
Scaling Step-Wise Refinement
Don Batory, Member, IEEE, Jacob Neal Sarvela, Student Member, IEEE, and

Axel Rauschmayer, Student Member, IEEE

Abstract—Step-wise refinement is a powerful paradigm for developing a complex program from a simple program by adding features

incrementally. We present the AHEAD (Algebraic Hierarchical Equations for Application Design) model that shows how step-wise

refinement scales to synthesize multiple programs and multiple noncode representations. AHEAD shows that software can have an

elegant, hierarchical mathematical structure that is expressible as nested sets of equations. We review a tool set that supports

AHEAD. As a demonstration of its viability, we have bootstrapped AHEAD tools from equational specifications, refining Java and non-

Java artifacts automatically; a task that was accomplished only by ad hoc means previously.

Index Terms—Specification, design notations and documentation, representation, design concepts, methodologies, data abstraction,

extensible languages, program synthesis, feature-oriented programming, refinement.

�

1 INTRODUCTION

STEP-WISE refinement is a powerful paradigm for devel-
oping a complex program from a simple program by

incrementally adding details [17]. The program increments
that we consider in this paper are feature refinements—
modules that encapsulate individual features where a
feature is a product characteristic that is used in distin-
guishing programs within a family of related programs
(e.g., a product line) [23].

There are many implementations of feature refinements,

each with different names, capabilities, and limitations:

layers [2], feature modules [32], [41], [42], metaclasses [20],

collaborations [43], [45], subjects [24], aspects [33], and

concerns [48]. More general than traditional packages that

encapsulate sets of complete classes, a feature refinement

can also encapsulate fragments of multiple classes. Fig. 1

depicts a package of three classes, c1-c3. Refinement r1

cross-cuts these classes, i.e., it encapsulates fragments of c1-

c3. The same holds for refinements r2 and r3. Composing

refinements r1-r3 yields a package of fully formed classes

c1-c3. Because refinements reify levels of abstraction,

feature refinements are often called layers—a name that is

visually reinforced by their vertical stratification of c1-c3

in Fig. 1. As the concepts of refinements, layers, and features

are so closely related, we use their terms interchangeably. In

general, feature refinements are modular, albeit unconven-

tional, building blocks of programs.
Tools that synthesize applications by composing feature

refinements are generators whose focus has been on the
production of source code for individual programs. This is

too limited. Today’s systems are not individual programs,
but rather groups of different programs collaborating in
sophisticated ways. Client-server architectures are exam-
ples and so are tool suites, such as MS-Office. Further,
systems are not solely described by source code. Architects
routinely use different knowledge representations (e.g.,
process models, UML models, makefiles, design docu-
ments) to capture an application’s design [26]. Each
representation encodes different design information and is
expressed in its own language, such as a UML diagram,
OCL, XML, etc.

The contribution of this paper shows how step-wise
refinement scales to the simultaneous synthesis of multiple
programs and multiple noncode representations written in
different languages. The challenge is not one of possibility
as ad hoc ways are used now. Rather, the challenge is to
create an algebraic model of application synthesis that treats
all representations—code and noncode, individual pro-
grams, and multiple programs—in a uniform way. By
expressing the refinement of system representations as
equations, we not only simplify tool development (as
equations are ideal for program manipulation), but also
lay the groundwork for specifying, generating, and opti-
mizing application designs of considerable complexity
using simple algebraic techniques.

We begin with a review of the GenVoca model [2], which
shows how the code representation of an individual program
is expressed by an equation. We then present the Algebraic
Hierarchical Equations for Application Design (AHEAD) model
that generalizes equational specifications to multiple pro-
grams and multiple representations. AHEAD is related to
other models, such as Aspect-Oriented Programming [33]
and Multidimensional Separation of Concerns [39] and,
thus, our results are not GenVoca-specific. We then review a
tool set that supports AHEAD. As a demonstration of
AHEAD’s viability, we have bootstrapped AHEAD tools,
generating over 150K LOC of Java (and other noncode
artifacts) solely from equational specifications automati-
cally, a task that was accomplished only by ad hoc means
previously.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004 1

. D. Batory and J.N. Sarvela are with the Department of Computer Sciences,
University of Texas at Austin, Austin, Texas, 78712.
E-mail: {batory, sarvela}@cs.utexas.edu.

. A. Rauschmayer is with the Institut für Informatik, Ludwig-Maximilians-
Universität München, D-80538 Munich, Germany.
E-mail: axel@rauschma.de.

Manuscript received 30 Sept. 2003; revised 28 Jan. 2004; accepted 30 Mar.
2004.
Recommended for acceptance by L. Dillon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0153-0903.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

2 GENVOCA

GenVoca is a design methodology for creating application

families and architecturally extensible software, i.e., soft-

ware that is customizable via module additions and

removals [2]. It follows traditional step-wise refinement
[17] with one major difference: Instead of composing

thousands of microscopic program refinements (e.g., in-

c(x)! x+1) to yield admittedly small programs, GenVoca

scales refinements so that each adds a feature to a program,
and composing a few refinements yields an entire program.

2.1 Model Concepts

Initial programs are constants and refinements are func-

tions that add features to programs. Consider the following

constants that represent programs with different features:

f // program with feature f

g // program with feature g

A refinement is a function that takes a program as input and
produces a feature-augmented program as output:

i(x) // adds feature i to program x

j(x) // adds feature j to program x

A multifeatured application is an equation that is a named

expression. Different equations define a family of applica-
tions, such as:

app1 = i(f) // app1 has features i and f

app2 = j(g) // app2 has features j and g

app3 = i(j(f)) // app3 has features i, j, f

Thus, the features of an application can be determined by

inspecting its equation. A model is a set of constants and
functions whose members are the building blocks of a

product line.
Note that a function represents both a feature and its

implementation—there can be different functions with

different implementations of the same feature:

k1ðxÞ // adds k with implementation1 to x

k2ðxÞ // adds k with implementation2 to x

When an application requires the use of feature k, it is a

problem of expression optimization to determine which

implementation of k is best (e.g., provides the best

performance).1 It is possible to automatically design soft-
ware (i.e., find an expression that optimizes some criteria)

given a set of declarative constraints for a target application.

An example of this kind of automated reasoning—histori-
cally called automatic programming [1]—is [5]. Expression
optimization is discussed in more detail in Section 10.1.1.

Although GenVoca constants and functions seem un-
typed, typing constraints do exist as design rules. Design
rules capture syntactic and semantic constraints that govern
legal compositions. The details of design rules are not
germane to our paper, but we do elaborate their importance
in Section 10.1.4.

2.2 Model Implementation

A GenVoca constant represents a base program and is a set
of classes. A GenVoca function is a set of classes and class
refinements. A class refinement can introduce new data
members, methods, and constructors to a target class, as
well as extend or override existing methods and construc-
tors of that class. For years, we emulated class refinement
by inheritance using mixins—classes whose superclass is
specified by a parameter [45], [50]. Mixins can add new data
members, methods, and constructors, as well as extend
existing methods and constructors of its superclass.
Unfortunately, mixins only approximate class refinement
because they do not inherit constructors of their superclass
and a mixin does not assume the name of its superclass. We
used simple design techniques to avoid the latter limitation,
and illustrate them below.

Fig. 2 depicts the composition k(j(i)). Constant or
base program i encapsulates four classes (ai � di).
Function j refines three classes (vertical lines in Fig. 2
denote class refinement) and adds another class. That is, j
encapsulates a cross-cut that refines classes ai, ci, and di
(represented by mixins aj, cj, and dj), and adds class ej. The
application of function k to j(i) results in the refinement
of two classes, cj and dj.

Linear refinement chains are common in this method of
implementation. The composition k(j(i)) of Fig. 2
produces five classes a-e. Each class is synthesized by a
linear refinement chain of members from features i, j, and
k, which is expressed by the following pseudo-Java code:

class a extends ajðaiÞ {};

class b extends bi {};

class c extends ckðcjðciÞÞ {};

class d extends dkðdjðdiÞÞ {};

class e extends ej {};

Above, we represent mixins (class refinements) as
functions. That is, mixin ajðÞ is a function that is applied
to base class ai. The expression ajðaiÞ defines a linear
refinement chain of two classes. Class a is the name given to

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

Fig. 1. Classes and refinements (layers).

Fig. 2. Implementing refinements by mixin inheritance.

1. Different equations represent different programs and equation
optimization is over the space of semantically equivalent programs. This
is similar to relational query optimization: A query is represented by a
relational algebra expression, and this expression is optimized over the
space of semantically equivalent query-evaluation programs.

the terminal class of this chain. Similarly, ckðcjðciÞÞ defines
a linear refinement chain of three classes; class c is the name
given to the terminal class of this chain, etc.

The only classes that are instantiated in a synthesized
application are the terminal classes of the refinement chains,
namely, classes a-e. Nonterminal classes (those that are
unshaded in Fig. 2) are never instantiated.2

Synthesized classes need not be stand-alone; they can
belong to an inheritance hierarchy. Suppose classes b and c

are subclasses of a (Fig. 3a, where subclassing is shown in
bold lines). The refinement chains that we synthesize are
the same as that in Fig. 2 except that both classes bi and ci
are declared to be subclasses of synthesized class a. The
subtlety here is that inheritance is doing double-duty: It
implements subclassing (the bold lines in Fig. 3b) and
emulates refinement (relationships shown in thin lines).
This design scheme allows us to refine arbitrary subclassing
hierarchies by adding new classes and refining existing
classes and was the key technique for building the Jakarta
Tool Suite [4], a set of compiler-compiler tools that use
GenVoca models to build product lines of preprocessors for
extended Java languages.

Although, arguably, the simplest implementation of class
refinements is mixin inheritance [13], [45], [50], more
sophisticated means are also possible. Examples include
generators [5], [35], program transformations [9], and
objects [47].

3 SCALING REFINEMENTS

Four ideas have led us to generalize the GenVoca model.
First, an application has other representations beyond
source code. An application can be defined by UML
documents, process diagrams, makefiles, performance
models, design rule files, etc., each written in its own
language.

This suggests that conventional notions of modularity
must be broadened, which leads to our second idea: A
module is a containment hierarchy of artifacts that can include

multiple representations of an application. A traditional
example is that of object-oriented source code—a class is a
module encapsulating a set of data members and methods,
each identified by a signature. Similarly, a Java package is
another kind of module that encapsulates a set of .class
files, each identified by its fully qualified class name. A
J2EE EAR file is also a module—it encapsulates a set of Java
JAR files, deployment descriptors, and HTML files, each
identified by its entry name. An application is yet another
kind of module which has a representation as a contain-
ment hierarchy of named artifacts, including code, make-
files, and documentation.

Third, a scalable notion of refinement should be able to refine
all representations in a consistent fashion. When an application
is refined, any or all of its representations may be changed.
Thus, if an application is represented by a containment
hierarchy, a refinement is a function that transforms
arbitrarily nested containment hierarchies, down to the
most primitive artifacts. A refinement may alter a contain-
ment hierarchy by adding new nodes (e.g., a refined
application may introduce new Java or HTML files) or it
may refine existing nodes (e.g., existing Java and HTML
files are modified).

This leaves us to define refinements for noncode
artifacts. The goal is intuitive: Start with an original artifact,
apply zero or more refinements to it, and produce an
updated artifact. But, what general principle should guide
us in defining a representation-specific refinement for an
artifact? This leads to our fourth idea, which we call the
Principle of Uniformity: Impose an object-based structure on
artifacts of a given type, taking advantage of any natural
indexing scheme that may already exist, and define
refinement to follow the notions of mixin inheritance (or
more specifically, class refinement).

Consider a makefile, a typical noncode artifact. Fig. 4a
shows a makefile with three targets: main, common, and
clean. common must be built before main; clean has no
dependencies. Suppose these targets are part of a base

feature. Fig. 4b shows the refinement of base by foo,

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 3

2. Smaragdakis and Batory [45] showed cases where instantiation of
nonterminal classes might be useful, however, this is possible only using a
special casting capability of C++ which may not present in other languages.
Our Java implementations, for example, could never instantiate nonterm-
inal classes of a refinement chain.

Fig. 3. Refinement of inheritance hierarchies.

Fig. 4. Makefiles and refined makefiles. (a) Base makefile. (b) A foo and

bar refined makefile.

which encapsulates a cross-cut of targets that adds a file D

to compile in main and a file E to compile in common.
Fig. 4b also shows a further refinement of foo(base) by
bar, which adds another file Q to compile to main and a
new instruction, delete *.ser, to clean.

A makefile has a natural indexing scheme: Targets are
uniquely named (or can be) and each target has associated
actions. This is analogous to the association of class method
signatures to method definitions. We take advantage of this
analogy to impose an object-based structure on makefiles
wherein target names play the role of method signatures
and target build actions play the role of method definitions.
The same idea applies to other makefile concepts, such as
properties.

The next steps are to augment the makefile syntax to
declare makefile refinements and to create a tool that
implements makefile composition. Fig. 5a is a base
makefile. Fig. 5b and Fig. 5c, respectively, show one way
in which makefile syntax can be augmented—we introduce
a keyword, super, to specify references from a refining
makefile to a target makefile. A makefile composition tool
can then expand the super references by textual substitu-
tion, passing the final result (Fig. 5d) to a make program.

With this approach, it is possible to implement before,
after, and overriding advice of “makefile methods” by
makefile refinement. New targets and dependencies can
also be specified with an appropriate makefile refinement
tool. For example, Fig. 6a shows another makefile refine-
ment, baz, that overrides the target common, augments
target clean and adds two targets, gui and lnk, along
with appropriate dependencies. The composition baz

(base), after textual substitution of super references, is
shown in Fig. 6b.

Interestingly, many artifact types in use today (XML,
HTML, Word documents, etc.) have or can have an object-
based structure. However, these types aren’t often object-
oriented—few support inheritance or more general refine-
ment relationships among their instances. There is, for
example, no support for mixin inheritance between Word
documents. Nevertheless, the Principle of Uniformity is
clear: When introducing a new artifact type, the tasks to be

done are to support inheritance relationships between

instances and to implement a refinement operation that

realizes mixin inheritance. With Word documents, for

example, it is reasonable to support inheritance by building

on a natural indexing scheme for chapters, sections, and

paragraphs and—admittedly, a daunting task—to imple-

ment a refinement operation by textual substitution.
Given the ability to refine noncode artifacts, we can now

scale refinements in a significant way.

4 AHEAD

GenVoca expressed the code representation of an individual

program as an equation. The model that we present here,

called Algebraic Hierarchical Equations for Application Design

(AHEAD), expresses an arbitrary number of programs and

representations as nested sets of equations, a form that is

ideal for generators to manipulate. In this section, we show

how AHEAD constants, functions, and their compositions

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

Fig. 5. Makefiles, refinements, and composition. (a) base makefile, (b) foo refinement, (c) bar refinement, (d) bar(foo(base)).

Fig. 6. Makefile refinement and composition. (a) baz refinement,
(b) baz(base).

are represented and illustrate the power of the model. In
Section 5, we review a tool set for AHEAD.

4.1 Constants and Functions

Base artifacts are constants and artifact refinements are
functions. An artifact that results from a refinement chain is
modeled as a series of functions (refinements) applied to a
constant (base artifact).

Fig. 7a depicts our graphical notation for a GenVoca
constant f that encapsulates base artifacts af � cf . Instead of
pictures, we express constant f mathematically as a set of
constants: f ¼ faf ; bf ; cfg. Similarly, Fig. 7b depicts our
graphical notation for a GenVoca function h that encapsu-
lates functions ah and bh and constant dh. Function h can be
expressed mathematically as a set of functions and
constants: h ¼ fah; bh; dhg.

4.2 Composition

We use the term collective as an alternative to “set.”
Members of a collective are units that represent constants
or functions. Instead of writing h(f) to denote the
composition of h with f, we henceforth write h.f. The
composition of collectives is governed by the rules of
inheritance. Namely, all units of the parent (inner or right-
hand side) collective are inherited by the child (outer or left-
hand side) collective. Further, units with the same name
(ignoring subscripts) are composed pairwise with the
parent unit as the inner term:

h � f ¼ fah; bh; chg � faf ; bf ; dfg
¼ fah � af ; bh � bf ; ch; dfg:

Equivalently, h � f is a set of equations where equation
names are unit names without subscripts:

h � f ¼ fa; b; c; dg
where a ¼ ah � af

b ¼ bh � bf
c ¼ ch

d ¼ df

Each expression in a collective defines a refinement chain of
an artifact that is to be produced. Fig. 8 shows this
correspondence between our graphical notation and its
AHEAD expression: ah � af is the refinement chain for
artifact a and bh � bf is the chain for b. Artifacts c and d are
not refined, so they are unchanged from their original
definitions.

4.2.1 Containment Hierarchies

Compound artifacts are expressed by nesting: Units may
themselves be collectives. Composition of compound
artifacts is achieved by composing nested collectives. For
example, suppose ah and af in Fig. 8 are the collectives
ah¼ fxh; zhg and af¼ fxf ; yfg. The expression ah � af
expands to the collective fxh � xf ; yf ; zhg. The maximum
depth to which collectives are nested is the rank of the
collective. {} is an empty collective of rank 0; {{}} is a
collective of rank 1, etc.

A compound artifact is a containment hierarchy. A Java
program p, for example, is a compound artifact and, thus,
is a nonleaf node; its leaves might be the set of Java files
{x.java, y.java,...} that implement it, the set of
XML files {g.xml, h.xml,...} that defines p’s build
scripts, etc.

Thus, a feature—whether it represents an AHEAD
constant or a function—is defined by a tree of units. When
features are composed, all of their corresponding units are
composed. Thus, feature composition has a simple
interpretation.

4.2.2 Polymorphism

The composition operator . is polymorphic. Artifacts are
composed by operators that are specific to that artifact type.
Java files, design rule files, XML files, etc. will each have
their own unique implementation of the . operator. Thus, if
there are n different artifact types, there will be n different
artifact-type-specific composition operators. (As we will see
in Section 5, there may be several composition operators for
a given artifact type).

Further, the operator for composing collectives of rank n
is no different than the operator for composing collectives of
rank nþ 1, for n � 0. We call this the Principle of Abstraction
Uniformity, which is a special case of the Principle of
Uniformity. Imposing uniformity on all levels of abstraction
produces a very compact and powerful algebra for defining
and composing systems.

4.2.3 Scalability

OO programming languages that support parameterized
inheritance can define and refine code artifacts, but are
unsuitable for noncode representations. In contrast,
equations elegantly express refinement relationships for
all representations. Furthermore, equations and containment
hierarchies enable step-wise refinement and its generators to
scale. Instead of building one huge generator that deals
with all possible program representations (which itself is
impractical), it is much easier to build an elementary
tool—here called a composer—that expands a high-level

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 5

Fig. 7. Constants and functions as sets (collectives). (a) Constant f is a

set of constraints. (b) Function h is a set of functions and constants.

Fig. 8. Expression and refinement chain correspondence.

equation into its constituent artifact equations. Thus, a
simple composer tool does the work of orchestrating
other relatively simple artifact-type-specific tools to
produce the complex set of artifacts that comprise a
synthesized system (Fig. 9).

5 AHEAD TOOL SUPPORT

A simple way to implement a collective is as a file system
directory. A directory’s contents are either files (primitive
units) or subdirectories (collectives). Fig. 10a shows a
collective that defines feature A; it consists of a unit,
R.drc (a design rule file), and two collectives, Code =

{x.jak, y.jak}(.jak files are extended-Java files) and
Htm = {W.htm}. Fig. 10b depicts its representation as a
directory.

Feature composition is directory composition. A com-
posite directory is produced whose organization is
isomorphic to the directories from which it was com-
posed. Fig. 10c shows a composition of features A and B

resulting in feature C. Corresponding units in each
directory are composed to produce a compound unit.
For example, X.jak of C is the composition of X.jak of B
with X.jak of A.

Given this organization, we initially built AHEAD tools
using the Jakarta Tool Suite mentioned earlier [4]. Almost
all AHEAD tools were written in a JTS-produced dialect of
Java that includes refinement declarations, metaprogram-
ming constructs (e.g., Lisp “quote” and “unquote”), and
hygienic macros. We have since bootstrapped our imple-
mentation of AHEAD tools. We discuss this topic further in
Section 8.

The main tool of AHEAD is the composer, which takes
an equation as input and recursively expands the equation
into its nested collective equivalent. It then creates a
composite feature directory (whose name is that of the
input equation) and invokes artifact-specific composition
tools to synthesize artifact files from generated nested

equations. composer itself is fairly simple, written in
4K lines of Java.

Other tools implement the composition operator . for
specific artifact types. The first tools that we built composed
code artifacts because verifying the code synthesis capabil-
ities of AHEAD was our first priority. Subsequently,
composition tools for noncode artifacts, such as HTML
files, makefiles, equation files, design rule files, XML files,
and BNF-grammar files (for synthesizing extensible pre-
processors) were constructed. We anticipate the set of
composition tools will grow larger over time. In the
following sections, we illustrate composable code and
noncode artifacts that are supported by AHEAD.

5.1 Code Artifacts: Jak Source

Code files that are composed by AHEAD tools are not pure
Java, but rather a superset of Java called Jak (pronounced
“jack,” short for Jakarta): This is Java extended with
embedded domain-specific languages (DSLs) for refinements,
state machines, and metaprogramming. AHEAD tools are
Java language extensible, so AHEAD can support many
Java dialects.

Jak-specific tools are invoked to compose Jak files. One of
two different implementations of the . operator can be
used: jampack or mixin. Both take an equation as input
which defines the refinement chain of a Jak artifact and
produces a single composite Jak file as output. A third tool,
jak2java, translates a Jak file to its Java counterpart. Thus,
our two-step paradigm uses jampack or mixin to compose
Jak files and jak2java to derive the corresponding Java
file from its composite Jak file (Fig. 11).

5.1.1 Source Code

A Jak file defines a code constant or function. A code
constant is a single interface, class, or state machine. A Jak
interface and class declaration are indistinguishable from
their Java counterparts, except for a feature declaration
which specifies the name of the feature to which the file
belongs (see Fig. 12a). More interesting is a state machine
declaration, which consists of state and edge (transition)
declarations. The state machine fsm of Fig. 12b declares
three states (s1-s3) and two edges (e1-e2). See [6] for
more details.

A code function refines an interface, class, or state
machine. The refines modifier distinguishes constant
declarations from functions. A refinement of class k in
Fig. 12a is shown in Fig. 12c. It adds a new data member

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

Fig. 9. Organization of AHEAD generators.

Fig. 10. Collectives as directories. (a) A collective, (b) its directory, and (c) directory composition.

(counter2) and a new method (method2). Methods can be
refined/extended in the usual way by overriding the
original method and invoking that method via a super

call in the extension body. A refinement of state machine
fsm is shown in Fig. 12d. It adds state s4 and edge e3.

5.1.2 Composition

jampack and mixin are sophisticated tools, both over 30K
Java LOC in size. Their functionality, however, is fairly
simple. Conceptually, jampack compresses refinement
chains into a single interface, class, or state machine
specification. The jampack result of composing the k

function with the k constant of Fig. 12 is shown in
Fig. 13a; the resulting class exposes the union of package
imports, data members, and methods that are visible to the
bottom-most class of its refinement chain. The jampack
result of composing the fsm function with the fsm constant
of Fig. 12 is shown in Fig. 13b. The resulting state machine
exposes the union of package imports, states, and edges that
are visible to the bottom-most state machine of its
refinement chain.

jampack was our first tool to compose code. We soon
discovered that jampack might not be the preferred tool.
To see why, a typical debugging cycle is to:

1. compose Jak files,
2. translate the composite Jak file to its Java counterpart,
3. compile and debug the Java file, and
4. update the composite Jak file with bug fixes.

This translate-compile-update cycle continues until no
further changes are needed. Here lies the problem:
jampack does not preserve feature boundaries, thus
changes made to the composite Jak file must be manually
propagated back to the original Jak feature files. This can be
tedious and error prone.

mixin was created as an alternative implementation of
the Jak composition operator. It preserves feature bound-
aries by creating an inheritance hierarchy—refinement
chain—of class/interface/state machine declarations within
a single Jak file, where the bottom-most declaration is
public and all others are abstract. Every class/inter-
face/state machine declaration is prefaced by a SoUrCe

statement that identifies both the feature name and path to
the file from which that instantiated declaration originated.3

Figs. 14a and 14b shows the mixin output for the
corresponding jampack compositions of Figs. 13a and
13b. With the availability of SoUrCe statements, we have
created a fourth tool, called unmixin, which takes a
mixin-produced Jak file as input and automatically
propagates updates (comments as well as source state-
ments) to the original feature files. Using unmixin saves a
considerable time during a development cycle.

There is yet another strategy: It is possible to edit the
original feature files and recompose. Our experience
suggests that debugging features is similar to debugging
templates: One instantiates a template to debug and
develop it and changes are eventually back-propagated to
the original definition. We do not yet know which tools and
processes engineers will prefer when developing software
with AHEAD; this is a subject of future work.

5.2 Noncode Artifacts: Grammars

Grammars are defined in AHEAD by a BNF-syntax. A
grammar for an elementary calculator that supports only
integer summations is shown in Fig. 15a. The INTEGER
token is predefined and the PLUS token is explicitly
defined.

A refinement of a base grammar is a grammar fragment
that defines 1) new tokens, 2) new productions, and
3) extensions to previously defined productions. A refine-
ment of the calculator grammar that generalizes computa-
tions to additions and subtractions is shown in Fig. 15b. It
defines a new token (MINUS) and extends a previously
defined production (Operator). The “Operator :

super” construct says extend an existing Operator

production.
The composition of Fig. 15a and Fig. 15b is Fig. 15c,

which is the union of the token definitions and the resulting
set of productions. Grammar refinement follows the
Principle of Uniformity by equating tokens with data
members and productions with methods. Grammars can
be refined with the addition of new data members (tokens),
new methods (productions), and extensions of previously
defined methods (productions).

Grammar composition arises in the synthesis of AHEAD
tools because the tools are language extensible. When a
feature extends a base language (e.g., Java), we compose
grammars of the base language and its extension to produce
the composite grammar. From this grammar, we can
synthesize parsers and other analysis programs using
standard compiler-compiler tools.

5.3 Noncode Artifacts: Equation Specifications

An equation file encodes an AHEAD equation, which is a
specification for synthesizing a code or noncode artifact.
The file for X = F.E.D is depicted in Fig. 16a; the name of
the file is X.equation and the file itself is a text file that
lists one feature per line, innermost feature first. A
refinement of an equation follows the principle of uni-
formity: We treat an equation as a method and a refinement
is an equation that may reference its parent equation using
super. A refinement of an equation is depicted in Fig. 16b,
and the result of composing the equation files of Figs. 16a
and 16b is Fig. 16c. If a refinement does not reference
super, it is a constant and overrides the parent definition.

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 7

Fig. 11. Composing and translating Jak files.

3. Adding new reserved words to a language may preclude the
compilation of legacy programs as the new word was previously legal as
a program identifier. The case alteration in keyword “SoUrCe” minimizes
the likelihood of conflict with legacy program identifiers.

Depending on the replacement of super in an equation file,

a refinement might add new features before, after, or

around the original equation file (like before, after, and

around methods [33]).
Equation files are useful as command-line input to

composer and for implementing metamodels, the topic of

Section 7.

5.4 Additional Noncode Artifacts

We use a special domain-specific language for defining the

design rules. These rules, essentially preconditions and

postconditions, define the legal ordering in which units can

be composed. The composition of design rule preconditions

and postconditions follows standard techniques [54] and is

described in detail in earlier research [3], [40] and AHEAD

documentation [49].
AHEAD expressions can be optimized in the sameway as

that relational algebra expressions in database systems can

be optimized [5]. Each operator (constant or function)

requires three distinct representations: a code representation

to implement the operator, a design rule representation for

composition validation, and a performance model repre-

sentation to evaluate the efficiency of a composition. See [5]

for details on how performance models are represented and
refined and how equations were optimized.

6 EXAMPLES: CALCULATOR MODELS

Three elementary AHEAD models are sketched in detail in

this section. Beyond their expositional value, they serve

double-duty to illustrate that different AHEAD models can

have relationships and these relationships can be expressed

by more abstract AHEAD models called metamodels, the

topic of Section 7.

6.1 calc Model

Consider the synthesis of a family of postfix calculators,

where features are arithmetic operations. An AHEAD

model would have a single constant, basecalc, representing

a calculator with no operations. Refinements add individual

operations—addition (add), subtraction (sub), etc.—to the

calculator:

calc ¼ fbasecalc; addcalc; subcalc; . . .g.
Consider the units of calc. Each unit is a collective with a

single file:

basecalc ¼ fcalbase:jakg,
addcalc ¼ fcaladd:jakg,
subsub ¼ fcalsub:jakg.

The source for these files is listed in Fig. 17. calbase:jak is the

base calculator, caladd:jak introduces the add() operation,

and calsub:jak introduces the sub() operation. Note that

both caladd:jak and calsub:jak are class refinements as they

add a method to class cal.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

Fig. 12. AHEAD code constants and functions. (a) Class constant, (b) state machine constant, (c) class function, (d) state machine function.

Fig. 13. jampack compositions of Jak files. Fig. 14. Mixin compositions of Jak files.

To synthesize a calculator mycalc that has add and sub

operations, we evaluate the equation:

mycalc ¼ subcalc � addcalc � basecalc.
The result is Fig. 18. Because there are no method
refinements, the target class cal is simply the union of
the members in Figs. 17a, 17b, and 17c. Note that the order
in which addcalc and subcalc are composed does not matter as
they are independent of each other. That is, the order in
which the add() and sub() methods are added to the cal
class is inconsequential.

6.2 gui and cl Models

Now, suppose we want to synthesize a client-callable
interface for a calculator. A model that synthesizes a GUI
for a calculator is gui, whose units are in 1-to-1
correspondence with calc units:

gui ¼ fbasegui; addgui; subguig
where basegui¼ fgcalbase:jakg

addgui¼ fgcaladd:jakg
subgui¼ fgcalsub:jakg.

Like calc, each unit of gui is a collective with a single file.
The source for these files is listed in Fig. 20. Briefly, file
gcalbase:jak defines a base GUI class that has a text field
and Clear and Enter buttons. The GUI that is displayed by
gcalbase:jak is shown in Fig. 19. The key methods of this
class are:

. initAtoms()—where GUI atoms (buttons, text
fields) are initialized,

. initLayout()—where GUI atoms are linked into
a layout containment hierarchy for display, and

. initListeners()—where event listeners and
event actions are coded.

When a calculator operation is added to a GUI (such as the

add and sub operations), the gcalbase:jak class is refined in

the following way:

. A GUI button is declared for the operation (this adds
a new data member to the gcal class).

. The button is initialized by extending the initA-

toms() method.
. The button is added to the containment hierarchy by

extending the initLayout() method.
. Button-click events and event actions are added to

the initListeners() method.

When we evaluate the equation mycalc using the gui

model:

mycalc ¼ subgui � addgui � basegui,
we synthesize a single class gcal that displays the GUI in

Fig. 21. In general, each unit of the gui model that

corresponds to a calculator operation adds a new button

to the bottom row of this figure. If n operation units are

composed, there will be n buttons, one per operation in

the GUI.
By the same reasoning, it is possible to imagine a cl

model (one that gives a command-line interface to a

calculator) that works along the same lines:

cl ¼ fbasecl; addcl; subcl; . . .g.
Composing these units synthesizes a class that has a main

method with a command-line parser that understands how

to parse and execute calls to designated operations.

6.2.1 Perspective

The calc, gui, and cl models can be loosely coupled. For

example, there may already exist a fully configured

calculator class and the gui and cl models allow us to

synthesize a customized interface to this class that exposes

only selected operations. Alternatively, these models could

be tightly coupled so that the calculator and its user-callable

interfaces could be synthesized in lock-step. Tightly

coupled models are common and are formalized by

metamodels.

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 9

Fig. 15. Grammar files: (a) constant, (b) function, and (c) composition.

Fig. 16. Equation Files: (a) constant, (b) function, and (c) composition.

7 ADVANCED TOPIC: METAMODELS

Recall that a model is a collective whose units are building

blocks of a product line. Suppose model M0 is {a,b,c,d}.

Further, suppose there are variations of M0, such as:

M1 = { a, b, e }

M2 = { c, d, e }

We can define an AHEAD model, called a metamodel, that

expresses a product line of models. A metamodel whose

product line includes M0-M2 is MM:

MM = { AB, CD, E }

where AB = { a, b }

CD = { c, d }

E = { e }

Given MM, we can synthesize the models M0-M2 by
composing units of MM:

M0 = AB.CD
M1 = AB.E
M2 = CD.E

Thus, the units of MM are building blocks of models. The
following are interesting uses of metamodels.

7.1 Service Packs

A service pack is an update to a model. A service pack
metamodel SP contains an initial model M0 and a series of
service pack updates S1, S2, S3, each of which incrementally
updates a model:

SP ¼ fM0; S1; S2; S3; . . .g.
A composition operator �, called replace, is used to apply the
changes of a service pack to an existing model. If Uk and Uj
are primitive (i.e., noncompound) units, the law of the
replace operator is:

Uk � Uj ¼ Uk // Uk replaces Uj.

Otherwise, � is identical to the composition . operator for
collectives. (� is actually a special case of .). Thus, a model M
that is up-to-date with regard to service pack S3 is defined
by the equation:4

M ¼ S3 � S2 � S1 � M0.
That is, the effects of S1 are applied to M0 by replacing old
base artifacts with new ones and adding new artifacts. The
same for S2 and S3. Special primitive units might be used to
indicate the physical deletion (rather than replacement) of
designated files.

7.2 A Calculator Metamodel

Let’s return to the calc, gui, and cl models of Section 6.
Because the units of these models are in 1-to-1 correspon-
dence, a tight coupling between these models is to embed
them as units of a metamodel CMM:

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

Fig. 17. Calculator source code: (a) calbase:jak, (b) caladd:jak, and (c) calsub:jak.

Fig. 18. Synthesized cal.jak file.

Fig. 19. GUI base. 4. A design rule is: Si must be applied before Siþ1 for i � 0.

CMM = { calc, gui, cl }.

calc is the (lone) constant and gui and cl are functions

that add different front ends. The product line of CMM has

four distinct models:

basic = calc // no front end

wgui = gui.calc // with gui front end

wcl = cl.calc // with command-line

front end

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 11

Fig. 20. Calculator GUI source code. (a) gcalbase:jak, (b) gcaladd:jak, (c) gcalsub:jak

Fig. 21. Refined GUI.

dsb
CMM(courier font)

dsb
1 FIX ON THIS PAGE

clg = cl.gui.calc // with both command-line

and gui front ends

Consider wgui. It is a model that allows us to simultaneously
synthesize a calculator class and its corresponding GUI front
end. Look at the contents of wgui by expanding its
definition:

Wgui ¼ gui � calc
¼ fbasewgui; addwgui; subwguig

where basewgui¼ basegui � basecalc
¼ fgcalbase:jak; calbase:jakg

addwgui¼ addgui � addcalc
¼ fgcaladd:jak; caladd:jakg

subwgui¼ subgui � subcalc
¼ f gcalsub:jak; calsub:jakg.

That is, the wgui model has the same number of units with
the same names (ignoring subscripts) as calc and gui,
namely, fbasewgui; addwgui; subwguig. Further, each unit en-
capsulates a pair of files: One file represents the calculator
base or refinement, the second represents the corresponding
GUI base or refinement. For example, subwgui encapsulates
the refinement (calsub:jak) that adds the sub() operation
to the base calculator class and another refinement
(gcalsub:jak) that integrates the subtraction button into the
base GUI class.

The significance of metamodels like CMM is that it
separates concerns: It separates a design specification from
its possible implementations. For example, the design of the
mycalc application is specified by the equation mycalc =

sub.add.base. This equation states that mycalc has
addition and subtraction operations without specifying their
implementation. To supply an implementation, mycalcmust
be evaluated in the context of a model. If the model is calc,
then only the calculator source is generated. If the model is
wgui, then both the calculator source and its GUI are
generated. In this example, metamodels separate the specification
of an application’s design from a family of implementations.
Further, they allow us to create declarative feature-oriented
specifications expressed as GUI front ends like Fig. 22. The
check-boxes in the left-most column of the GUI specify the
features of a calculator’s design; the check-boxes in the right
column specify the model to use. From this input, the
mycalc equation and metamodel equation cgl can be
inferred. Together, these equations specify a particular
calculator in a large space of possible calculators and
implementations.

Making feature design specifications orthogonal to
feature implementation specifications leads to an interest-
ing result. Instead of specifying an application by a single
equation, we are using a pair of equations to define an

application. We generalize this approach in [7], [8] so that a
single application is specified by n equations, one for each
orthogonal concern. We call this generalization Origami; it’s
significance is scalabililty. We show that the length of each
of the n equations will be at most k terms. (Our calculator
metamodel is a particular example of Origami where n ¼ 2
and k ¼ 3). Thus, the length of an Origami specification is
OðknÞ. Had we not used Origami (or metamodels), we show
that the corresponding AHEAD specification could be
exponentially longer—OðknÞ terms. More examples of
Origami are given in [7], [8], where we explain how
AHEAD tools are synthesized from compact Origami
equations.

8 APPLICATIONS

AHEAD is being used to build next-generation distributed
fire support simulators (FSATS) for the US Army Simulation,
Training, and Instrumentation Command (STRICOM). Several
years ago, we built a feature-oriented prototype of FSATS
[6]. As the first nontrivial test of AHEAD, we converted the
prototype’s source code, which included classes, interfaces,
and state machines, into AHEAD features. We also added
design rule files and makefiles, so, when AHEAD features
were composed, three very different representations of
FSATS (code, design rules, makefiles) were synthesized. The
prototype was defined by a single AHEAD equation
composing 21 features, yielding 90 files and 4,500 Java LOC.

The next significant test was bootstrapping AHEAD
itself. As mentioned earlier, AHEAD tools were initially
built using JTS. To bootstrap AHEAD, we converted JTS
source into AHEAD features. In addition to code represen-
tations, AHEAD directories included grammar (BNF) files,
which defined the syntax of optional Java language
extensions. We used Origami, an AHEAD metamodel, to
generate equations for AHEAD tools, including jampack,
mixin, unmixin, and jak2java, and then used AHEAD
tools to synthesize their executables [7], [8].

To convey the complexity of this bootstrapping step, we
offer three arguments:

. There are 69 distinct AHEAD features constituting a
code base of 33K Jak LOC. The AHEAD equation for
each tool references approximately 23 features,
where 10 features are shared among AHEAD tools.
Each tool is generated by composing the Jak and
grammar representations of each feature and trans-
lating their representations to Java, resulting in over
30K LOC per tool. Thus, using only equational
specifications, we are generating the AHEAD tool
suite (150K Java LOC [7]) automatically, a task that
was accomplished only by ad hoc means previously.

. We subjectively estimate that to write the main tools
of ATS by hand would take at least two man-years.
The effort to manually replicate the entire tool suite,
which goes beyond the main tools to include code
formatters, document generators, a graphical inter-
face, etc., could be three or more times that. We
cannot experimentally validate these estimates as it
would be too costly. But, more importantly, to make
these tools feature-extensible—the prime motivation for

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

Fig. 22. A declarative feature specification.

AHEAD—would require a toolkit like AHEAD to be
available in the first place.

. Another reason to bootstrap AHEAD is to demon-

strate feature extensibility on a nontrivial applica-

tion. Bootstrapping a compiler is a major milestone

in compiler development and it is a convincing test
of a compiler to compile itself. In compilers, there

are multiple levels of abstraction that are super-

imposed in the code. Bootstrapping requires these

levels to be separated. Doing so is nontrivial. The

same holds for ATS, but it is more difficult because

ATS is not just a single tool, but a suite of

interdependent tools each requiring different repre-

sentations to be composed.

In short, bootstrapping ATS was a major achievement.
We believe ATS is the most sophisticated system ever
produced by automatic step-wise refinement.

9 FUTURE WORK

AHEAD raises many interesting questions including:

. The ability to analyze designs using tools such as
model checkers will be critical to future design
technologies. How do such tools fit with refinements
and AHEAD designs? Preliminary results are
encouraging—see [34].

. There are many operators on collectives and units
besides the . and � operators. javac, for example,

could be an operator on a collective that compiles the

encapsulated Java files to another collective.

javaDoc could derive HTML documentation from

the same Java files and, in general, many develop-

ment tools can be realized as operators on collec-

tives. By equating standard tools with operators, we

enrich our algebra for software development. Once
applications are specified algebraically, they are

amenable to automated optimization and reasoning.
. Because it is possible to derive artifacts (e.g., .class

files are derived from Java files via javac),
composition operators are needed only for the most
basic artifact types. Maintaining the consistency
among “basic” types in a refinement (e.g., English
explanations of source code) is something that we
currently accomplish manually. Tool support for
artifact derivation and consistency maintenance
among artifacts is needed.

. Many refinements that impact—cross-cut—different

parts of programs require more sophisticated im-

plementations of refinements than used in AHEAD.

For example, information from multiple artifacts

may be used to decide how to refine other artifacts

en mass. How can such functions be modeled and
implemented?

. AHEAD constants and functions are typed. The
feature directories that we have composed with
AHEAD have the same structure (or type), but our
tools are not yet sophisticated enough to validate
this assumption. A type theory is needed to express
refinements and artifact hierarchies [15].

. In Section 4.2, we mentioned that the . operator was
polymorphic. Our current implementation realizes .
by overloading. Even though . appears to be higher-
order, AHEAD implements composition as pre-
compile-time static transformations which treat .
operands purely as typed data, where every type is a
subtype of Unit. When . is applied to Java code, a
Java-specific transformation tool is invoked and, in
general, a type-specific tool is invoked to implement
composition. In this sense, . is bounded poly-
morphic. Again, a type theory for AHEAD would
further clarify these issues.

. Our code composition tools are preprocessors. What
is eventually needed are proper extensions to
programming languages that allow separate compi-
lations of features. Our concept of code refinement is
similar to the open class concept in MultiJava [16]
where separate compilation and type checking of
class extensions (which could correspond to
AHEAD features) are correctly handled, but Multi-
Java does not support method refinement or the
composition of selected extensions.

. AHEAD has been developed with functions that
have at most one parameter. There are, however,
GenVoca models containing functions with multiple
parameters [2]. Are there cases where multiple-
parameter functions are more natural to software
developers? If so, how can such functions be
implemented in AHEAD? This issue is analogous to
that of single inheritance versus multiple inheritance.

. Not all features are implemented by “cross-cuts.” As
the granularity of a feature scales, an individual
“feature” might be encapsulated by a COM, .NET, or
CORBA component [10]. How does AHEAD gen-
eralize to represent these features?

. The Principle of Uniformity imposes object model
organizations on all artifacts. There are cases where
sequences of artifacts, not sets, must be expressed and
refinement operations on sequences (e.g., insert x

before y, or insert x after z) must be considered. For
example, XML documents are trees, but often the
order matters in which children of a parent node are
listed. More work is needed to define more precisely
the concept of object model organizations with
sequencing so that the generalization of the Principle
of Uniformity covers ordered sequences as well.

10 RELATIONSHIP TO OTHER WORK

AHEAD is a meld of ideas from several disciplines. To
place our work in perspective, we first consider broad
relationships to other paradigms in computer science and
then relationships to specific prior work.

10.1 Perspective

10.1.1 Relational Query Optimization

We believe the future of software development lies in
compositional programming and automated software en-
gineering. The most successful example of both is relational
query optimization (RQO). A relational query is specified in a
declarative domain-specific language (SQL), a parser maps

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 13

it to an inefficient relational algebra expression, a query
optimizer optimizes the expression automatically, and an
efficient query evaluation program is generated from the
optimized expression. RQO is a great example of automatic
programming—transforming a declarative specification into
an efficient program, and compositional programming—
a program is synthesized from a composition of algebraic
operators.

AHEAD is a generalization of the RQO paradigm so that
both compositional programming and automated software
development can be realized in many domains. AHEAD
supports the paradigm of mapping declarative specifica-
tions (where users specify the features they want in their
program) to an actual implementation. This is possible
because programs are synthesized by composing modules
that implement the required features and mapping feature
specifications to equations has not been difficult [31], [7].
The novelty of AHEAD is that it models software domains
as algebras, where features are operators. Particular
programs are expressions—compositions of operators.

The power of the RQO paradigm is optimizing equa-
tional representations of programs using algebraic identi-
ties. The commutability of joins and the distributivity of
projects over joins are examples in relational algebra. In
1998, we showed how equational representations of con-
tainer data structures could be optimized using equational
rewrites, thus demonstrating that programs in domains
other than relational queries could benefit from equational
optimizations. Our current research shows how tools can be
automatically remodularized to minimize tool build times
using equational manipulations. We believe that AHEAD
lays the groundwork for equational manipulation and
optimization of programs.

10.1.2 Algebraic Specifications

A formal approach to program development is algebraic
specifications [18], [19], [53]. A specification is like a Java
interface—it is a set of method signatures—but, more
importantly, goes beyond Java by additional formal
contractual obligations demanding that an implementation
have certain properties. An implementation is said to satisfy
a specification if it conforms to the specification’s signatures
and adheres to its contract. The semantics of a specification
is then defined as all implementations that satisfy it. A
specification leaves out implementation details and is thus
not executable, but is intended to be more understandable
and more easily written by humans. Step by step, it is made
more concrete until there is only one possible implementa-
tion. At this point, there is a unique mapping from the
specification to a program.

The two key points are: 1) Each algebraic refinement step
preserves behavior without adding new functionality and
2) one can formally prove that this is so. Every
implementation of a refined5 specification is provably also
an implementation of the original specification. The
AHEAD concept of refinement is different, as AHEAD
refinements usually add functionality to programs. Adding

functionality to programs is called extension in algebraic
specification parlance.

AHEAD and algebraic specification are complementary:
AHEAD can profit from a rigorous formal foundation and
from ideas on behavioral contracts (e.g., [38]). Whereas
AHEAD encapsulates features, the unit of composition is
more general in algebraic specification [53], [19], [14], [11].
On the other hand, algebraic specifications do not have
AHEAD’s tree-structured representation and support for
multiple artifact types. Another key difference is that
AHEAD units are designed to encapsulate implementations
of reusable features; this is not required in work on
algebraic specifications.

Because AHEAD does not deal with algebraic specifica-
tions in the traditional sense, the exact relationship is a
subject of future work. A goal would be to extend AHEAD’s
composition operator to apply to algebraic specifications so
that collectives, when composed, simultaneously construct
a combined specification and its implementation. Further, a
premise of AHEAD is that no single specification formalism
can cover (or indeed should cover) all aspects of a program.
AHEAD allows any number of related specifications to be
composed. In this regard, AHEAD is less like algebraic
specification and more like model-driven architectures [37],
where a system is defined using multiple distinct and
overlapping specifications.

10.1.3 Functional Programming

The idea that the architectural designs of programs can be
given a functional form is implicit in many papers on
software architecture. The core ideas of metaprogram-
ming—programs are values and functions that transform
these values—originated in functional languages. And the
recursive application of apply operators to fold trees also
has an elegant representation in functional languages.6

AHEAD shows how functional (or algebraic) descrip-
tions of programs scale. Traditional metaprograms deal
with the definition and composition of small code frag-
ments (e.g., LISP quote and unquote); AHEAD, in contrast,
deals with programs and program refinements on a much
larger, hierarchical, multiclass scale. Although AHEAD is a
“functional” model of programs, it is built around the
object-oriented concepts of classes and inheritance, concepts
that are not normally part of functional languages.

10.1.4 Feature Interactions

The selection of one feature may disable or enable the
selection of other features. We have developed simple and
efficient algorithms [3] to validate compositions of features
automatically using Perry’s “Light Semantics” [40]. This has
been the predominant form of feature interactions that we
have seen.

However, there are domains where generated software
must have certified properties. It has been observed that
properties of programs are often properties of individual
features. When features are composed, we want assurances
that these properties remain valid. Thus, an approach to the

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

5. There are other definitions for refinement in the literature [44], [12]. We
use the most common one.

6. An equally strong claim for these points could be made for macro
programming as well. We focus on functional programming in this section
because the AHEAD model has many of the characteristics of functional
languages.

synthesis of correct software is to certify properties of a
feature and to certify that these properties hold after
composition. Li et al. have developed special model
checkers that show how the state space of programs can
be reduced using a feature-oriented approach [34]. Their
work may lead to composition operators for model-
checking feature-oriented software.

The domain of telephony is one where feature interac-
tions have been extensively studied. One approach, ex-
emplified by Zave and Jackson [55], [29], is to
independently define telephony features and their interface
properties (e.g., activation conditions) in formal description
languages such as Promela (used with the Spin model-
checker [27]) and Alloy [28]. Using these descriptions, the
goal of composition operators is to combine them into
subsystem descriptions, taking into consideration prece-
dences and priorities, to yield models that can be formally
evaluated.

Prehofer [41], [42], also motivated by domains such as
telephony where feature interactions are fundamental,
developed a generalization of mixin inheritance [13], [21]
that explicitly describes pairwise interactions as a “lifting”
from one feature to another. A lifting is a set of code
modifications that is applied when its associated interaction
occurs in a mixin composition. For example, the resolution
of mixin A<B<C>> would automatically incorporate the
pairwise liftings from C to B, B to A, and C to A. Liftings
appear to give AHEAD refinements more internal structure
than what we have described and have exploited.

10.2 Other Work

Among the most advanced work on generators is that of
Model Integrated Computing (MIC) at Vanderbilt [46]. MIC
embraces the concept that architects use multiple represen-
tations to specify application designs and MIC generators
have been developed to synthesize graphical domain-specific
languages (GDSLs) that architects can use to specify their
designs. Information that is collected from GDSL specifica-
tions is integrated and stored in a database. Specific artifacts
of a design, ranging from source code to representations for
analysis tools (e.g., model checkers), can be extracted and
derived from this database.

MIC has had great success in synthesizing software and
hardware in engineering and manufacturing domains
where the building blocks of systems and their composi-
tion-by-construction paradigms are well-understood.
Where MIC has had less success is in areas of classical
software applications where the building blocks and
construction-by-composition paradigms are not well under-
stood. We believe this is where AHEAD contributes:
AHEAD provides a structure to modularize domains by
features and a mechanism to synthesize applications by
feature composition.

Domain-specific languages have long been recognized as
a more efficient way in which to 1) specify applications and
2) integrate domain-specific analyses to validate DSL
programs [51]. DSL usage is increasing and has been
particularly successful in the specification of product lines
[52]. AHEAD not only embraces the use of different
general-purpose languages and DSLs as the primary means
for specifying artifacts, but also advocates that programs

written in these languages can be refined. Our refinement of
state machines and equation files in AHEAD is an example.
State machines are expressed in a DSL embedded in Java,
while equation files are written in a standalone DSL. It is
this scaling of refinements to code and noncode artifacts
that is a distinguishing feature of AHEAD.

Aspect Oriented Programming (AOP) is a program refine-
ment technology [33]. AHEAD essentially uses templates to
express refinements. A more sophisticated way is to use
special compilers to implement AHEAD functions that
perform computations on a collective to determine how that
collective is to be modified (or “advised”). Aspects are
specifications of refinements, and aspect weavers execute
these specifications on input programs. Thus, aspects
provide another important kind of function that is currently
lacking in the AHEAD tool set. Gray et al have shown how
aspects apply to noncode artifacts [22]. AHEAD shows how
both code and noncode artifacts can be refined simulta-
neously in collection hierarchies.

Multidimensional Separation of Concerns (MDSoC) is an-
other program refinement technology [39]. We have built
GenVoca generators using Hyper/J. Features correspond
to hyperslices, and GenVoca equations correspond to
compositions of hyperslices. Further, MDSoC advocates
that the techniques for assembling customized code from
hyperslice compositions should also work for noncode
artifacts as well. This conjecture inspired work on AHEAD.
The contribution of AHEAD is a simple algebraic model
that supports the MDSoC thesis.

11 CONCLUSIONS

We believe the future of software engineering lies in
automation. Integral to this vision is the transformation of
application design from an art into a science—a system-
atized body of knowledge that is organized around
principles, ideally expressible as mathematics.

Generators are critical to this vision. As application
complexity increases, the burdens placed on generators and
their ability to synthesize multiple programs and multiple
representations increases. The challenge in scaling refine-
ment-based generators is not one of possibility as there are
any number of ad hoc ways in which this can be done.
Rather, the challenge is to show how scaling can be
accomplished in a principled manner so that generators are
not just ad hoc collections of tools using an incomprehen-
sible patchwork of techniques. The significance of this point
is clear: Generators are a technological statement that the
development of software in a domain is understood well
enough to be automated. However, we must make the same
claim for generators themselves: The complexity of gen-
erators must also be controlled and must remain low as
application complexity scales; otherwise, generator technol-
ogy will unlikely have wide-spread adoption.

We have presented the AHEAD model, which offers a
practical solution to the above problem. The key ideas are:
1) to represent the plethora of representations that define a
program—both code and noncode—as a containment
hierarchy and to treat containment hierarchies as values
and 2) express feature refinements as functions that trans-
form these values. Such refinements encapsulate all the

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 15

changes that are to be made to the representations of a

program when a feature is added.
Doing this, we discovered that application designs have

an elegant hierarchical mathematical structure that is

expressed by nested sets of equations. By imposing

uniformity, we 1) eliminate ad hoc complexity as contain-

ment hierarchies scale, 2) enable a small number of

operators to be used to manipulate AHEAD concepts,

and, most importantly, 3) keep generators based on step-

wise refinement simple as the systems they synthesize scale

in complexity.
We reviewed an implementation of AHEAD and

described our first nontrivial systems constructed by its

principles (FSATS and the AHEAD tools themselves). We

believe AHEAD takes us an important step closer to

realizing a broader vision of automation in software

development.

ACKNOWLEDGMENTS

The authors would like to thank Martin Wirsing, Alex

Knapp, and Ira Baxter for discussions on algebraic

specifications. They thank Melanie Kail and Mark Esslinger

for their contributions to the design of AHEAD tools and

Jim Browne, Stan Jarzabek, Dewayne Perry, and Roberto

Lopez-Herrejon for their helpful comments on earlier

drafts. They also appreciate the helpful comments of the

referees. This work was supported in part by the US Army

Simulation and Training Command (STRICOM) contract

N61339-99-D-10 and Deutsche Forschungsgemeinschaft

(DFG) project WI 841/6-1 “InOpSys.”

REFERENCES

[1] R. Balzer, “A Fifteen-Year Perspective on Automatic Program-
ming,” Software Reusability II, T.J. Biggerstaff and A.J. Perlis, eds.,
Addison-Wesley, 1989.

[2] D. Batory and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components,” ACM
Trans. Software Eng. Methodology, Oct. 1992.

[3] D. Batory and B.J. Geraci, “Composition Validation and Sub-
jectivity in GenVoca Generators,” IEEE Trans. Software Eng., vol.
23, no. 2, pp. 67-82, Feb. 1997.

[4] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for
Implementing Domain-Specific Languages,” Proc. Fifth Int’l Conf.
Software Reuse, June 1998.

[5] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards
and Visual Programming Environments for GenVoca Generators,”
IEEE Trans. Software Eng., vol. 26, no. 5, pp. 441-452, May 2000.

[6] D. Batory et al., “Achieving Extensibility through Product Lines
and Domain-Specific Languages: A Case Study,” ACM Trans.
Software Eng. and Methodology, Apr. 2002.

[7] D. Batory, R.E. Lopez-Herrejon, and J.-P. Martin, “Generating
Product lines of Product-Families,” Automated Software Eng., Sept.
2002.

[8] D. Batory, J. Liu, and J.N. Sarvela, “Refinements and Multi-
Dimensional Separation of Concerns,” Proc. ACM SIGSOFT Conf.
(ESEC/FSE2003), 2003.

[9] I. Baxter, “Design Maintenance Systems,” Comm. ACM, Apr. 1992.
[10] P.A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, and

D. Shutt, “Microsoft Repository Version 2 and the Open
Information Model,” Information Systems, vol. 24, no. 2, pp. 71-
98, 1999.

[11] M. Bidoit and P.D. Mosses, “Common Algebraic Specification
Language User Manual,” Lecture Notes in Computer Science, IFIP
Series, Springer-Verlag, 2003.

[12] “Logic Programming Synthesis and Transformation,” Proc. Ninth
Int’l Workshop Logic-Based Program Synthesis and Transformation
(LOPSTR ’99), A. Bossi, ed., Sept. 1999.

[13] G. Bracha and W. Cook, “Mixin-Based Inheritance,” Proc. Ann.
ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 303-311, 1990.

[14] R. Burstall and J. Goguen, “Putting Theories Together to Make
Specifications,” Proc. Fifth Int’l Joint Conf. Artificial Intelligence,
pp. 1045-1058, 1977.

[15] R. Cardone and C. Lin, “Comparing Frameworks and Layered
Refinement,” Proc. Int’l Conf. Software Eng., pp. 285-294, 2001.

[16] C. Clifton, G.T. Leavens, C. Chambers, and T. Millstein, “Multi-
Java: Modular Open Classes and Symmetric Multiple Dispatch for
Java,” Proc. Ann. ACM SIGPLAN Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 130-145, 2000.

[17] E.W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
[18] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 1:

Equations and Initial Semantics. Springer, 1985.
[19] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 2: Module

Specifications and Constraints. Springer, 1990.
[20] I. Forman and S. Danforth, Putting Metaclasses to Work. Addison-

Wesley, 1999.
[21] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and

Mixins,” ACM Principles of Programming Languages, pp. 171-183,
1998.

[22] J. Gray, T. Bapty, S. Neema, and J. Tuck, “Handling Crosscutting
Constraints in Domain-Specific Modeling,” Comm. ACM, Oct.
2001.

[23] M. Griss, “Implementing Product line Features by Composing
Component Aspects,” Proc. First Int’l Software Product Line Conf.,
Aug. 2000.

[24] W. Harrison and H. Ossher, “Subject-Oriented Programming (a
Critique of Pure Objects),” Proc. Ann. ACM SIGPLAN Conf. Object-
Oriented Programming, Systems, Languages, and Applications, pp. 411-
427, 1993.

[25] W. Harrison, C. Barton, and M. Raghavachari, “Mapping UML
Designs to Java,” Proc. Ann. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, 2000.

[26] A. Hein, M. Schlick, and R. Vinga-Martins, “Applying Feature
Models in Industrial Settings,” Proc. Software Product Line Conf.
(SPLC1), Aug. 2000.

[27] G.J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Pearson Educational, Sept. 2003.

[28] D. Jackson, I. Shlyakhter, and M. Sridharan, “A Micromodularity
Mechanism,” ACM SIGSOFT Conf. (FSE/ESEC ’01), Sept. 2001.

[29] M. Jackson and P. Zave, “Distributed Feature Composition: A
Virtual Architecture for Telecommunications Services,” IEEE
Trans. Software Eng., vol. 24, no. 10, pp. 831-847, Oct. 1998.

[30] J. Liu and D. Batory, “Automatic Remodularization and Opti-
mized Synthesis of Product-Families,” to appear.

[31] R.E. Lopez-Herrejon and D. Batory, “A Standard Problem for
Evaluating Product line Methodologies,” Proc. 2001 Conf. Gen-
erative and Component-Based Software Eng., 2001.

[32] K.C. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
Oriented Domain Analysis Feasibility Study,” Technical Report
CMU/SEI-90-TR-21, Software Eng. Inst., Carnegie-Mellon Univ.,
1990.

[33] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” Proc.
Ann. European Conf. Object-Oriented Programming, pp. 220-242,
1997.

[34] H. Li, S. Krishnamurthi, and K. Fisler, “Interfaces for Modular
Feature Verification,” Proc. Conf. Automated Software Eng., 2002.

[35] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play Compo-
nents for Evolutionary Software Development,” Proc. Ann. ACM
SIGPLAN Conf. Object-Oriented Programming, Systems, Languages,
and Applications, pp. 97-116, 1998.

[36] S. McDirmid, M. Flatt, and W.C. Hsieh, “Jiazzi: New-Age
Components for Old-Fashioned Java,” Proc. Ann. ACM SIGPLAN
Conf. Object-Oriented Programming, Systems, Languages, and Appli-
cations, 2001.

[37] S.J. Mellor, A.N. Clark, and T. Futagami, “Model-Driven Devel-
opment,” IEEE Software, no. 5, pp. 14-18, Sept./Oct. 2003.

[38] M. Nenninger and F. Nickl, “Implementing Data Structures by
Composition of Reusable Components: A Formal Approach,”
Proc. ICSE-17 Workshop Formal Methods Application in Software Eng.
Practice, M. Wirsing, ed., Apr. 1995.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 6, JUNE 2004

dsb
(remove 'would like to')

dsb
We(replace 'they' with 'We')

dsb
2 FIXES ON THIS PAGE

[39] H. Ossher and P. Tarr, “Using Multi-Dimensional Separation of
Concerns to (Re)Shape Evolving Software,” Comm. ACM, vol. 44,
no. 10, pp. 43-50, Oct. 2001.

[40] D. Perry, “The Logic of Propagation in the INSCAPE Environ-
ment,” Proc. ACM SIGSOFT Conf., 1989.

[41] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at
Objects,” Proc. Ann. European Conf. Object-Oriented Programming,
1997.

[42] C. Prehofer, “Feature-Oriented Programming: A New Way of
Object Composition,” Concurrency and Computation, vol. 13, 2001.

[43] T. Reenskaug et al., “OORASS: Seamless Support for the Creation
and Maintenance of Object-Oriented Systems,” J. OO Program-
ming, vol. 5, no. 6, pp. 27-41, Oct. 1992.

[44] D. Sannella, “Algebraic Specification and Program Development
by Stepwise Refinement,” Logic Program Synthesis and Transforma-
tion, pp. 1-9, 1999.

[45] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs,” ACM Trans. Software Eng. Methodology, Apr. 2002.

[46] J. Sztipanovits and G. Karsai, “Generative Programming for
Embedded Systems,” Proc. Conf. Generative Programming and
Component-Based Eng. (GPCE), Oct. 2002.

[47] K.J. Sullivan and D. Notkin, “Reconciling Environment Integra-
tion and Software Evolution,” ACM Trans. Software Eng. Methodol-
ogy, vol. 1, no. 3, pp. 229-268, July 1992.

[48] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton Jr., “N Degrees of
Separation: Multi-Dimensional Separation of Concerns,” Proc. Int’l
Conf. Software Eng., 1999.

[49] Univ. of Texas Center for Agile Technology, “AHEAD Tool
Documentation,” 2002.

[50] M. VanHilst and D. Notkin, “Using Role Components to
Implement CollaborationBased Designs,” Proc. Ann. ACM SIG-
PLAN Conf. Object-Oriented Programming, Systems, Languages, and
Applications, pp. 359-369, 1996.

[51] A. vanDeursen and P. Klint, “Little Languages: Little Main-
tenance?” Proc. SIGPLAN Workshop Domain-Specification Language,
1997.

[52] D. Weiss and C.T.R. Lai, Software Product Line Engineering.
Addison-Wesley, 1999.

[53] M. Wirsing, “Algebraic Specification,” Handbook of Theoretical
Computer Science, pp. 676-788, 1990.

[54] W.A. Wolf, M. Shaw, P.N. Hilfinger, and L. Flon, Fundamental
Structures of Computer Science. Addison-Wesley, 1981.

[55] P. Zave, “An Experiment in Feature Engineering,” Programming
Methodology, pp. 353-377, 2003.

Don Batory holds the David Bruton Centennial Professorship at the
University of Texas at Austin. He was an associate editor of the IEEE
Transactions on Software Engineering (1999-2002), associate editor of
the ACM Transactions on Database Systems (1986-1992), a member of
the ACM Software Systems Award Committee (1989-1993; committee
chairman in 1992), and program cochair for the 2002 Generative
Programming and Component Engineering Conference. He has given
numerous tutorials on product-line architectures, generators, and reuse
and is an industry-consultant on product-line architectures. He is a
member of the IEEE.

Jacob Neal Sarvela received the MA degree in mathematics from the
University of California at Davis and the MS degree in computer
sciences from the University of Texas at Austin, where he currently is a
PhD student. His research interests are in generative programming,
including its formalization and extension to build systems. He is a
student member of the IEEE.

Axel Rauschmayer received the diploma in computer science from the
University of Munich and wrote his diploma thesis in cooperation with the
University of Texas at Austin. He was also one of the first three technical
people behind Pangora, a shopping portal company that now powers the
shopping pages of a wide range of European sites (among others,
Yahoo, AOL, and Hotbot). Currently, he is a PhD student at the
University of Munich. His main research interests are using graph-based
knowledge representations for all aspects of software engineering,
generative programming, and language design. He is a student member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BATORY ET AL.: SCALING STEP-WISE REFINEMENT 17

