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R E S E A R C H  F E A T U R E

Function-Class
Decomposition: 
A Hybrid Software
Engineering Method 

A
s software systems have grown consistently
larger and their functionality has become
increasingly complex, the advantages of
using object-oriented methods to improve
their organization and structure have

become apparent. OO methods use packages, com-
ponents, and subsystems to provide a systematic
approach to software development and maintenance,
but they do not provide strong guidelines for using
these constructs to partition complex systems. In addi-
tion to offering a simple yet powerful method for
decomposing a system, function-class decomposition1

produces an architecture that is more supportive than
traditional OO decomposition for several software
engineering tasks. 

FCD, a hybrid method that integrates structured
analysis with an OO approach, identifies classes in par-
allel with decomposing the system into a hierarchy of
functional modules. Recently, FCD was extended to
integrate UML concepts.2 Useful for partitioning a sys-
tem for distribution,3 the FCD hierarchy provides a
framework for controlling development in a distrib-
uted software engineering environment. It also helps to
identify and integrate components in component-
based development and supports the system life-cycle
maintenance phase. In addition, FCD addresses many
of the initial analysis and design problems inherent in
large and complex OO systems. 

We have tested the FCD approach on several appli-
cations, including UICCELL, a large-scale mobile
phone simulator; M-Net, an Internet-based confer-
encing system; and a mobile agent-based system for

collaborative requirements engineering built on top of
an industrial-strength requirements management sys-
tem.

NEED FOR STRUCTURE
Although some leading OO researchers initially

declared orthogonal approaches such as structured
analysis and OO mutually exclusive,4 practitioners
have become increasingly aware that large, complex
applications need structure. The use of subsystems and
components can help reduce a large system’s com-
plexity and provide an initial decomposition of it.
Using a layered architecture can create a high-level sys-
tem decomposition, but it partitions the system into
vertical layers instead of component-like functional
modules, and it lacks many of the benefits that FCD
provides. In an extensive survey of OO methods, Roel
Wieringa5 concluded that they do not provide ade-
quate guidelines for partitioning a system.

The developers of the Mars Pathfinder Mission give
a telling account of their experience with the project’s
flight software architecture.6 As instructed by textbook
OO methodologies, they began by enumerating as
many objects as they could identify, intending to place
them into a flat object space. The team then planned
to arrange the objects into subsystems by identifying
groups of closely collaborating objects. But they imme-
diately encountered problems because a superficial
effort identified 40 objects, and that number expanded
rapidly as they explored mission requirements. The
team concluded that this bottom-up approach was
impractical in relation to their project’s size and com-
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plexity. Instead, they chose an approach that
combined top-down functional decomposi-
tion’s ability to compartmentalize the problem
with OO decomposition’s ability to identify and
model the behavior within each compartment.

STRUCTURED VERSUS 
OBJECT-ORIENTED APPROACH

Structured analysis evolved in the 1970s and
1980s in response to the need for a decompo-
sition technique for analyzing complex software
applications. Early structured methodologies

all endorsed functional decomposition. For example,
Ed Yourdon’s7 top-down decomposition technique
used dataflow diagrams to depict processes and the
data flow between them. Still in use today, these
dataflow diagrams serve as the basis for transforma-
tion, a systematic process for deriving structure charts
to provide a top-level design view.

Using a structured approach requires observing key
principles such as the importance of information hid-
ing. Failure to do so can result in difficult-to-maintain
systems that lack extensibility and cannot be reused
in other contexts. The OO paradigm addresses this
issue by encapsulating data and its corresponding
operations within a class. The identification of enti-
ties and their interrelationships provides the basis for
this approach. Class-oriented decomposition identi-
fies real-world entities, models them as high-level
classes, and decomposes them into lower-level classes.
Performing several iterations of the class and rela-
tionship identification process refines the identified
classes to derive the software system’s architecture.
The OO approach and its related methodologies have
enjoyed wide acceptance, and this approach has
replaced the older structured methods in many soft-
ware projects.

Using a UML package is a popular method of orga-
nizing an OO system. These packages serve as con-
tainers for bundling together classes, hiding their
internal structure to provide a more abstract view of
the system. UML reference materials2 describe how
to use a set of existing interrelated classes to identify
packages. However, this process suggests a bottom-
up rather than top-down approach to packaging,
which fails to address the problem of applying struc-
ture to the decomposition process.

Using subsystems in decomposition
James Rumbaugh8 proposed organizing classes into

subsystems that provide both high-level abstract views
and low-level implementation views of a system. In
Rumbaugh’s approach, the developer first builds a
high-level model of the system’s structure and then
decomposes the model into subsystems. The decom-
position process builds a hierarchical structure itera-

tively, constructing subsystems for each subsystem,
which can in turn contain other subsystems. The
underlying subsystem structure supports both a high-
level abstract view and a lower-level detailed view.

Identifying subsystems presents a challenge when
building a system this way. Early in the decomposition
process, developers cannot always determine whether
an identified class should form a subsystem itself or
become a member of one. Maintaining integrity
between layers when making changes also poses prob-
lems. 

FCD methodology is especially useful in decompos-
ing medium- to large-sized systems. It can also help soft-
ware engineers experienced in structured analysis make
the transition to OO development. FCD maintains
integrity between layers by using a simplified notation
at the higher layers that facilitates upward synchro-
nization. Developers find FCD’s simple notation easy to
learn, expressive, and suitable for the high-level and
often fuzzy thought processes that occur at the start of
the decomposition process.

Integrating structured and 
object-oriented analysis

Researchers periodically visit the idea of integrating
structured and OO analysis. Larry L. Constantine9

used structured analysis to analyze and specify the
internal function of classes, but this approach does
not provide structure for a complex system. He sug-
gested but did not elaborate upon the idea of impos-
ing a hierarchy of control on the classes in a system—
the type of integration that FCD uses.

In response to the lack of methods for managing
entities in traditional structured analysis, Sidney
Bailin10 developed a parallel process of decomposing
objects and allocating functions. He also introduced
entity dataflow diagrams, which contain entity and
function nodes, and the related process of decompos-
ing entities into subentities and functions into sub-
functions. Bailin’s method requires every function to
occur within the context of an entity. In contrast, FCD
decomposes functionality in parallel with class iden-
tification. Another major difference is that Bailin’s
method requires engineers to perform entity-rela-
tionship modeling, a skill that some software engi-
neers, such as those working in real-time embedded
systems or reactive and control systems, may not pos-
sess. Further, his method produces an intertwined pre-
sentation of the entity and function decomposition
that requires mentally separating the two types of
processes to understand the model. FCD facilitates
reading the model by using a simpler notation that
clearly delineates the functional modules and classes.

Wieringa5 argued that because structured and OO
methods actually use similar decomposition criteria,
the distinction between the two is artificial. He pointed

FCD can help
software engineers

experienced in
structured analysis
make the transition
to OO development.
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out that incompatibility occurs only in dataflow dia-
grams that represent the sequence of functional trans-
formations needed to convert system inputs to outputs
and activity charts that separate data, operations, and
control entities. He emphasized that other structured
techniques such as functional decomposition, event
partitioning, device-oriented decomposition, and sub-
ject-domain-oriented decomposition are in fact com-
patible. 

UNDERSTANDING FCD
FCD, an iterative process, applies a top-down

approach to decomposing a system while simultane-
ously identifying and grouping classes into functional
modules, with each module representing a specific
functionality the system requires. The “Function-Class
Decomposition Algorithm” sidebar summarizes this
iterative process.

A module acts as the container for a group of classes
that exhibit high internal cohesion and low external
coupling. As Figure 1 shows, the main decomposition
tasks consist of identifying classes, placing classes into
groups, using the class groupings to form functional
modules at the next level, and allocating scenarios to
appropriate functional modules. System integration
then occurs from the bottom up. 

Although we can apply FCD as one stage in a water-
fall model, it fits best into an iterative model. In fact,
FCD was initially developed as part of the software-
architecture-based requirements engineering environ-
ment (SABRE). The interdependency of requirements
and the software architecture are the pivotal factors in
the SABRE development process. The requirements

drive and validate the software architecture’s incre-
mental development. The iterative FCD process elic-
its and validates requirements at several levels. FCD
notation consists of typical UML notations for classes,
with rectangular bars representing the functional
modules. 

Class identification
FCD treats the entire system as a single abstract

module representing the system’s high-level function-

When applying function-class decomposition, use the top-
down approach described in the following steps:

1. Treat the entire system initially as a single high-level functional
module at level 1. Specify high-level requirements and their
related scenarios.

2. Use requirements and scenarios to identify an initial set of
classes that fulfill the basic functionality of the level 1 func-
tional module. Use FCD notation to represent these classes
within the functional model.

3. Within each functional model, observe responsibilities and
collaborations of each class and place classes into the sub-
groups that appear to maximize internal cohesion and min-
imize external coupling.

4. Develop use-case maps for each functional model. Select key
scenarios and analyze their paths to assess each subgroup’s
cohesion and coupling. Rearrange classes within the sub-
groups to minimize external coupling and maximize internal
cohesion, if necessary.

5. For each group of classes, form a functional model at the next
FCD hierarchy level and name it meaningfully. Each new
functional model will initially contain only the classes
grouped together at the previous level.

6. Allocate to each new functional model the requirements

and scenarios it can completely fulfill. Other require-
ments and scenarios that span functional models at the
new level should remain attached to the parent functional
model.

7. For each functional model at the new level, analyze and refine
the requirements and scenarios allocated to the module, using
them to identify additional classes. 

8. Repeat steps 3 through 7 until the system requires no further
decomposition, usually after all its major functionality has
been identified, but sometimes earlier when using FCD to
partition a system for work allocation in a distributed devel-
opment environment.

9. If all major system functionality has been identified, or if
decomposing the remainder of the system using a more tra-
ditional OO approach, generate UML class diagrams for each
leaf node. Once the class diagrams are generated, additional
support classes may be added. 

10. Starting at the lowest level of the hierarchy, use scenarios allo-
cated to the functional model to define functional model
interfaces. Move up the hierarchy systematically, consider-
ing only the intermediate-level functional models with child
modules that have defined class diagrams. Continue the
process until it reaches the top-level functional model and
the entire system has been integrated.

Allocate scenarios
and requirements
to each new FM

Construct UML
model of each FM

leaf module

Create initial
system-level FM

Identify classes
using scenarios

Create subgroups
of classes within

each FM

Validate grouping
decisions using
use-case maps

Create FMs at
the next level

Integrate FMs from
the bottom up to

form a system

Stop

Start

Continue

FM – Functional module

Figure 1. Function-
class decomposition
process. An iterative
process elicits 
and validates 
requirements at 
several levels, 
followed by bottom-up
system integration.

Function-Class Decomposition Algorithm
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ality. Scenarios refine system-level requirements and
identify high-level classes within the functional mod-
ule. The decomposition’s starting point consists of a
single functional module and the set of classes that
represent the module’s behavior. Figure 2 shows a sys-
tem-level module from the decomposition of M-Net,
a real-time Internet-based collaborative meeting appli-
cation.11 As this example shows, we initially identi-
fied nine classes in the M-Net system-level module. 

Class grouping
FCD identifies the high-level classes and divides

them into subgroups. A subgroup should exhibit rel-
atively strong internal cohesion between the classes in
the group and weak external coupling with classes in
other subgroups. In our experience, the optimum
group size is five to nine classes, but a group could
consist of just one class if that class could be decom-
posed into several more refined classes. Successful
decomposition depends on identifying appropriate
class groupings.

Initial attempts to use FCD to group classes by ana-
lyzing their interconnections1 worked poorly because
practitioners usually are unaware of specific details
about the interaction between classes at early stages of
decomposition. In addition, a static analysis of the
class structure does not provide all the information

needed to determine the level of coupling between
classes. For example, the presence of a bidirectional
link between classes could be a sign of close coupling
or could result from a callback reference at work,
which indicates looser and more desirable coupling
between the classes. Similarly, the presence of a spe-
cialization relationship does not necessarily indicate
close coupling, as in the Java class library in which all
classes derive from the object class. Because of the dif-
ficulties associated with grouping classes by examin-
ing their static relationships, we use a more dynamic
approach based on how scenarios interact with classes
and subgroups.

FCD examines the responsibilities and collabora-
tions of classes in the functional module and places
the classes into groups that appear to maximize inter-
nal cohesion and minimize external coupling. It places
extra classes that do not obviously fit into any specific
group into a miscellaneous or library group. Use-case
maps provide a visual notation for mapping scenarios
onto components and help determine if the groupings
meet cohesion and coupling criteria.12

Ray Buhr12 observed that cohesion and coupling
could be measured by analyzing scenario mappings
onto system components. They found high cohesion
when all the scenarios that interact within a compo-
nent have related functionality and low cohesion
when scenarios with different functionality interact
extensively. Observing the paths that scenarios take
can also measure coupling. High coupling occurs
when a scenario path weaves its way excessively
between two components. Examining the path each
scenario takes tests each subgroup for cohesion and
coupling. After iteratively rearranging class groupings
to achieve satisfactory results, each subgroup receives
a meaningful name that represents its functionality. 

Grouping decisions
Figure 3 shows the grouping decisions made for

level 1 of the M-Net example. At this high level, FCD
groups classes according to the high-level functional-
ity of meeting management, applications, and users.
During an M-Net meeting, when a member requests
the floor, the following sequence of events occurs:

• The member requests the floor by sending a mes-
sage through the session manager and floor con-
troller to the chairperson.

• The chairperson updates the floor request list to
reflect the new request.

• To grant the floor to the requesting member, the
chairperson selects that member from the floor
request list and issues a grant command.

• The system updates floor control to reflect that it
will grant the floor to the requesting member.

• The floor controller sends a message, via the ses-

Meeting Member Meeting RecordsSession Manager

Floor Control White BoardChat Room

Information Exchange ChairpersonSlide Show

M-Net System Level

Figure 2. M-Net system-level functional module and related classes. FCD initially 
identified nine classes in the system-level module. 
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Figure 3. Initial grouping decisions and scenario mappings for an M-Net system-level
module using a use-case map. The curved line represents a scenario’s path as it
weaves its way through the components with which it interacts.
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sion manager, to the requesting member indicat-
ing that he has the floor.

The scenarios do not indicate any undesired levels of
cohesion or coupling; a more complete mapping of
scenarios to components would further validate the
grouping decisions.

Allocation of requirements and scenarios 
To construct the hierarchy, FCD uses the validated

class-groupings from the previous level to form func-
tional modules at the next level. Figure 4 shows
decomposition of the M-Net example into three lev-
els. Unsurprisingly, the groupings often indicate more
than one possible solution to the problem. For exam-
ple, in Figure 4, FCD could place the chat room, white
board, slide show, and information exchange appli-
cations from level 1 into their own functional mod-
ules at level 2.

FCD analyzes each scenario path to determine
whether its behavior is encapsulated within one new
functional module or whether it spans several new
modules. If a new module encapsulates the behavior,
FCD allocates the scenario and related requirements
to that module. Otherwise, the scenario remains allo-
cated to the functional module at the current level.
This process facilitates the refinement and further

decomposition of the system within each functional
module and maps scenarios and requirements to spe-
cific levels of the architecture, which helps determine
the impact of change during the software maintenance
stage.

Refining the decomposition 
Once FCD creates functional modules at the next

level, the process begins again. It uses a more refined
set of requirements and scenarios to identify more
classes within each functional module. During this
stage of class identification, the developer refines exist-
ing classes, adds additional classes that represent new
functionality, and considers rearranging classes to fol-
low proven design patterns for solving specific types
of problems. Next, the developer analyzes the
extended set of classes for further grouping opportu-
nities. Because decomposition refines scenarios as it
progresses, scenarios at lower levels can decompose
functional modules and classes to a finer granularity.

Two techniques can determine how far FCD should
go. One approach continues decomposing each func-
tional module until it is unlikely that additional classes
will be identified for that module. A second approach
determines the level in the decomposition process at
which more traditional OO modeling is appropriate
for mapping the FCD functional modules.
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When using the second approach, FCD primarily
identifies upper- and middle-level subsystems. When
developing an application in a distributed software
engineering environment, we can use this approach to
perform an initial FCD that partitions the work into
distributable units for further decomposition using
FCD or another approach. Low-level system decom-
position may require using class diagrams and other
models to represent highly complex interrelationships
between classes.

System integration
Once FCD completes top-down system decompo-

sition, it performs bottom-up integration and inter-
face definition. It generates a UML class diagram for
each of the leaf nodes, using the attached scenarios to
identify specific class interactions. Each leaf node is a
primitive component or subsystem. Moving iteratively
up the hierarchy, FCD selects an intermediate node
for which it has already defined all its children as class
diagrams. The scenarios attached to this node repre-
sent behavior that spans at least two of the child func-
tional modules. FCD uses these scenarios to refine
individual class diagrams and to establish external
interfaces between them. This process continues until
FCD reaches the top-level functional module and fin-
ishes integrating the entire system. During the inte-
gration process, FCD can add classes to each
functional module that facilitate integration.

When FCD uses a component-based integration
framework, it treats the functional modules as com-
ponents and places them into relevant parts of the
framework. The components can either be primitive
functional modules taken from the leaves of the FCD
hierarchy or composite components constructed from
subtrees of the hierarchy. 

Supported views
FCD supports three types of system views. The FCD

view, as illustrated in Figure 4, shows both the func-
tional modules and the classes they contain at each of
the three levels. This view reflects the decomposition

process itself, as it records the process of identifying
and grouping classes and forming functional modules.
FCD can attach rationale documents containing tex-
tual descriptions and links to requirements to each
hierarchy level. A simple traceability scheme can aug-
ment the FCD view. Explicit traceability preserves cer-
tain refinements such as the relationship between a
class at a higher level and the multiple classes decom-
posed into a lower level. In this sense, FCD supports
not only the decomposition process but also the
equally important job of preserving and document-
ing the process. 

To generate a hierarchical view that shows the
application’s structural model, FCD hides all the
classes and shows only the functional modules. FCD
can recursively combine more primitive functional
modules to construct intermediate subsystems. The
third view resembles a more traditional OO class dia-
gram. FCD constructs it from the bottom up, using
scenarios allocated to each functional module to
define class diagrams and external interfaces. It then
uses these interfaces to generate a systemwide class
diagram.

FCD STRENGTHS AND WEAKNESS 
FCD requires extra work and discipline during the

decomposition process to identify and group classes
into functional modules. However, in our experience,
the benefits justify this additional effort. The FCD hier-
archy supports a number of software engineering life-
cycle tasks. As system requirements change over time,
engineers can use FCD’s hierarchy mapping require-
ments to determine the scope of the changes.
Requirements mapped to leaf nodes affect only the
primitive components those nodes represent, whereas
requirements attached to higher-level functional mod-
ules affect multiple system components. For example,
in Figure 5, if a change request specifies a modification
to requirement 326, it is immediately apparent that
the scope of the change would be limited to the white
board module. In contrast, a change request against
requirement 102 could have a systemwide effect.
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FCD’s hierarchical structure offers the distinct
advantage that detailed changes made at lower lev-
els—for example, the decision to use aggregation
instead of inheritance—do not require adjustments at
higher levels because that type of detailed information
is not part of the higher-level model. Only changes
that require reassignment of classes to a different func-
tional module defined at a higher level in the hierar-
chy require higher-level adjustments. 

FCD’s hierarchy also offers the advantage of test-
case-generation support. It attaches scenarios to leaf
nodes to generate unit tests, and scenarios attached to
higher-level nodes generate integration and system-
level tests. Finally, the natural boundaries between
functional modules in the FCD hierarchy simplify the
task of identifying initial partition points in distrib-
uted systems.3

O ur experience validates FCD’s compatibility with
OO methodologies and modeling techniques.
FCD uses an iterative, top-down process of sub-

system identification and decomposition that reduces
the inherent complexity of more traditional OO mod-
eling approaches. In addition to supporting the
decomposition process itself, the resulting FCD archi-
tecture and related artifacts support maintenance of
the system in the face of changing requirements.
Future work will focus on extending our knowledge
of FCD by investigating its application to a much
broader range of systems and refining the approach
to support other aspects of a typical software life
cycle. ✸
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