by connect-
=g them to the model. Usually the only direct connections
.7 a network are between model and nonmodel processes
z=d between nonmodel processes and the outside. Thus
z=2 model process is not directly connected to another or
> the network boundary, and nonmodel processes only
Tieract via the model processes. The exceptions to this
zzmeral rule are discussed in Section V-B.

Direct implementations of this executable network are
=g=sible in principle and sometimes also in practice. Often,
-zwever. the network is reconfigured during the imple-
—zriation phase by mapping the specification processes
o= to a smaller number (perhaps one) of implementation

Wo-msenpt received April 8. 19885,

T=z zuthor s with Michael Jackson Systems, Limited, London WIN
27 Zogland.
= Loz Number 8405410,

processes. The reconfiguration involves fixing some of the
scheduling that was left relatively unconstrained in the
specification network. The other major concern in the im-
plementation phase is the choice of storage structures
(physical database design in an information system) to hold
the data owned by the processes. The storage structures
must also support the read-only access requirements of the
other processes.

There are three main phases in the JSD method, the
Model phase in which the model processes are selected
and defined, the Network phase in which the rest of the
specification is developed, and the Implementation phase
in which the processes and their data are fitted on to the
available processors and memory.

Sections I1, I1I, and IV of this paper are concerned with,
respectively, the model, network, and implementation
phases. Section V contains the following five topics:

¢ A comparison of the JSD modeling approach to a
more functional view of systems.

¢ A discussion of composition and of decomposition as
general development strategies.

¢ A discussion of the variety of ways that the JSD steps
can be mapped into the managerial framework of a project
plan.

¢ A brief description of projects that are using or have
used JSD.

e A brief description of available support tools.

II. THE MODELING PHASE

A. A Model with Only One Process Tipe

The modeling phase is concerned first with ‘“actions™
{or *“‘events’) about which the system has to produce dis-
plays, reports, signals, and other outputs. For most sys-
tems these events are mainly to be found in the world ex-
ternal to the system being built. They are selected and
defined along with their associated attributes. and their
mutual orderings described by a number of sequential pro-
cesses.

Fig. 1, for example, is a list of eight actions taken from
a simplified library system. By choosing these actions, and
only these, we are defining a first scoping of the system.
By “scoping’ we mean a (indirect) definition of the range
of functionality of the system. Later in the development a
detailed choice will be made trom this range.

We may imagine a pair of spectacles through which only
the selected actions can be observed. The system to be
built is like a person wearing these spectacles; its outputs
can only be based on what has been observed of thé world.

0098-5589/86/0200-0222%01.00 © 1986 IEEE

CAMERON: AN OVERVIEW OF JSD

Action Definition and Attributes
ACQUIRE The librory acauires the book,
14, dote, title, author, ISBN, price
CLASSIFY The book 1s clossified ond catoloqued.
1d. dote
LEND Someone borrows the book.
1d, date, borrower
RENEW The borrower renews the jogn,
1d. dote
RETURN The borrower returns the book ta the librorv.
1d, dote.
SELL The book s sold.
id, dote, vendor. price
QUTCIRC The book is token out of clirculotion os part
of the Inter-1tbrory swop scheme.
1d, dote, destinotion
DELIVER The hork is dellvered to the other liernrv.

ia, cate

Fig. 1.

The diagram in Fig. 2 describes for one book the order in
which the actions can happen. The diagram is a tree struc-

“ture; the leaves are the actions; all the other components

describe sequential relationships between actions or be-
tween groups of actions. Excepting the leaves there are
three types of component—sequence, iteration, and se-
lection. BOOK is a sequence of ACQUIRE, CLASSIFY,
LOANPART. and ENDPART. That means that BOOK
consists of one ACQUIRE. followed by one CLASSIFY,
followed by one LOANSET, foliowed by one ENDPART.
Similarly LOAN is a sequence of one LEND, then one
OUTONLOAN, and then one RETURN.

LOANPART is an iteration of LOAN. That means
LOANPART consists of zero or more LOAN’s, one after
the other. (An iteration is a generalization of a sequence.)
Similarly, OUTONLOAN consists of zero or more RE-
NEW's.

ENDPART is a selection component. That means END-
PART consists of either exactly onc SELL or exactly one
SWOPSCHEME. Scquences and sclections can be of two
or morc parts; itcrations can only be of one. Itcrations and
sclections are denoted. respectively, by the ***™ and o™

223

in the top right corner of their constituent components.
(Logically, but somehow not to the eye, the icentifying
symbol is in the wrong box.)

We are, of course. using a diagrammatic notation for
regular expressions. We also use recursion within the dia-
grams, where appropriate.

Fig. 2 describes a set of sequences of actions. The fol-
lowing are two members of the set. two possible life his-
tories for a book.

ACQUIRE, CLASSIFY, LEND, RETURN, LEND,
RENEW, RETURN, SELL.

ACQUIRE, CLASSIFY, LEND, RENEW, RENEW, RE-
TURN, OUTCIRC, DELIVER.

The complement of the set of sequences describes, by
implication, what cannot happen. A LEND cannot im-
mediately follow an ACQUIRE; a SELL cannot immedi-
ately follow a LEND. Later this information will be used
to build some of the error-handling parts of the system.

If an input suggests that a book has been SOLD im-
mediately after a LEND, we know that there has been
some error on input because in accepting this diagram we
are agreeing that a SELL cannot follow a LEND without
an intervening RETURN.

The diagram describes orderings but it says nothing
about how much time elapses between successive actions.

Each diagram describes the actions of one book. To de-
scribe the many books in the library we must have many
instances of the diagram.

So far the diagram describes the library itself. Now we
are also going to use the same diagram to describe a pro-
cess type within our specification. The name of the pro-
cess type is BOOK; there will be one instance for each
book in the library: the purpose of a BOOK process is to
model or mimic what is happening to the real book out-
side; to this end the process reads inputs. one for each
action; the purpose of the input is to inform the BOOK
model of what has happened so that the model can coor-
dinate itself with the reality. A textual form of the process
is shown in Fig. 3. This pseudocode is simply a transcrip-
tion of the diagram with conditions added and reads in-
serted according to a read-ahead scheme. Note that one
instance of this process will take as long to execute as the
corresponding book is in the library. If we were able to
observe the state of the partially excuted process we would
know something, but not much. about the state of the cor-
responding book.

Having described what happens in the library. and built
a process model that keeps track of what happens. we are
in a position to define data. The diagrams and equivalent
text in Figs. 4 and 5 define some example data items: IN-
LIB. ONLOAN, LOANCT. TIMEONLOAN. and LOAN-
DATE. Ignoring some of the technical details. the impor-
tant points are as follows: the original model process is
used as a framework for defining the data to be stored for
one book: the meaning of the data is formally tied to the
meaning of the actions and their attributes: a data item is
local to a process instance: the mechanism for updating

E

-

juadX IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO. 2. FEBRUARY 1986
300K seg BOOK seq
reql next 1nout read next jnout ;
ACQUIRE seg ACQUIRE seq
regd next 1nout ; ONLOAN := *N‘; LOANCT :» 0; TIMEONLOAN := O;
ACOUIRE eng read next {nout;
CLASSTFY seq ACQUIRE end
read next lnout : CLASSIFY seq
CLASSIFY end INLIB := 'Y*;
LOANPART {ter while (inout = LEND) read next (nout;
LOAN seq CLASSIFY end
LEND seq LOANPART (ter while (inout = LENDY
read next tnout ; LOAN sea
LEND end LEND seq
OUT-ON-LOAN fter while (lnnut = RENEW) LOAN-DATE := IN-DATE; ONLOAN :2 'Y’;
RENEW seq INLIB = "N’
reod next l[nout : read rext jnout;
RENEW end LEND eng
OUT-ON-LOAN eng QUT-ON-LCAN 1ter while (1npyt = RENEW)
RETURN seq RENE4 seq
read next inout : recd next [nput;
RETURN end RENEW end
LOAN eng QUT-ON-LCAR end
LOANPART end RETURN seg
ENDPART setect (imput = SELL) INLIB = “Y', CHLOAN := 'N°;
SELL seq TIMEONLOAN : = TIMECNLOAN - IN-DATE + LCAN-CATE;
SELL eng regd next inout;

ENDPAPT gjt (input = OUTCIRCY

SWOPSCHEME seq
read next lnput :

SWOPSCHEME end
DELIVER sea
DELIVER eng

ENDPART end

BOOK end

END
PART
0 []
SWoP
F SEL'-J [SCHEME l
T

1. INLIB ;= 'Y’ 7. TIMEONLOAN := O
2. INLIB := 'N’ 8. TIMEONLOAN := TIMEONLOAN
3. ONLOAN := 'Y’ + [N-DATE - LOAN-DATE
4. ONLOAN = "N’ 9. LOAN-DATE .= IN-DATE
5. LOANCT := 0 10. PEAD NEXT INPUT
5. LOANCT := LOANCT + 1

Fig. 4.

t2e data is part of its definition, not something separate;
==z definition is in terms of event histories; as the model
Tracess executes to keep in step with the reality the data
3 also kept up to date; for this reason we have avoided
zrotlems of data integrity.

Defining these data begins a second, more restrictive
coping of the specification. The actions define what hap-
zens. the data define what is to be remembered about what

5

=zs happened. The system can only use historical data in
= cutputs or in the conditions for producing outputs if
1=z1 data has been stored. This also applies to simple items

RETURN eng
LOAN eng,
LOANPART erd
ENDPART select (inout = SELL)
SELL seq
INLIB @ 'N°;
SELL eng
HOPART alt (input = QUTCIRD)
SHOPSCAEME seq

Fig. 5.

like ACQUIRE-DATE, ISBN, and TITLE which are attri-
butes of the ACQUIRE action and therefore are part of the
ACQUIRE input transaction. Simple operations are needed
in the BOOK process to store these data items, if they are
required. (So far we have only shown how to define data
in model processes; other processes may contain data: for
example, we may introduce a process to hold the total
numbers and values of books acquired in each of the last
five weeks, or a process for each author to accumulate the
number of LEND’s in successive periods. These extra data
are also part of the second scoping. Nevertheless. unless
we remember every attribute of every action, the second
scoping will be more restrictive than the first.)

For obvious reasons, we sometimes describe processes
like the BOOK process as long-running processes. Only
in some environments can such processes be executed di-
rectly. In others, an explicit suspend-and-resume mecha-
nism has to be introduced. It could work as follows. When
the process reaches a read it suspends itself; when a
record becomes available. possibly several months later,
the process resumes where it left off. executes as far as
the next read, and suspends itself again. Between suspen-
sion and resumption, the values of any local variables and
the resume point in the program (collectively called its
‘““state vector’”) must be stored explicitly on some file or
database. From the JSD point of view. the files or database
of a system are simply the state vectors of the partially
executed long-running processes that make up the speci-
fication.

A possible suspend-and-resume mechanism is illus-

CAMERON: AN OVERVIEW OF JSD

B2Dh go2 (—

ooyt
ATQUIRS gec
ONLOAM :m °K’; LOANZT :w O:

TIFZONLOAM

CLASSIFY enz
LOANART 1ter while (1nout = LE
LOAK seg
LERD seg
LOAN-DATE :
INLIB

RZTURN;

ON_OAN

R

QUT-OK-LOAK jter while (indut =
RENEW seo

RENZW end

RETURN; |
QUT-ON-LOAN end
RETURN seq

asrunqél_’,,////
INUIB := 'Y’; ONLOAN := *N°:
TIMZONLOAN : = TIMIONLOAN - IN-DATZ + LOAN-DATE:
. ‘ 0S:=6; RZTURN!
< LI,

LOAN enc
LOAN?ART end
ENDPART select (inout = SEZLL)
SELL sen
INLIB
STLL end
ZNDPART 0!t (inout = OUTCIRD)
SWOPSCHIME seq

HE T]

Fig. 6.

trated in Fig. 6. Some details are omitted. For example,
QS must be initialized before the first call, either by dec-
laration or perhaps by the calling program. This mecha-
nism converts the BOOK process into a BOOK subrou-
tine. If several processes are similarly converted into
subroutines of the same main program, then the several
specification process will have been combined into a sin-
gle implementation process.

The diagrams used in the first instance simply to de-
scribe and analyze the library later become part of the code
of the final system. Model processes can be turned into
update subroutines for the database, files, or other stored
data.

We have digressed into a discussion of some issues to
do with the implementation of model processes. We now
return to the modeling phase and consider some more
complicated models.

B. More Complicared Models

Fig. 7 introduces five new actions to the library system
and discriminates between two cases of an existing action.
There can be several copies of the same book, so a RE-
SERVE refers to a title not to an individual book. Fig. 8
shows two more structures that describe the orderings of
the actions, making three structures in all.

Several of the actions belong to more than one of the
structures. The difterent structures describe intersecting
subsets of actions; each structure describes a set of order-
ing constraints on its own actions. Thus we can view the
same events in the same reality from different points of
view. The constraints on any one action are the sum of the

A MOPZ CQMPLICATED MQDEL FOP THE LIBRAPY

More Actions

Action Definition gng Attributes
JOIN & naw memoer joins the liorory
memper-1¢, name, qogress, lend-lim:t, gate
LEAVE A memer legves the linrary, or through
ingctivity is osemeg to nave left.
memyer-1¢, date,
CHANGE - A memper’'s gddress, leng-limit or reserve-
DETAILS Itmt is chonged.
mempber-id, address, lenc-limit. reserve-limit
RESERVE A memper reserves 0 title tnot isn‘t oveilodie
memper-1d, title
CANCEL A reservotion {s no longer wantec,
memper-1d, title

In cddition we have sometimes to distinguisn two
kinos of LEND oction:

LEND- . The LIND 1s the result of o resesrvgrion
RESERVE

LIND- The LIND Is not tne resu!t gf g reservazion
NORMAL

Fig. 7.

RISTRVATION

LEND?
pESEovE

Fig. 8.

constraints imposed by the structures to which it balz=z:
The library only LEND’s a BOOK to a MEMBER .7 ==
member has JOINED but not yet LEFT and if the BT«Z s
has just been CLASSIFIED or RETURNED. Loox —;
ahead to the error handling, a LEND input has 22 =«
checked against both relevant BOOK process ang == =
evant MEMBER process.

There is an implied CSP-like [1] parallel cormpos . o
between processes (i.e., structures) that have aci-=:
common, at least in as much as the processes descme =i
library itself.

The problem of data integrity is the problem of &=s_~ =y
that several data items cannot take mutually i

gy
DT T o 2T

rf

-,

wzlzes. For data items within onc process integrity is en-
szred by the process itsclf. which defines an appropriate
=péate mechanism. When an action happens that is com-
Tem to two processes, both must execute to keep in step
with the external reality. Common actions therefore en-
sure integrity among duta items that belong to different
processes.

Interestingly. many systems deliberately allow their data
to reach inconsistent states over controlled periods. For
example. we may choose to run the BOOK and MEMBER
processes as pant of various on-line update transactions
and the RESERVATION processes as part of a daily batch
run; in this case the LEND-RESERVE in RESERVATION
is not synchronized with the same action in BOOK and
MEMBER. '

Interfacing with existing systems also often leads to
processes with common actions being left unsynchro-
nized. For example, the BOOK processes may be part of
an existing system to which a MEMBER and RESERVA-
TION subsystem has to be added. The existing system al-
ready has a means of collecting an input for the LEND
action. If the only convenient interface with the existing
system is to extract periodically a file of LEND’s then the
BOOK and MEMBER processes cannot be synchronized.

Obviously, we want to avoid the kind of over-specifi-
cation that excludes perfectly reasonable implementa-
iions. In the JSD specification, therefore, the processes
that model BOOK's, MEMBER s, and RESERVATION's
are not initially synchronized at their common actions.
Synchronization can be added later if it is needed.

Allowing the same action in several processes improves
the power of the notation, but still not enough to handle
all circumstances conveniently. Suppose that no member
is allowed to have more than some number, *‘lend-limit,”
of books on loan at one time. Lend-limit is defined from
the JOIN and CHANGE DETAILS actions. To describe
this constraint we fall back on an informal technique. We
introduce a variable to the MEMBER process, set it to
zero at the JOIN, increment it at a LEND, and decrement
it at a RETURN (that is rigorous enough). Then we in-
formally note the constraint (N <lend-limit) beside the
structure. We are here describing a library in which ex-
ceeding the limit is impossible. not just undesirable. So
we are happy for subsequently defined error checking rou-
tines to reject a LEND if it would break the limit. If not,
the constraint should not be added to the model. In prac-
tice this kind of constraint is only sensible if a member
cannot take the book without the check being run.

Now consider the following description, in which the
relevant actions/events are underlined.

“Film stars often marry but their marriages always
end in divorce. They are frequently hired to work on
a film but they are always fired for breaking one or
other of the terms of their contract.”™ .

Fig. 9 describes one possible interpretation of this descrip-
tion and illustrates how there can be more than one struc-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO. 2, FEBRUARY 19K6

FILM STAR
{MARRIED LIFE)

MARRIAGE "
MARRY A‘J {A;XVDRCE 4J

FILM STAR
{WOPKING LIFE}

COﬂTRAC; |

o

Fig. 9.
FILM STAR FILM STAR
(MARRIED LIFE) CONTRACT
MRRRIAGE F HIRE , FIRE
MARRY J DIVORCE
Fig. 10.

ture or process for the same entity. There are no ordering
constraints between the events in a film star’s married life
and the events in his or her working life. The two aspects
proceed in parallel. We call different structures that share
the same identifier, different roles of the entity.

Any structure with more than one instance has to have
an identifier, or some equivalent means of associating ac-
tion inputs with their appropriate model instances. For ex-
ample, a RETURN input has to be directed to the appro-
priate BOOK process. Thus, every action has to have
among its attributes the identifiers of the structures to
which it belongs. And if an action does not have a partic-
ular attribute, then it cannot belong to that structure; for
example, RESERVE cannot be action of BOOK.

Fig. 9 reflects the assumptions that a film star can only
have one spouse at a time and one contract at a time. A
typical sequence of actions for a single film star is

M,H, D, M, D, M, F, H.F, D.

Fig. 10 relaxes the second of these restrictions. A typical
sequence of actions for a single film star is

M, H,, H,, F,, D, M, H3, F;, D. F;

where the index on H and F is a contract-id.

More parallelism implies more and smaller structures.
Drawing these structures is as much about parallelism as
about ordering. A sequence of actions for many film stars
is any interleaving of the sequences for individual film
stars. (A qualification must be added if film stars can
marry each other. MARRY and DIVORCE are then com-
mon actions of different instances of the same structure
thus placing a constraint on their possible interleavings.)

An entity is defined in terms of its actions. It is simply
the suitable name in the top box of a structure. the object
on whose instances the ordering constraints apply. BOOK
is not defined as a thing with lots of printed pages but as
something which is ACQUIRED. CLASSIFIED, LENT,
etc. Book would not be a good name if the library also

CAMERON: AN OVERVIEW OF JSD

had music cassettes which were ACQUIRED, CLASSI-
FIED. LENT, and so on according to the same ordering
rules as apply to things with printed pages. In practice a
developer works with actions and entities together (best of
all with phrases like “‘the member returns the book™). In
theory. though. the actions come slightly first.

C. Event Models and Data Models

Database oriented approaches to the development of
business systems start by building a data model of the en-
terprise (interpreting that term widely). Proponents ar-
gue, quite rightly, that the users’ detailed requirements
change very fast: that the stored data from which the .re-
quirements are calculated is much more stable; that there-
fore the key to robust systems is to get the database right;
and the way to get the database right is to base it, via the
stepping stone of a data model, on a description of the
enterprise.

For data-processing systems, JSD can be viewed as a
generalization of this approach, a generalization that in-
cludes the time dimension in the model of the enterprise.
The state of a database (or equivalent files) does reflect the
state of the enterprise. However, the way the database
changes also reflects the way the enterprise evolves. We
argue that it is just as important to capture the dynamics
of the enterprise in the description which forms the basis
of the system as it is to capture its static properties. In
JSD we describe the dynamics first (what happens? in what
order?) and then we define the states of the enterprise (the
data) in terms of these dynamics (what is stored or re-
membered about what has happened?). Not only is this
more powerful for almost all the problems to which the
database approach does apply, but it also extends the ap-
plicability of the approach to real-time and other systems
in which the data are not of central importance.

In making this generalization, we are also offering some
clarification of some of the conceptual difficulties at the
heart of data modeling. In his book Data and Reality [2],
William Kent shows by a series of examples that the terms
entity, attribute, and relationship, as commonly used, are
very difficult to define and in particular very difficult to
distinguish. He also argues that any record oriented de-
scription (let alone particular hierarchical, network, or re-
lational descriptions) has important limitations and that
these limitations are only difficult to see because our hab-
its of thought are conditioned by available implementation
techniques.

Events are the basic medium of JSD modeling, not n-
tuples of data items. Events have the immediate advantage
that they usually directly visible in the enterprise. Many
data items are not (TIMEONLOAN, ACQUIREDATE.,
LOANCT, etc.), even though the data model is supposed
to describe the enterprise. The concept of an event is fairly
easy to define. The important point, apart from relevance
to the system to be built, is that we must be prepared to
regard the event as atomic, happening at a single instant
of time. We are building a discrete simulation whether or

227

BOCK

AUTHOR

Fig. 1t.

not the enterprise evolves continuously or discretely or
both. The choice of actions determines the resolution of
our simulation. Actions correspond to the smallest up-
dates that can be made to the database or its equivalent.

An event can have any number of attributes, which sim-
ply further describe the event. (For example, in a system
to support the use of JSD a single event “AMEND
STRUCTURE DIAGRAM OF ENTITY," which was con-
structed by a whole session with a front-end editor, had
the attributes developer-id, time, entity-id, version-id, and
the whole of the new structure.)

We have defined the term *‘entity’ as a process (or set
of processes sharing the same identifier) that describes
constraints on the orderings of the events. Data are de-
fined for an entity by adding variables to its process. The
variables can be declared in any way we choose. We can
also introduce other processes to hold extra data that do
not fit any entity process. For example, we may introduce
AUTHOR processes to keep count of the number of
LEND'’s of books by each author in successive periods of
time.

(Fig. 11 shows an appropriate fragment of network. The
BOOK processes output LEND messages to the appropri-
ate AUTHOR process. The T messages define the end of
the periods. Author is an attribute of ACQUIRE and nc:
of LEND and so has to be stored within BOOK so the
message can be sent to the right destination. These ne:-
works are described in Section IIl. Extra processes thz:
hold data always feed off the basic entity processes in if::s
way.)

Relationships: Relationships are. according to Xs=—:
{2]. “‘the very stuff of which data models are made.™ & -
though relationships are not a fundamental concept in 33T
they can nevertheless be defined in terms of a JSD o=
in order to derive a data model of the desired flaver. O
riving a data model'is useful if we are heading for a Zz7z-
base implementation because most existing techzi
physical database design use some kind of *"logicai™ =7
model as their starting point.

We would further argue a JSD model clanifies === 2=°-
nition of most relationships. For example. BOCX ¥ = =
now-lent-to”” MEMBER Y if LEND(X. ¥, - -- 2oz
yet the corresponding RETURN. The refazmcmz-—-
many-one because in the BOOK structure woc =T
must have an intervening RETURN whereas m 2277 =
BER structure there is no such constraimt. 30T X % =2, -

ot
NI

'R IR IR

MR /A 'R R 'l '

228 LtEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12, NO. 2, FEBRUARY 19%6

heen-lent-to”” MEMBER Y if there has ever been a LEND
(X. Y, -

Existence rules are also best expressed by considering
the time dimension. The rule A Y cannot exist unless an
X exists™ is described by a process in which the CREATE
of a Y can only happen between the CREATE and the DE-
LETE of the X.

The following rules will derive a data model from the
JSD model.

1) Define relationships between entities where

a) the identifier of one entity is part of the identifier
of another (for example. MEMBER to RESERVATION if
the identifier of RESERVATION is member.title);

b) the identifier of one entity is part of the state vec-
tor of another (for example, MEMBER to BOOK if the
borrower is stored in the BOOK process);

c) part of the identifier of an entity is part of the state
vector of another (for example, RESERVATION to BOOK
where title is the relevant attribute).

2) Normalize any state vectors that are not already n-
tuples. adding the obvious relationships between the sep-
arated parts. (For example, we could define within the
BOOK process a list of all the MEMBERs who had ever
borrowed the book. Normalization produces a new data
modeling entity but not a new JSD entity.)

The JSD approach breaks down for data and relation-
ships that cannot reasonably be defined in terms of his-
tories of events, for example, for a database describing
chemical compounds and their relationships. Except for
correcting errors, such data'‘are never changed. Data only
need to be changed when something has happened (i.e.,
an event) that makes the current version inaccurate. The
restriction to systems whose databases (or equivalent)
evolve is not severe. Still. some static portions of an oth-
erwise evolving database may not be amenable to the JSD
approach.

Let us summarize some of the points in Section II. JSD
models are defined in terms of events (or, synonymously,
actions), their attributes, and a set of processes that de-
scribe their time orderings, and by implication possible
parallelism. Processes are described by structure dia-
grams—tree structures whose leaves are the actions. The
same action can appear in more than one structure. Usu-
ally the description requires multiple instances of a pro-
cess type, in which case all the actions of a process must
share an identifying attribute or attributes. Several pro-
cesses can share the same identifier: each process is called
a role of that entity. Data are defined directly in terms of
the model either directly by adding variabies to the exist-
ing processes or by adding new processes and adding vari-
ables to these; in either case data are defined in terms of
event histories. The processes, called model processes,
are the basis for the specification network.

Actions correspond to the transactions that cause data-
base updates (or their equivalent in a real-time system).
Meodel processes will be converted into database update
subroutines. Stored data in the implemented system ap-
pears in the specification as the variables of long running
processes, mainly of long running model processes.

IIl. THE NETWORK PHASE
A. Elaboration of the Model into a Specification

The JSD model consists of actions. attributes of actions.
and a set of disconnected sequential processes that de-
scribe the time orderings of the actions. These sequential
processes are the start of the network that will eventually
comprise the specification. Development proceeds incre-
mentally, by adding new processes to the network and by
elaborating processes that are already there. Three issues
must be addressed when a new process is added.

1) How is the new process connected to the rest of the
network?

2) What elaboration is necessary to the existing pro-
cesses to which it is connected? (For example, a new data
item may have to be added to a model process, as de-
scribed above.)

3) The internal workings of the new process must be
defined. Unless there is a good reason to the contrary, the
internal structure is expressed using the same sequence,
selection, and iteration notation used for the model pro-
cesses.

Processes are added for three main reasons. Data col-
lection and error handling processes fit between the reality
and the model. Their purpose is to collect information
about the actions and make sure. so far as possible. that
only error-free data are passed on to the model. Output
processes extract information from the model, perform
calculations and summaries, and produce the system out-
puts. Interactive functions are like output functions, ex-
cept that instead of producing outputs they feed back into
the model. They handle those cases, represented in the
extreme by simulations, where the system can create or
substitute for what would otherwise have been external
events. Oversimplifying somewhat. the model processes
hold the main data for the system aiong with its update
rules. The other processes contain the algorithms that cal-
culate and format outputs, and that drive the model either
by collecting and checking inputs or by generating new
actions.

Some examples of output and interactive functions are
described below. We omit examples of input collection
processes. For business and for real-time systems, typical
examples are on-line data-collection programs and device
drivers, respectively. The details of error handling are also
omitted. (One technique is to add “"guard™ processes to
filter inputs that look good but which do not fit the current
state of the model. Before each read in a model process a
write operation is inserted to send a message to its guard
describing what the model is prepared to accept next.)

Fig. 12 shows how the four kinds of process in a JSD
specification fit together. The network phase can be di-
vided into three parallel subphases corresponding to the
three kinds of process added to the network.

In 2 JSD network diagram the rectangles represent se-
quential process types and the circles and diamonds the
two basic means of process communication, data stream
and state vector communication. respectively. Data stream
communication is by messages written by one process and

CAMERON: AN OVERVIEW OF JSD

Reg] world

ko

Digsrestics

e

Error

MODEL
PROCESSES

Qutout

Function

?(OCESSES/

Intergctive
Function

Processes

Outouts

Fig. 12.

read by another. The writes and corresponding reads are
not synchronized; the messages can build up in a FIFO
queue. In the specification. we assume that the queue is
big enough for processes never to be blocked on a write;
however. a process is blocked on a read if no message is
available. (The BOOK processes spend most of their time
blocked waiting for an input.)

The state vector of a process consists of all its local
variables including its text pointer. State vector inspection
is a form of shared variable communication; one process
is allowed read-only access to the other’s state vector. We
will see below how enquiries about the state of a particular
book are answered by a process that examines the state
vector of the corresponding BOOK model process.

The double bars in the network diagrams indicate rela-
tive multiplicity in the way process instances communi-
cate—the double bars are on the side of the many. (Re-
member that communication is between process instances,
but the rectangles represent process types.) Thus, Fig. 14
indicates that many instances of BOOK write messages to
the same NEW BOOKS LISTER and that each process
F;, over its lifetime, examines many instances of the
BOOK state vectors.

The merging of the input lines on two or more data
streams indicates that the streams are merged before they
are read. To the reading process they appear as one stream.
The merging algorithm must not starve any stream, must
preserve the ordering of messages from one stream, but
is otherwise unspecified. This *‘rough-merging” intro-
duces some indeterminacy into the specification, an in-
determinacy that is limited by the kind of overall timing
constraints discussed in Section III-C below. Section II-
C also contains a discussion of the choice of data streams
and state vector inspections as communication primitives.

Fig. 13 summarizes the nature of a JSD specification:
there is a network of a large number of sequential pro-

229

Network Level

/

Process
Level

Fig. 13.

cesses; each process is, in general, long-running: = .-
process has its own internal structure consisting -7 .z
quences, selections, and iterations; the processez :—

municate by writing and reading messages and by = @7
writer-many-readers form of shared variable co——.- -
cation; the state vectors of the processes, partictiz= - ™

model processes, make up the files, databases. anz i
storage structures of typical implementations.

The network and the details of the processes
quite the whole specification. We also need the 2=z~
of the actions to describe the way the network =—: ..
embedded into the reality. These definitions &x ==z m
ification boundaries for most of the inputs. TZ="% —mum
also be an equivalent agreed interpretation for <=z “.7mu
from the specification. We need to know whet=z~ =7 mw-
put circle on the boundary describes a voltags =
a screen display, or an invoice printed on gr_z-z— T
paper.

We also need information about the des:—=:
execution of the processes—this is not parz =7 = i
tion of the network. Indeed, we are carefizi - : e
correct operation of the network does not C=7==z om mmme
particular relative speed of the processes.

ZTE O Tm

-

[l

ik

SN

BT Y

the system will be useless if it executes 0T 2.0 g we
must complete the specification by desc=—z = e
formally, the required and desired limiz= o= "= e o
the processes.

B. Some Examples

First. we will add the following cuzoss Fomo om. sl
can be based on the BOOK mode! proc=e. Lome

1) On input of a given book-id. CIm=i 02wl ummis,
of the particular book.

2) On input of a given author, ciTom woE I am e
books of that author with counts o7 Zz= Tl m e
and the total number of loans for ==z~ 7= E

3) On input of a given title. QLTI &7 o ik amyy 5

books of that title are in the librars == 2oL aeme e wm;
4) Periodically list the overduz =oiw: Zmimme
rower.

T -

(INPUTS 70 COORDINATE BCOK
“I2IL WITH THE REAL BOCK)

| ®

REW BOOKS
LISTER

Fig. 4.

ENQUIRY

OR
TIME STIMULUS

REPLY
oR
LIsT

These functions are specified by the processes F'1, F2,
F3, and F4 in Fig. 14. Each Fj accesses the state vectors
of the BOOK processes. Each Fj uses a particular ideal
access path through the state vectors. These access paths
are the raw material for the file design part of the imple-
mentation step. They are part of the definition of the state
vector inspection.

For the above four functions the ideal access paths are
as follows. .

1) Direct access by book-id.

2) For a given author, grouped by title.

3) For a given title, books with INLIB = Y™,

4) Books grouped by borrower, with ONLOAN = “Y”
and LENDDATE LT LIMIT.

In the implementation phase, some kind of file design
will be chosen to hold the BOOK state vectors. A sophis-
ticated design will support these access paths directly. A
simple design will mean that extra components must be
added in front of each Fj to extract from the state vectors
actually accessed the ones Fj actually needs. In extreme
cases sorting is also needed. The main point is that the
network and the details of the Fj’'s are specified without
any commitment to the file design or data storage struc-
tures that are to be used.

Fig. 15 describes the internal structure of F4,

The following two functions require data stream outputs
from the model for their formal specification, as shown in
Fig. 14.

1) Output an acknowledgment slip when a book is re-
turned.

2) Output a periodic list of new books acquired since
the last report. Include the cost of each book, the total
value of books acquired in this period, and the brought
forward and carried forward totals for the year.

Data streams are used when the model process has the
initiative for the communication. The model sends a mes-
sage to kick the other process into doing something, or at

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING., VOL. SE-12, NO. I, FEBRUARY (Ug6

as

read next RIQUEST
read next BOOK Sv

-

{overdue DOoks only, sorcec
Dy 03rrower)

write LIST-HDR
write LIST-TRLR
write BORROWZR-HDR
write 300K-LINS
Fig. 15.

woE

€.

Fig. 16.

least because it is aware of the messages that need sum-
marizing or further processing to produce the desired out-
put.

State vector inspections are used when the initiative is
with the function process. The communication takes place
because the Fj’s are triggered by enquiries or timing in-
puts to examine the state of the model.

Figs. 16 and 17 show the network part of the specifi-
cation for two more complicated functions.

1) When a book is returned check if there are any re-
servations outstanding for that title and output the name
and address of the member who has been waiting longest.

2) On request produce a list of overdue books (grouped
by title) whose titles are reserved and also the name and
address of the member who has borrowed them.

In the first function the BOOK process sends a message

CAMERON: AN OVERVIEW OF JSD

Fig. 17.

to CHECK RESERVE when the book is RETURNed;
CHECK RESERVE then examines the state vectors of the
RESERVATIONS, and if necessary the MEMBER, in or-
der to output the result. The second function just needs
state vector inspections.

The new processes do not communicate directly with
each other. We only need to understand their connections
with the model. That is why we only need to draw frag-
ments of the network at a time and why each fragment
contains some of the model processes.

In each case we have only considered the network part
of the specification. We also have to consider the model
processes we are connecting to. For each data stream we
have to add appropriate write operations; for each state
vector inspection we have to check that the data we expect
to find has in fact been defined. These details have been
omitted, as have the internal structures of the new pro-
cesses. The JSP programming method [4]-[7] can be used
to design these processes.

Fig. 18 shows the network part of the specification for
two more functions.

1) When a member leaves, output a list of any out-
standing reservations he or she may have.

2) On request output a list of members who have been
inactive for at least a year.

Fig. 19 shows a modified specification. The output
functions of Fig. 18 have been replaced by similar inter-
active functions. Now the system automatically cancels
reservations when a member leaves, the system automat-
ically makes inactive members leave (the library leaves the
member), whether they like it or not.

The system is now generating actions that prevnously
were happening only outside. In a simulation most or all
of the actions are generated by interactive functions in this
way. The exceptions, for example in a training simulation,

[
=]
ea

OUTSTANDING |

RESERVATIONS !
RISORT
—————————
\\/"
IF 1 WZRZ YOU ... IF 1 WZRZ YOU ..
['c gssume tnoT ne ['g corcel tne

following memoers
nove (&4

f2.10wIng reserveiiins

Fig. 18.

\
1
o
|

INACTIVE
i MIMBERS

vz s raz oyar
1T wISToYOL ... = v wrsr v
BT meRe FoINIE VI

'z canzel e
vol

resfrvitions

Fig. 19.

are the actions that are still happening externally and for
which inputs have to be collected in the usual way. The
model processes describe the reality that is to be simu-
lated. The choice of actions and attributes determines the
scope and resolution of the simulation. The interactive
functions describe the rules by which the actions are
deemed to have happened.

-

BOOK

O—[= -0

Fig. 21.
Qur example also shows that we cannot just look to the
external reality to find the initial set of actions.

C. The Choice of Communication Primitives

1j Asvnchronous Writing and Reading: The tiny spec-
:Ecation in Fig. 20 describes a set of BOOK processes
ezch reading F's and writing G's. The processes are di-
rectly executable but the required speed of execution has
=0t yet been specified. Of course the overall speed cannot
=e very fast—the whole point of these long-running pro-
cesses is that they can be blocked for months at a read.
However. there will be some execution speed of the op-
erations between the reads which is so siow that the results
zppear on G too late to be useful. The specification has to
nicfude some description of required speeds. In the pres-
ert state of JSD such constraints are specified informally
¥ statements such as. “‘the BOOK's data must not be
=ore than a day out-of-date’ and. ‘any responses on G
should occur within 5 seconds of the input of the trigger-
:1g F record.” Perhaps this informality is a weakness.
However, we are reluctant to introduce a more formal no-
zrion because there is no means of embodying these tim-
tcg constraints directly in an implementation in the way
“at BOOK processes can be converted into subroutines
znd embodied in the implementation. The extra precision
@ould not really help the implementor.

In the specification in Fig. 21, there would be no point
2 using synchronous writing and reading on G. It would
22 unnecessarily restrictive. Any acceptable response time
>etween an F and an A record could be met by making P
z2d @ very fast and using up the time in the delay between
writing and reading. Nor would synchronous communica-
—on save us if P or Q was too slow. The general reason
Zar rejecting synchronous message-passing as our speci-
Zcation primitive is that it often leads to overspecification,
that is, to specifications that unnecessarily exclude rea-
sonable implementations.

That is not to say that we will not often choose to im-
Ziement asynchronous writing and reading by a synchro-
=ous message passing mechanism. That is part of our im-
Ziementation freedom. (In languages that do not support
cnewrrency the easiest way is to implement the messages
25 parameters passed across a subroutine interface, for
=xample, by introducing into Q a suspend-and-resume.
mrechanism such as was described in Section I1I-A.) It is
aiso part of our implementation freedom to buffer the G
reconds for whatever period is consistent with the response
constraints. For networks like Fig. 21 and many others,

{EFE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, $k-12. NO. 2. FEBRUARY 1956

-0

Read F

In Q:

Write G
Fig. 22.

this implementation freedom is worth plenty and costs
nothing.

Sometimes we do have to synchronize processes more
tightly in the specification. For example, Fig. 22 shows P
and Q more tightly synchronized. Process Q is held up at
the “‘read F* until P reaches the ““write F.” P is also held
up at the “read G (effectively the same place as the
“write F') until Q not only reaches “‘read G* but also
the “write G."" This is the data stream equivalent of an
Ada rendezvous.

2) State Vector Inspection: State vector inspection can
be defined in terms of data streams, so it is not strictly
necessary to have another communication primitive. How-
ever it is very attractive to be able to specify directly in-
spections of, for example, the data in the BOOK pro-
cesses. In implemented systems generally there are very
many components that have read-only access to stored
data. so the extra complication of another primitive seems
well worthwhile.

An informal description of state vector inspection uses
such phrases as “*only coherent states returned.’” “com-
munication invisible to inspected process’’ and “a "get SV
of P’ operation returns P’s state vector without any op-
erations being executed in P.”" These statements are cor-
rect but they skate around the mutual exclusion problem.
A particular inspection may be invisible to P. but P still
has to do enough to ensure that the results of inspections
correspond only to particular coherent states. for example.
to the states of P just before the execution of a read op-
eration.

The mutual exclusion can be handled either on the state
vector of P itself, or on a copy. The two cases correspond
to slightly different definitions of state vector inspection.
In the first P cannot be executing and being inspected at
the same time: if P is not at one of the approved states the
inspection must be delayed. In the second P writes a copy
of each coherent state; the copy can be inspected while P
is executing and the result of an inspection may now be
out-of-date. Of course, the mutual exclusion problem does
not disappear in the second case. An inspection must stiil
be prevented while the copy is being updated.

At first sight surprisingly. we have chosen a definition
that fits the second looser description. The reasons are
similar to those for choosing asynchronous rather than

CAMERON: AN OVERVIEW OF JSD

O O °

®
O \@ -
{ l

I ®
Q2
(a) (b) ()

Fig. 23.

synchronous message passing: we gain implementation
freedom at little extra cost. Moreover, we are certainly not
excluded from implementing the loose definition by using
only one physical copy of the data. '

The differences between the two possible definitions are
clarified by considering their data stream equivalences.
Fig. 23(b) is the equivalent of the first, tighter definition,
and (c) is the equivalent of our chosen, looser definition.
In both Q1 and Q2 the *‘get SV of P”* operation has been
replaced by a “‘write enquiry on E; read reply from S(2)"
pair of operations. P1 is the process P elaborated to an-
swer the enquiries; it answers by writing a copy of its state
on S. The ordinary inputs F and the stream of enquiries £
are merged; Pl reads the single stream F & E; since P!
is a sequential process, it cannot be procesing an E and
an F record at the same time.

P2 outputs its state on S1. P2STATE is very simple; it
reads the merged stream E & S1; it stores the latest state
from an S1 record; it answers enquiries from E by out-
putting this latest state. P2STATE executes concurrently
with P2. The state stored in P2STATE may lag behind the
real state of P2.

State vector inspection could be defined by Fig. 23(c)
(plus the details of the internals of the processes), or more
abstractly along the following lines.

Let Sy, S,3, - * . S, be the chosen coherent states,
reached during an execution of P. Let G,, G,, « - - ,
G, be the *‘get SV of P" operations executed during
an execution of Q. Then the result of each G; is one
of the §; and:

if G; results in §; and G; results in S,. then
i>j=>k=1L

Let us now return to more practical matters. We have
gained the freedom to implement state vector inspection
using a second copy of the state vector. This freedom is
particularly important in the following cases.

® In distributed implementations, local enquiries are
answered by accessing a local copy of the data. The local
copy is not necessarily exactly in step with the main copy.

* There is a trend in data processing towards having an
operational database which is updated on-line and a
decision support database which is periodically updated
with an extract from the operational database. (IBM’s new
database system DB2 may mainly be used for this decision
support role.)

¢ In real-time applications where virtual processors ac-
cess the same global memory, second copies can reduce
the problems of mutual exclusion and interrupt masking.

In our network the BOOK model already lags behind
the real BOOK by some indeterminate amount, so there
is no extra indeterminacy if the SV copy we access lags
behind the real BOOK state vector. Descriptions of overall
constraints on processor execution speeds like *“‘for this
enquiry the data accessed must be no more than 5 seconds
(or 24 hours) behind the reality’’ limit the sum of the in-
determinacies.

With the JSD style of distributed specification. we have
to ensure that the problem really is solved in the specifi-
cation. Because we often fix the relative scheduling of
processes in the implementation phase, it is sometimes
tempting to build a network that only **works’’ given par-
ticular relative processor speeds, in other words to antic-
ipate the implementation. Certainly, it is unacceptable if
some of the processes in the network execute too slowly;
that would violate the extra, informally expressed timing
constraints. But if a given set of processor speeds does
meet all the constraints, then we should not be able to
produce unacceptable results by making some of the pro-
cesses run faster. The (small) price to pay for the imple-
mentation freedom we gain by using asynchronous mes-
sage passing and the looser form of state vector inspection
is occasionally some extra care in constructing the spec-
ification network.

IV. THE IMPLEMENTATION PHASE

There are two main issues in the implementation phase:
how to run the processes that comprise the specification.
and how to store the data that they contain. The first turns
out to be particularly concerned with the data streams in
the specification, the second with the state vector inspec-
tions.

Of course, there may be no work at all in the imple-
mentation phase. We-only need to find a machine that will
execute our executable network of processes. If we can,
and if we meet the timing constraints that is fine. We are
not looking for extra work.

The problem, though, is the number of (instinces of)

(A !

-

¥

FE

4

L4

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12, NO 2. FEBRUARY I[9Y86

processes in our specifications and the length of time it
takes for their input to accumulate. In our library books
last for up to 20 years and we have over 100 000 of them.
Will our operating systems and concurrent languages al-
low us to run 100 000 processes concurrently for 20 years?
We often have to combine and package the specification
processes into a more familiar arrangement of *‘short-run-
ning” jobs and transaction-handling modules. Admit-
tedly. our library example is fairly extreme. Many real-
time environments do support some number of long-run-
ning processes, but probably still not as many as in our
specifications.

A basic technique has already been introduced in Sec-
tion II-A. A process can be converted into a subroutine by
inserting a suspend-and-resume mechanism at its read
statements and by passing the input records as parameters
of the call. Every time the subroutine is called it executes
part of the long-running program. It is passed an input
record and returns control when it is ready to read an-
other.

(The coding details of this suspend-and-resume mech-
anism can be found in [3]-{7]. The technique can be gen-
eralized to allow suspend points at the reads and writes
on several or all of the data streams in a program.)

A. Data Design

After we have converted processes into subroutines, we
can also easily separate the data (that is the state vector)
from the subroutine text so that many instances of a pro-
cess can be implemented by one copy of the subroutine
and many copies of the data. For example, the state vector
can be made a parameter of the subroutine, When the sub-
routine is called it is passed the input record and a state
vector; this allows it temporarily to assume the identity of
a particular instance; the subroutine executes and passes
back the updated state vector when it returns; the calling
program is responsible for storing and retrieving the state
vectors. Alternatively, the extra parameter may only be
the instance-id; the subroutine itself accesses the state
vector by retrieval from a file or perhaps by using the id
as a pointer into an array.

Once the data are separated, questions of storage and
access can be considered. We deal with them here only
briefly, not because they are unimportant, but because
there is nothing new or special about the way physical data
design is handled in JSD. From the specification we have
a definition of the state vectors, that is of the data to be
stored, and from the state vector inspections we have the
definition of how the data are to be accessed. If we wanted
we could also map the JSD model on to a data model of
any desired flavor. We know the desired response times,
the likely volumes, and we can add security and backup
information as required. These are the essential inputs
from the specification into database design or into the de-
sign of storage structures in main memory. ’

B. Combining Processes

First we show how an abstract network of programs can
be combined into a main program and a hierarchy of sub-

NG
1-0

- — O

Fig. 24.

Fig. 26.
ASB
—-) MAIN
B
A
P Q

H™
Fig. 27.

routines. Then we apply the technique to the library ex-
ample.

Two or more rough merged data streams can be imple-
mented by making the reading process a common subrou-
tine of the several writing processes. In Fig. 24 P writes
F, Q writes G, R reads the merged F&G as one stream.
Fig. 25 is a subroutine hierarchy diagram in which P calls
R passing F records as parameters, and in which Q calls
R passing G records as parameters.

Now we will combine the four processes P, Q. R, and
S in Fig. 26 so that they run as subroutines of a single
main program. The technique works as follows. Imagine
taking a knitting needle and threading it through all the
external input streams, in this case A, B, and C. Pick up
the needle and hold it horizontally. The programs will hang
in the correct subroutine hierarchy. in this case as shown
in Fig. 27. Each program is called by the supplier(s) of its
input; all the programs return control upwards when they
want to read a new input; the MAIN program is very sim-

CAMERON: AN OVERVIEW OF JSD 215

RESERVEDR

oW

OUTSTAND

" |reservEn
‘!I’ 5 CANCELA
3
l!

INACTIVE
MEMBERS
PURG

NEW
BOOKS F3
LISTER

© OO

ICHECX
RESERVE

OVERDUE & @
|~——NRESERVED
LISTER

&)

Fig. 28.

ple—it reads A&B&C and calls P, Q. and § with, respec- o 0
tively. the 4. B. and C records as parameters. @ - . l

This technique works provided every program only
reads one input stream (the one stream may be the result ovzrouz

LISTER

of merging several) and provided there are no loops in the
network. Loops are dealt with below. The treatment of

programs with several input streams is omitted: the com- @

mon special cases are easy: otherwise a more complex

suspend-and-resume mechanism is needed. /
State vector inspections in the network can simply be @‘—"‘ Boox ?@—_‘ RESEAVE @

ignored. The subroutines will naturally access only a co-

herent version because the processes only give up control @

at read or write operations. BOOKS —»@
Fig. 28 shows the network for the library example. (We e IR

did not have to consider the whole of the network during

the specification.) Fig. 29 shows the same network rear-

ranged and with the state vector inspections removed. Fig. INACTIVE
30 shows the whole network implemented as a hierarchy —_’ M [YEYRER
of subroutines. A probable internal structure of MAIN is

shown in Fig. 31. This style of implementation has no buff- G

ering on any of the internal data streams. It corresponds

to a transaction oriented implementation in which one in- T
put and all its consequences are completely dealt wth be- ——

fore the next. MAIN has only been introduced as part of e ancoLn

the implementation. It is a scheduling program: it controls I

the sequential interleaving of the processes in the network.

C. Internal Buffering ° @

Fig. 32 is the same as Fig. 26, except for the extra data
stream E from S to P, which introduces a loop into the
X RESERVER
network. There has to be some buffering on at least one
of the data streams in the loop. on either F, H, or E. By Fig. 29.

|

236 . IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VO SE 420 NO. 20 FFBRUARY 19%¢

BOOK

7 1 '\

CHECK NIW
RESERVE BOOKS
I.ISTER

INACTIVI
MEMBLRY
PURCE

OUTSTAND
RESERVER
CANCELD

RESERVATION

INPUT *
RECORD

rROST® TGR

o) G

Fig. 32.

cutting the network at F, H, or E and introducing an ex-
plicit buffer, the same knitting needle technique can be
used to combine the processes into one. The buffer is writ-
ten by one of the subroutines and read back through the
main program. Cutting at £ would leave the hierarchy the
same as in Fig. 27. S would write an EBUFFER which is
read back through MAIN. Fig. 33 shows the hierarchy
with the cut made at H. HBUFFER is shown as an oval
because it is not a true data stream; MAIN can examine
HBUFFER without reading from it.

MAIN now has to make some scheduling decisions;
whether to favor A&B&C or HBUFFER. Fig. 34 shows a
MAIN that empties HBUFFER after every A4, B, or C re-
cord.

Buffering is necessary to deal with loops, but it can op-
tionally and often quite reasonably be introduced for any
internal data stream. In general, the more the buffering

Fig. 33.
MAIN
ENTERNAL®
RECORD
CYCLE
EXTERNAL HPART]
RECORD
IAREC® ;R£c° crec® HREC*
Fig. 34.

s

EBUYFLE?

Fig. 35.

the more work the main program has to do. Fig. 35 dc-
scribes an implementation of the network in Fig. 32 ©
which G, H, and E have been buftfered but not F. Notic:
how different buffering decisions and different algorithm.
in MAIN lead to different mergings of the pairs of stream:
Aand E, Fand G, Hand C.

Fig. 36 shows the structure of a typical MAIN program:
for the kind of batch implementation that makes extensive
use of buffering. Many long-running processes have been
combined into one long-running program. which can be
implemented by a combination of JCL and operator in-
structions. The bottom line is that it you do not have a
long-running computer then you need a long-running op-
erator.

CAMERON: AN OVERVIEW. OF JSD

MAIN

WEEK *

T

END
WEEK

WEER
BODY

NEW BOOKS . OTHER END
LISTER ROSDRVED WEEK
OAY * PART PART PROCESSING
/\ A A [
DAY END
BODY DAY
BOOK MEMBER | prsprvaTion| | cieck OTHER END
INPUT * UPDATE UPDATE . DAY
UPDATE RESERVE PROCESS ING
A A A A A e
{In a Pure Batch System Daybody
simply stores Records for later
Processing}.
Fig. 36.

D. Implementations with Several Processors

The above techniques combine a network into a single
program with or without buffering. Often it is neither nec-
essary nor appropriate to combine all the processes into
one. Then the problem is to allocate all the procésses to
available processors, either real or virtual; to use the above
techniques where there is more than one process on the
same processor; and to implement the data streams and
state vector inspections that pass between the processors.

Between virtual processors communicating via shared
memory the state vectors can be put in the shared memory
and the data streams implemented by, for example, a cir-
cular buffer. Care must be taken in both cases over mutual
exclusion. Between real processors data streams will
probably be simple messages. State vector inspection can
be implemented either by an enquiry and reply pair of
messages or by downloading and storing locally a copy of
the state vector either periodically or on each update.

Alternatively and preferably we might be able to use
directly the facilities of an operating system or of a lan-
guage such as Ada that supports concurrency.

From among these many implementation possibilities,
we have to choose the simplest that meets the informally
laid down timing constraints. The plethora of possibilities
is not a disadvantage, but a sign of success in separating
specification from implementation.

V. DISCUSSION
A. Why Modeling First?
The Meaning of System Outputs: Suppose that the li-
brarian says at an early stage in the development of his
system that he would like an output of the form

-

5921
12.3 days

What does this output mean? The librarian understands :-
by reference to the world he-knows about. We, as devel-
opers, therefore have to understand the world of the ii-
brary at least well enough to understand what the librariaz
is asking for. One major purpose of the modeling phase =
to establish a basis for understanding and discussing the
outputs of the system. That basis consists of the events iz
the JSD model, their attributes, and their orderings, and
it is used not just to define the system outputs but also the
data stored by the system and all the terms used in dis-
cussions with the users.

If you doubt the importance of establishing this basis.
consider what the phrase ‘‘in the library™ might mean. Is
a book to be considered ‘‘in the library™ if it has been
ACQUIRED but not yet CLASSIFIED, or if it has been
taken OUT of CIRCulation but not yet DELIVERED? Is
the book in the library if it is really out of the library, that
is, if it has been LENT but not yet RETURNed? There
are many opportunities here for programming the wrong
system. A specification document that is signed off, but
which lacks a satisfactory model as a basis, is no guar-
antee of avoiding them.

Comparison to Physics: In any application of mathe-
matics there is a bridge (a mapping) between the reality
of the application domain and the formalism of the math-
ematics. The idea is that the mapping should capture in
mathematical form some structure from the application
domain. In physics, for example, we might define certain
symbols as representing the charge on the electron. the
speed of light, and so on: we manipulate the symbols ac-
cording to some mathematical formalism; we then inter-
pret the results back into the reality via the original defi-
nitions. In a similar way the definition of the events is the
bridge between the reality of the library and the formal
specification (and via the specification to the implemen-
tation) of the library system. The manipulations within the
specification produce outputs which can be interpreted
back into the world of the library via the definitions of
events. In this sense building a library system is an appli-
cation of mathematics to a library. ’

The bridge between the reality and the formalism can
never be completely formal because the reality is not com-
pletely formal. Thus, the definitions of the actions are in-
formal dictionary-type definitions whereas the data, for
example, can be defined quite formally in terms of the
actions.

One of the fundamental ideas in JSD is that the struc-
ture of the application domain should be directly reftected
in the structure of the specification. The secondary as-
sumption is that for a very wide class of information sys-
tems, real-time control and embedded systems and oth-
ers, the important structure is sequential and should
therefore be captured by sequential processes.

Contrast with the Functional View of Specifica-
tions: These arguments conflict directly with the widely

Number of books in the library

Average loan period

——— i

i .

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO. 2. FEBRUARY 1986

supported functional view ot specifications. According to
this. view systems are functions mapping their inputs to
their outputs; a specification should define the external
behavior of the system. the behavior of the system as if it
were a black box: internal structure is dealt with later in
a design phase; no internal structure should be part of the
specification.

With this view the output “‘number of books in the li-
brary = 5921 is explained in terms of the system inputs.
This is. to say the least. uncomtfortable for the librarian.
Avoiding internal structure is supposed to avoid prema-
ture implementations commitments. We argue, however,
that the sequential structure of BOOK, MEMBER, and
RESERVATION is part of the problem statement and not
an artifact of a particular implementation.

Maintenance: The second major purpose of JSD mod-
eling is to clarify the problem of maintenance. The model
is defined first and limits the scope of the system. A given
model can support a whole family of outputs. The detailed
functional requirements change much more quickly than
the model on which they are based. Maintenance is easier
because we can move relatively easily within the family of
functions and, secondly. because we can explain up-front
to a user what the family of functions is and therefore what
the consequences are of choosing one or another model.

By including ideas of scoping (actually two scopings
were discussed in Section 1I-A) and therefore of families
of outputs. we can begin a serious discussion of mainte-
nance. Maintenance is only comprehensible through some
concept of families of functional requirements, through
some idea of persistence of certain entities and structures
through a number of changed specifications. The lack of
such concepts is a serious weakness of the functional view.
Extreme proponents sometimes argue that there is no such
thing as maintenance, that a changed problem is a new
problem. However, that is surely bending the facts to fit
the theory.

Orther Modeling Approaches: At least two other ap-
proaches similarly defer consideration of functionality and
of outputs. Builders of simulation systems focus first on
an abstraction of the reality to be simulated and defer con-
sideration of reports and other outputs.

Database-oriented approaches use data models. We have
argued in Section II-C that using events as the basic mod-
eling tool is superior because it extends the modeling to
include the time dimension as an integral part of the model
and in so doing clarifies the semantics of data and of rela-
tionships. both of which are defined in terms of histories
of events.

B. Composition and Decomposition

JSD cannot reasonably be called a top-down method
(nor for that matter a bottom-up method).

* The network is not built by successive explosions of
a process into a subnetwork of processes but middie-out
from an initial set of model processes. The complexity of
the network is not controlled by hierarchical description

but by limitations on the interaction of nonmodel pro-
cesses.

MODEL | MODEL 2 MODEL 3

=
]
:
{
i
T
1
|
t
I
1
|
|
|
t
[}
1
1

&

Fig. 37.

* The specification consists of an upper-level network
and lower-level tree descriptions of the processes in the
network. The whole ot the first phase is concerned with
the lower level, that is with the definition of the model
processes. Then the network is developed middle-out. For
each nonmodel process the lower level description is
added. Development starts at the lower level of the speci-
fication and proceeds up. across. and down.

* Even the development of the tree structures in the
modeling phase is not indisputably top-down. Consider the
film star example from Section [I-B. We started with the
actions, the bottom level of the trees. We did not know at
the outset whether there should be one top box or two. or
even what the top boxes would be.

* Top-down development is characterized by the suc-
cessive refinement of a single system structure. Using JSD
the specification structure is (usually) repackaged into a
completely different implementation structure. Fig. 33 and
35 (or 31 and 36) describe two different implementations;
each has a different structure from that of the specification
from which they were derived: the top levels of each did
not even appear in the specification.

® The JSP programming method. used to develop the
internals of nonmodel processes. starts with a number of
data structure diagrams, composes them into a control
structure of the program and then fleshes out the control
structure. The data structure diagrams (and also the pro-
gram structure) are abstractions of the whole program. not
a description of its top levels.

Sometimes we do explode a process into a network of
processes. Fig. 37 shows the output function process P
decomposed into processes 4 and B and the interactive
function process Q decomposed into processes C and D.
In the Introduction we stated that nonmodel processes did
not usually communicate with cach other directly. that they

CAMERON: AN OVERVIEW OF JSD

interacted only via the model. That is true of P and Q,
but obviously not of 4 and B or of C and D. The statement
is true of the larger-scale structure of the network, that is,
if the phrase ““nonmodel process™ is replaced by *‘non-
model process or small subnetwork.™

Even here we are just as likely to develop P incremen-
tally by working outwards from the model. We might first
add process A which docs the basic calculations to produce
the output G and only later add process B to do some de-
vice dependent formatting of the final output H.

The Weakness of Development by Decomposition: The
idea of top-down decomiposition (or stepwise refinement)
is to develop software by successive decomposition. We
start with a single box marked *‘system.”” If the system is
not trivially simple it is decomposed into parts; the con-
nections between the parts are defined: each part is then
considered independently; any part which is not trivially
simple is further decomposed.

The motivation is clear: small programs are easier than
large programs: large programs are easier than small sys-
tems; small systems are easier than large systems. The
idea is eminently saleable, especially to management.
However, except in a very dilute form the idea is naive. If
it were really possible for most developers to make good
decompositions, the software problem would have been
solved long ago.

The difficulty is this. That first box marked *‘system”
is largely unknown, yet the first decomposition is a com-
mitment to a system structure; the commitment has to be
made from a position of ignorance. This dilemma is re-
peated at successive levels; the designer’s ignorance de-
creases only as the decisions become less critical.

The same argument can be restated as follows. Each
decision about the decomposition of a subsystem depends
on the decisions that have led to that particular subsystem.
This hierarchical decision structure makes the early de-
cisions very critical. A bad early decision may not be dis-
covered until very late. The designer must exercise tre-
mendous foresight to make good decompositions.

We argue that decomposition or stepwise refinement
only really works when a designer is effectively writing
down a solution he already knows and understands. But
then, he is using decomposition as a method of descrip-
tion, not of development. The distinction between the de-
scription of something known and thoroughly understood
and the development of something largely unknown is
often blurred. for example when a developer presents his
design to a manager, or when the writer of a textbook pre-
sents a solution.

Proponents argue that most software development is on
problems that are well understood. This view would be
more convincing if most software projects met their dead-
lines. .

If decomposition does not work, or does not work well
for problems above a certain size, what is the alternative?

Development by Composition: The alternative is to de-
velop software by composition. Instead of starting with a
single box marked *‘system™ we start with a blank piece
of paper. Each increment added is preciscly defined: an

increment is any abstraction of the whole, not necess=
just a component of the whole: part of the system may
to be restructured. repackaged, or transformed in orcz- -
compose it with another part; at intermediate stages ="z
is a well-defined incomplete system rather than an iki-zz-
fined complete system. JSD shows that such an appre.c-
is at least possible.

Finally, while it is a very appealing idea to make o=z -
tiple descriptions of the same system, in effect to be =.-
lowed to view the same system from different perspe:z-
tives, the idea does not really become useful unless the-z
is some way to put the different descriptions together.

C. Technical Substance and Managerial Framework

Sensible managers of software projects always producz
a plan dividing the project into phases. The manager =
concerned with the deliverables at the end of each phase.
the user signoff points, the usage of staff, the detection o<
slippage in time estimates, the political and organizationz.
framework within which the project fits, and other similar
issues. The managerial perspective is quite different from
that of the technical staff doing the *‘real” work.

JSD is about the technical substance of a project. The
technical substance of a project can be mapped on to 2
project plan in different ways. This flexibility is necessary
because, even among technically similar projects, the
managerial and organizational characteristics may vary
widely.

For example, since a system may be needed quickly and
for competitive or legal reasons, there is no possibility of
not going ahead. The main uncertainty is over what and
how much can be delivered in the first of several releases.
A second system may have a much less certain cost justi-
fication, so that throughout the early stages the users only
want to be committed to small increments of work, and
they want the option of stopping the project as the end of
each increment. The project plan, the phasing, and the
phase-end deliverables ought not to be the same for these
two projects even though they may be technically similar.

Some methodologies concentrate on the management
framework rather than on its technical substance. The
danger is that the development team gets locked into a
framework that is totally inappropriate for their project.
That is why many developers do not like methodologies
and think them a waste of time. They are forced to pro-
duce documents which, in their circumstances, have little
value. Their only option is to leave out some steps. which,
they are told, means they are not using the methodology
properly. :

Obviously there are fairly standard mappings of the
technical substance of JSD on to project plans. However,
flexibility in choosing the mapping includes at least the
following:

® considering the most critical implementation issues
well before the specification is complete;

® doing a little of each of the model. network, and im-
plementation phases as part of a feasibility or estimating
study:

A

T TENT Wl

7 WY T CUREENTC TN R BT Sl

230 {EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO. 2. FEBRUARY 19%6

* iterating over the model. network, and implementa-
tion phases ou a planned series of releases:

¢ building a low-volume prototype. amendmg the spec-
iication. and reimplementing to produce a high-volume
production system. .) o

We can summarize as follows. In JSD specnﬁ.cul.mn is
strictly separated from implementation and. within the
specitication. model is strictly separatqd from the rgst. Bu[
the ordering of model, network, and implementation is a
local. not a global ordering. We need the BOOK model
process before the output **Number of books in the library
= 5921 can be formally added to the specification, but
we do not need MEMBER or RESERVATION. We need
part of the model but not all. Similarly, we need some
knowledge of the specification to make implementation
decisions, but we do not need a complete specification. A
project plan fixes the ordering of the work more strictly
than is implied by JSD alone; therefore JSD can be mapped
in various ways on to a project plan.

D. Tools

Three JSD support tools are currently avatlable, all from
Michael Jackson Systems Ltd., 22 Little Portland St.,
London W1.

¢ PDF is a graphics editor for tree diagrams and lists
of operations (as in Fig. 4) and a code generator from
these diagrams into a variety of commonly used lan-
guages. The idea of the package is that the diagrams be-
come the source of the program. PDF runs on the IBM
PC, VAX VMS with VTI100 type terminals and under
Unix. "

e SPEEDBUILDER is planned to be a series of JSD
support products. So far only Unit One has been released.
Unit One is a database for holding a JSD specification, a
user-friendly editor for the database and a document maker
that allows subsets of the database to be printed in a user-
defined format. SPEEDBUILDER runs on the IBM PC.

e JSP-Cobol is a Cobol preprocessor that automates the
insertion of suspend-and-resume mechanisms like the one
described in Sections II-A and II-C, and provides a variety
of testing aids. JSP-Cobol runs on a wide variety of mini
and mainframe computers.

E. Projects

About 30 JSD or substantially JSD projects have been
completed and perhaps as many again are underway. Most,
but not all, are data-processing applications. The follow-
ing are some brief notes about a sample.

¢ A Fleet Personnel system for a multinational oil com-
pany had a ship and employee as its main entities and kept
track of people’s careers, which ships they were on,
where they could join a ship. etc. The system had 120
screen types, about 300 000 lines of procedural Cobol,
had interfaces with an existing payroll system, and was
implemented under IMS DB/DC.

¢ A Time Stamp project kept track of employees arriv-

ing for and leaving work. They work flexitime around core
periods. Different shifts have different core periods, some
employees work part-time, some employees are sick or on
holiday. The implementation was distributed between IBM
Scries/l and System 38 computers. Recovery problems
were handled by running the on-line system under a batch
scheduler.

* A Fingerprint Checking system restricts entry to a
building by scanning in real-time the finger of the person
trying to get in. Obviously, response times are critical.
Implementation was in Fortran under the operating system
RSX-11M.

Projects that are underway include the following:

e the redesign of a substantial part of the on-board soft-
ware for a torpedo;

¢ the application software for a communications system
to support air defense on the battlefield;

® a set of systems to support the merchandising func-
tion of a retail chain, the development of which will take
several hundred man-years.

The experience from these projects deserves a more
substantial treatment. Suffice here to report that the re-
sults have been generally favorable, aithough for no real
project has JSD worked as cleanly or as clearly as it does
on the Library example.

ACKNOWLEDGMENT

JSD has been developed (and is developing) within
Michael Jackson Systems, Ltd. mainly by M. Jackson and
the author, but also with contributions from A. McNeile,
J. Kathirasoo, and T. Debling. M. Jackson and I. Smith
both suggested a number of improvements to this paper.

REFERENCES

[1] C. A. R. Hoare. ""Communicating sequential processes.” Commun.
ACM. Dcc. 1978,

[2] W. Kent, Data and Realiry.
Holland. 1978.

{31 M. A. lackson, Svstem Development.
tice-Hall, 1982.

|41 ——. Principles of Program Design. New York: Academic. 1975,

{31 1. R. Cameron, JSP and JSD: The Juckson Approach to Software De-
velopment. 1IEEE Comput. Soc.. 1983. ‘

6] L. Ingevaldsson, JSP: A Practical Method of Progrum Design (in Swed-
ish). Studentlitteratur, 1977: (in English). Chartwell-Bratt. 1979,

[7] H. Jansen. JSP-Jackson Strukturecl Programmeren (in Dutch). Aca-
demic Service. 1984.

Amsterdam, The Netherlands: North-

Englewood Cliffs, NJ: Pren-

John R. Cameron received the M.A. degree and
Part [l in mathematics from Cambridge Univer-
sity, Cambridge. England, 1973 and 1975, respec-
tively.

From 1975 to 1977. he worked for Scicon. a
British software company, mainly on simulations
of communication networks, Since 1977 he has
worked with Michael Jackson at Michael Jackson
Systems Ltd. developing, teaching, consulting in.
and building sottware tools to support the methods
described in this tutorial. He is co-developer of the
lackson method of System Development and author of the IEEE-Press tu-
torial book JSP & JSD: The Juckson Approach-to Software Development,

