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Abstract

Many software process methods and tools presuppose the ex-

istence of a formal model of a process. Unfortunately, devel-

oping a formal model for an on-going, complex process can

be dificult, costly, and err-or prone. This presents a practical

barrier to the adoption of process technologies. The barrier

would be lowered by automatmg the creation of formal mod-

els. We are currently exploring techniques that can use basic

event data captured from an on-going process to generate a

formal model of process behavior. We term this kind of data

analysis process discovery. Thts paper descr~bes and illus-

trates three methods with whzch we have been experimenting:

algorithmic grammar inference, Markov models, and neural

networks.

1 Introduction

The issues of managing and improving the process of devel-

oping and maintaining software have come to the forefront

of software engineering research. In response, new met h-

ods and tools for supporting various aspects of the software

process have been devised. Many of the technologies, in-

cluding process automation [4, 12, 27, 29], process analy-

sis [15, 16, 20, 28], process evolution [3, 19], and process

validation [9], assume the existence of some sort of formal

model of a process in order for those technologies to be ap-

plied.

The need to develop a formal model as a prerequisite to

using a new technology is a daunting prospect to the man-

agers of large, on-going projects. The irony is that the more

a project exhibits problems, the more it can benefit from

the process technologies, but also the iess its managers may

be willing or able to invest resources in new methods and

tools. Therefore, if we intend to help on-going projects by

promoting the use of technologies based on formal models,
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we must seriously consider how to lower the entry barriers

to those technologies.

In that vein, we are exploring methods for automati-

cally deriving a formal model of a process from basic data

collected on the process. We term this form of data analy-

sis process discovery, because inherent in every project is a

process (whether known or unknown, whether good or bad,

and whether stable or erratic) and for every process there is

some model that can be devised to describe it. We are as-

suming, of course, that a project is already willing and able

to collect data on the current process as part of a process

improvement strategy [18]. The challenge in process discov-

ery is to use those data to describe the process in a form

suitable for formal-model-based process technologies.

In general, this is a very difficult challenge to meet. To

scope the problem somewhat, we have concentrated our ef-

forts on discovering models of the behavioral aspects of a

process, rather than on discovering models of the relation-

ships bet ween artifacts produced by the project, or on dis-

covering models of the roles and responsibilities of the agents

in the process. Any complete modeling activity would have

to address those other aspects of the process as well. To fur-

ther scope the problem, we have initially restricted ourselves

to the discovery of finite state machine models of behavioral

patterns.

In this paper we describe three methods for process dis-

covery. They range in approach from the purely algorithmic

to the purely statistical. The methods have been imple-

mented as a set of tools operating on process data sets.

While the methods are automated, they all require guid-

ance from someone knowledgeable in software processes and

at least somewhat familiar with the particular process under

study. This guidance comes in the form of tuning parameters

built into the tools. The results produced by the tools are

initial models of a process that can be refined by a process

engineer. Indeed, these initial models may lead to changes

in data collection to uncover greater detail about particular

aspects of the process. Thus, the discovery methods com-

plement a process engineer’s knowledge, providing empirical

analysis in support of experience and intuition.

The next section provides background on our choice of

methods. The methods themselves are described and il-

lustrated using a simple example in Section 3. Use of the

methods on a more complex and significant example is pre-

sent ed in Section 4, along with an evaluation of their relative

strengths and weaknesses. Finally, we conclude in Section 5

with a summary of our results and a discussion of related

work,
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Figure 1: AFramework for Process Discovery.

2 Background

The framework in which the process discovery methods pre-

sented here were developed is based on aview of processes as

a sequence of actions performed by agents, whether human

or automaton, possibly working concurrently. This reflects

our current focus on behavioral aspects of processes. Follow-

ing Wolf and Rosenblum [30], we use an event-based model

of process actions, where an eoentis used to characterize the

dynamic behavior of a process in terms of identifiable, in-

stantaneous actions such as invoking a development tool or

deciding upon the next activity to be performed. For pur-

poses of maintaining information about an action, events

are typed and can have attributes. One attribute, for ex-

ample, is the time the event occurred. Another attribute is

an indication of the agent associated with the event. Be-

cause events are instantaneous, an activity spanning some

period of time is represented by the interval between two or

more events. For example, a meeting could be represented

by a “begin-meeting” event and “end-meeting” event pair.

Similarly, a module compilation submitted to a queue could

be represented by the three events “enter queue”, “begin

compilation”, and “end compilation”. The overlapping ac-

tivities of a process, then, are represented by a sequence of

events, which we refer to as an event stream.

Using event data to characterize behavior is widely ac-

cepted in other areas of software engineering, such as pro-

gram visualization [23], concurrent-system analysis [2], and

distributed debugging [5, 10]. Our approach in the work de-

scribed here is to analyze a trace of a process execution—in

the form of an event stream—and infer a formal model that

can account for the behavior of the process (see Figure 1).

We do not envision always being able to infer fully complete

and correct process models, but rather our goal is to offer

process engineers an approximation of the behavioral pat-

terns that exist in a process. These approximations should

be of sufficiently good quality that they can be relied upon

as a basis for creating a more complete process model, evolv-

ing an existing model, or even adjusting some aspect of the

actual process execution.

As mentioned in the introduction, we assume that event

data are being collected on the executing process. Methods

already exist and are being used to collect such data [7,

30]. Once collected, the data can be viewed as a window

onto the execution. In general, this window will not show

the whole execution, since there will be some activities for

which no event data are collected at all. For example, a

chance meeting in a hallway might preclude the occurrence

of a scheduled meeting for which events would have been

recorded; or a decision might be made to focus the data

collection effort on one particular aspect of the process, such

as simple duration of work periods [26]. Hence, just as for

any other data analysis technique, the results obtained by

discovery methods strongly depend upon the content and

quality of the data that are collected.

What we seek from the data are recurring patterns of

behavior. For our purposes, finite state machines (FSMS)

seem to provide a good starting point for expressing those

patterns. While FSMS may be somewhat deficient for pre-

scribing software processes, they are quite convenient and

sufficiently powerful for describing historical patterns of ac-

tual behavior. Why not choose a more expressive represen-

tation than finite state machines, such as push-down au-

tomata? One reason is that the more powerful the repre-

sentation, the more complex the inference problem, and it

is not clear that we need that power. In particular, we are

initially aiming to infer only the structure of the behavior

and not the values controlling that structure. Thus, while

our methods could not discover the condition n on a pattern

such as AnBn (the canonical example that demonstrates the

superior power of push-down automata), they would cer-

tainly discover the sequenced looping structure of an A loop

followed by a B loop.

To develop our initial set of methods, we have cast the

process discovery problem in terms of another, previously

investigated FSM discovery problem. That problem is the

discovery of a grammar for a regular language given exam-

ple sentences in that language [1]. If one interprets events

as tokens and event streams as sentences, then the prob-

lems converge on somewhat similar solutions. There are,

however, several import ant differences, as we discuss in the

next section.

3 Inference Methods for Process Discovery

Existing methods for grammar discovery range from algo-

rit hmic techniques, 1 wherein a well-understood algorithm is

used to compute a grammar from one or more sample sen-

tences, to statistical techniques, wherein probabilities are

calculated from observations of sample sentences. Some of

the techniques use only samples that are positive examples,

which are sentences known to be legal in the language. Oth-

ers also use negative examples, which are sentences known

to be illegal in the language.

In this section we describe three inference methods that

can be used in process discovery. The methods represent

1A good survey of algorithmic methods is provided by Angluin and
Smith [1]
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Figure 2: Simple Event Stream Example.

three points on the spectrum from algorithmic to statisti-

cal techniques. Since we are dealing with data collected

from process executions, we have only positive samples with

which to work. The methods can be characterized by the

manner in which they examine those samples. The KTAIL

method is a purely algorithmic approach that looks at the

future behavior to compute a possible current state. The

RNET method is a purely statistical (neural network) ap-

proach that looks at the past behavior to characterize a

state. Finally, the MARKOV method is a hybrid statisti-

cal and algorithmic approach that looks at the neighboring

past and future behavior to define a state.

To experiment with thernethods, we have implemented

KTAIL and MARKOV, and for RNET we have extended an

implementation by Das [II]. All of the graphical represen-

tations presented in this paper have been automatically gen-

erated by the dot directed-graph drawing tool [22] from the

output of the discovery tools.

To explain and illustrate the three methods in this sec-

tion, weusethe simple event stream of Figure 2. The stream

is a sentence in a three-token language and is used as sample

input for each of the methods. All three methods typically

can work on multiple samples to refine their results, but in

this simple example we just give them the one stream shown.

Of course, there are many different FSMs that could gener-

ate this sentence. What is important is that the methods

produce an FSM model that reflects the structure inherent

in thesample—that is, the A-B-Canal B-A-C loops. In addi-

tion, we would like the methods to produce minimal models

that, sensibly share states among paths.

In Section 4, we demonstrate the methods on a more

complex example, exposing the relative performance and

possible strengths and weaknesses of each method.

3.1 RNET

The first method we describe comes from the neural net-

work community and is a purely statistical approach to in-

ference. This recently developed method is due to Das and

Mozer [1 I]. We refer to it here as the RNET method.

In a standard feed-forward neural network, neurons are

split into layers, with all the outputs of the neurons in one

layer feeding forward into all the neurons of the next layer

(see Figure 3a). Typically, there is a layer of input neu-

rons, at least one layer of internal or hidden neurons, and a

layer of output neurons. For a given input to the input neu-

rons, activation flows forward until the output neurons are

activated in some pattern. The network is trained by prop-

agating the difference between actual and desired outputs

backwards through the network. We refer to this difference

as the learning error.

To this basic architecture, Das and Mozer have added a

recurrent connection, which feeds the results of the hidden

layer directly back to the input layer (see Figure 3b). This

lets the network model an FSM by providing the “current”

state—in the form of the activation pattern of the hidden

layer—as an input to the network. Now the output activ-

ity (i. e., the “next” state) is determined, not just by the

input, but also by the current hidden neuron activity. This

recurrent network is the inference mechanism of RNET.

Training takes the form of presenting a window on the

event stream of a specified length to the network, and hav-

ing it attempt to predict the next token. Learning error is

only back-propagated through the network after the whole

window is presented, By sliding the window forward over

the samrde stream one token at a time. each Dosition in the

stream is used in training. RNET therefore takes a histor-

ical view of the sample stream, since the window focuses

attention on events that precede the current event.

Once the network is trained, the FSM representation is

extracted from the network. This is done by presenting the

same or different strings to the network, and then observing

the activity of its hidden neurons. Activation patterns that

are closely related are clustered into the same state. Transi-

tions are recorded by noting the current activation pattern,

the input token, and the next activation pattern. This in-

formation, collected over all input patterns, then represents

the FSM that the network has inferred.

Figure 4 shows the inferred FSM that RNET produces

from the example stream of Figure 2. The method success-

fully produces a deterministic FSM that incorporates both

the A-B-C and B-A-C loops. But it also models behavior that

is not present in the stream, such as an A-A–C loop and a B

loop. This shows the inexactness of the neural network ap-

proach; even with a known perfect sample input, one cannot

direct it to produce a machine just for that stream.

An advantage of the RNET method is that, since it is

statistical in nature, it has the potential of being robust

with respect to input stream noise (e.g., collection errors or

abnormal process events).

3.2 KTAIL

The next method is purely algorithmic and based on work

by Biermann and Feldman [6]. Their original presentation

was formulated in terms of sample strings and output values

for the FSM at the end of the strings. Our formulation of

this algorithm does not make use of the output values, and

is thus presented as just operating on the sample strings

themselves. In addition, we have enhanced their algorithm

to reduce the number of states in the resulting FSM.

The notion that is central to KTAIL is that a state is

defined by what future behaviors can occur from it. Thus,

for a ~given history (i.e., token string prefix), the current

state reached by that history is determined by the possible

futures that can occur from it. Two or more strings can

share a common prefix and then diverge from each other,

thus giving a single history multiple futures. The “future” is

defined as the next k tokens, where k is a parameter to the

algorithm. If two different histories have the same future

behaviors, then they reside in the same equivalence class;

equivalence classes represent states in the FSM.

Formally, KTAIL is defined as follows. Let S be the set

of sample strings and let A be the alphabet of tokens that

make up the strings in S. Let P be the set of all prefixes

in S, including the full strings in S. Then p c P is a valid

prefix for some subset of the strings in S. Let p t be the

prefix p appended with the token string t.We call t a tad.

Finally, let Th be the set of all strings composed from A of
length k or less. An equivalence class E is a set of prefixes

such that
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Figure 4: FSM Inferred by the RNET Method for the Ex-

ample Event Stream of Figure 2.

This means that all prefixes in E have the same set of tails of

length k or less.z Thus, all prefixes in P can be assigned to

some equivalence class. It is these equivalence classes that

are mapped to states in the resulting FSM.

Transitions amonrz states are defined as follows. For a

given state (i.e., equivalence class) 1?, and a token a c A,

the destination states of the transitions are the set D of

equivalence classes

where ~~. a] is the equivalence class oft he prefix p. a. Intu-

itively, this says that to define the transitions from E,, take

all p c E~, append a to them, and calculate the equivalence

classes of these new prefixes, which are the destination states

of token a from state E,. If /DI = O, then this transition

does not exist; if ID I = 1, then this transition is determinis-
tic; and if ID I > 1, then this transition is nondeterministic.

The transitions, if any, are annotated with the token a in

the final FSM.

This is where the algorithm, as Biermann and Feldman

define it, stops. While it produces an FSM that is complete

and correct, the algorithm has certain tendencies to produce

an overly complicated FSM. Figure 5 shows the FSM that

is produced by the algorithm when given the sample data

2Tails of length less than k, down to zero, occur at the ends of
strings.
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Figure 5: FSM Inferred by the Basic Biermann-Feldman

Algorithm for the Example Event Stream of Figure 2.

of Figure 2. The complexity is that a loop in the data will

be unrolled to a length of k. The unrolling arises because

the algorithm sees a change in the tail of the loop body

at the exit point of the loop. This change causes the last

iteration of the loop to be placed in a separate equivalence

class. Consider the A-B-C loop. In the figure, this loop is

represented by the path < 1, 2, 3, 1 > in the FSM. But the
last iteration through the loop has a separate representation

as the path < 1, 2, 4, 5 >. A similar effect occurs with the

B-A-C 100P.

We can improve the basic algorithm by automatically

merging states in the following manner. If a state SI has

transitions to states Sz . . . S~ for a token t,and if the set of

output transition tokens for the states S2 . . . Sn are equiva-

lent, then we merge states S2 . . . S~. Intuitively, this proce-

dure assumes that if two (or more) transition paths from a

stat e are the same for a length of more than one transition,
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Figure 6: FSM Inferred by the KTAIL Method for the Ex-

ample Event Stream of Figure 2.

then the internal states of those paths should be assumed

to be the same and thus merged. In Figure 5, states 6 and

7 can be merged, states 3 and 4 can be merged, and 8 can

be merged with the merged states 3/4, once 6 and 7 are

merged.

This improvement, implemented in KTAIL, results in a

much cleaner FSM than that which results from the ba-

sic Biermann-Feldman algorithm. The FSM produced by

KTAIL from the example stream of Figure 2 is shown in Fig-

ure 6. Clearly, KTAIL does a good job of discovering the

underlying loops in the behavior. The A-B-C loop is com-

pletely embodied in the transition path < 1,2, 3/4/8, 1 >,

while the B–A-C loop is completely embodied in the path

<5, 6/7, 3/4/8, 5>. Note that there is a point of nondeter-

minism in state 3 upon the occurrence of a C. This is because

the algorithm sees two different behaviors (i.e., tails) from

the c event in the sample data.

KTAfL is controlled in its accuracy by the value of k; the

greater that value, the greater the length of the prefix tails

that are considered, and thus the more differentiation can

occur in states and transitions. Note that as k increases, this

algorithm monotonically adds states, and complexity, to the

resulting FSM. If k is as long as the longest sample string,

then the resulting FSM is guaranteed to be deterministic,

but deterministic FSMS can result from much smaller val-

ues of k, depending on the structure of the sample strings. It

is not always the case that the most interesting and informa-

tive FSM will result from k being large enough to generate a

deterministic FSM. To the contrary, points of nondetermin-

ism in the resulting FS M might signify important decision

points in the process, where the decision will determine the

path of execution.

An advantage of KTAIL is that it is parameterized by the

simple value k, so the complexity of the resulting FSM can

be controlled in a straightforward manner. A disadvantage

is that it cannot ignore features in the input stream, and

thus is not robust in the presence of input stream noise.

3.3 MARKOV

The third method is one that we invented, and is a hybrid

of algorithmic and statistical techniques. This method uses

Markov models to find the most probable event sequence

productions, and algorithmically converts those probabili-

ties into states and state transitions. Although our method

is new, there is previous work that has used similar meth-

ods. For example, Miclet and Quinqueton [24] use transition

probabilities to create FSM recognizes of protein sequences,

and then use the Markov models to predict the center point

of new protein sequences.

A discrete, first-order Markov model of a system is a re-

stricted, probabilistic process3 representation that assumes

that:

●

●

b

●

there are a finite number of states defined for the pro-

cess;

at any point in time, the probability of the process

being in some state is only dependent on the previous

state that the process was in (the Markov property);

the state transition probabilities do not change over

time; and

the initial state of the process is defined probabilisti-

tally.

In general, the definition of an nth-order Markov model is

that the state transition probabilities depend on the last n

states that the process was in.

The basic idea behind the MARKOV method is to use

the probabilities of event sequences. In particular, it builds

event-sequence probability tables by tallying occurrences of

like subsequences. The tables are then used to produce an

FSM that accepts only the sequences whose probabilities

are non-zero or, more generally, that exceed a probability

threshold that is a parameter to the method. MARKOV thus

proceeds in four steps.

1.

2.

The event-sequence probability tables are constructed

by traversing the event stream.4

Table 1 shows first- and second-order-probability tables

for the event sequence of Figure 2. For instance, as

given by the third row of the second-order table, the

event sequence A-C is equally likely to be followed by

an A or a B, but is never followed by a C.

A directed graph, called the event graph, is constructed

from the p~obability tables in the following manner.

Each event type is assigned a vertex. Then, for each

event sequence that exceeds the threshold probability,

a uniquely labeled edge is created from an element in

the sequence to the immediately following element in

that sequence.

Consider event sequence A-C-B, whose entry in the

second-order table is 0.50. For a threshold less than

0.50, edges are created from vertex A to vertex C and

from vertex C to vertex B.

3The use here of the word ‘<process” does not refer to ‘(software
process” , but to the generic definition in the terminology of Markov
models.

4 In the current version of our Markov tool, only first- and second-
order probability tables are constructed. A future version of the tool
will accept the maximum order as a parameter.
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AB c

AA II 0.00 I 0.00 I 0.00

AB 0.00 0.00 1.00
ABC AC 0.50 0.50 0.00

A I 0.00 I 0.50 I 0.50 BA 0.00 0.00 1.00

B 0.54 0.00 0.46 BE 0.00 0.00 0.00

c ().42 0.58 0.00 BC 0.33 0.67 0.00

CA 0.00 1.00 0.00
CB 1.00 0.00 0.00

cc 0.00 0.00 0.00

Table 1: First- and Second-order Event-sequence Probabil-

ityy Tables for the Example Event Stream of Figure 2.

3.

4.

The previous step can lead to over-connected vertices

that imply event sequences that are otherwise illegal.

To correct this, over-connected vertices are split into

two or more vertices.

L’onszder vertex B. After the previous step, edges ex-

ist from B to C and from C to B. Howeverj sequence

C–B-C, permissible under thw connectivity, has a zero

probability (see row 8 of the second-order table). Thus,

vertex B is split into two B vertices, one having an edge

to C and the other having an edge from C to it. This

avoids the illegal sequence C-B-C.

The general definition of this step works by finding

disjoint sets of input and output edges for a vertex that

have some non-zero sequence probability, and splitting

the vertex into as many vertices as there are sets.

The event mauh G is then converted to its dual G’

in the follo;ing manner. Each edge in G becomes a

vertex in G’ marked by the edge’s unique label. For

each in-edge/out-edge pair of a vertex in G, an edge is

created in G’ from the vertex in G’ corresponding to

the in-edge to the vertex in G’ corresponding to the

out-edge. This edge is labeled by the event type.

In Figure 7, vertex 5 and its edges are constructedfrom

an edge labeled “5” in the event graph that connects

vertex B to vertex C.

The graph constructed in the last step is an FSM. This FSM

can be further reduced using some techniques implemented

in the MARKOV tool that merge some nondeterministic tran-

sitions. For brevity, we do not describe those techniques

here.

Figure 7 shows the inferred FSM that MARKOV pro-

duces from the example stream of Figure 2. As with KTAIL,

MARKOV infers an FSM with exactly two loops: the A-B-C

loop as the path <3,4,5,3> and the B-A-C loop as path

< 3, 1,2,3 >. The difference is that MARKOV produces a

deterministic FSM for this example. Notice, too, the exis-

tence of what can be interpreted as a start state (6) in the

FSM produced by MARKOV. This is a result of using the

single sample input that begins wit h the token A.

Unlike the KTAIL method, MARKOV is robust in the pres-

ence of noise in the event stream. Moreover, the level of this

robustness can be easily controlled by the process engineer

through the probability threshold parameter,

Figure 7: FSM Inferred by the MARKOV Method for the

Example Event Stream of Figure 2.

Corer
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Figure 8: ISPW 6/7 Process.

4 Discovery of an Example Process

In this section we show how the three methods perform on

a rather more complex process than the simple example of

the previous section. The example in this section is taken

from the ISPW 6/7 process problem [21]. We describe the

process using an FSM that is based on Kellner’s Statemate

solution [20]. Our version is shown in Figure 8. The idea

is to see how well the methods perform at- reproducing this

FSM and, thereby, discovering the process.

At a high level, the ISPW 6/7 process proceeds as fol-
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lows. A change order from tfie Change Control Board

(CCB) triggers the start of the process. The design modifi-

cation subprocess is scheduled and performed, leading to the

scheduling and performing of the code modification subpro-

cess. After code modification, the test package modification

subprocess is scheduled and takes place, followed directly by

the unit testing subprocess. If unit testing fails, the process

loops back to the code modification subprocess (since the

design modification is assumed to be correct) to redo the

previous few process steps, This loop continues until unit

testing succeeds and the process completes.

As stated in Section Z, an activity that spans time is rep-

resented by the interval between two or more events. Here

we simplify the presentation by collapsing an activity into

a single event. Transitions in the FS M of Figure 8 are la-

beled with the events that occur as the process executes.

Many of the events are communication events, as indicated

by “Comm” in their labels. Others are modification events,

indicated by “Mod”. Finally, there is one program execution

event in the process and it is labeled with “Exec”. Along

with each label is a letter enclosed in brackets (e.g., [A]).

The letter denotes the token that is used to identify the cor-

responding event in the sample streams fed to the methods.

In the figures that show the FSMS produced by the methods

(i.e., figures 9, 10, and 11), the tokens are used to identify

events; the reader can refer to Figure 8 to relate a token to

an event.

The boxes in Figure 8 serve to pictorially group indi-

vidual states into subprocesses. The labels on the boxes

correspond to the activity titles given in the ISP W 6/7 prob-

lem statement. In the figures for the inferred FSMS, below,

we also group states into subprocesses in order to aid in

the explanation of the results. Instead of using boxes with

solid borders, however, we use boxes with dotted borders to

emphasize the fact that we have placed the boxes into the

figures by hand; the methods do not automatically group

stat es into subprocesses.

We use the FSM of Figure 8 to generate sample event

streams for the methods. Three different event streams were

generated and used as input to the KTAIL and MARKOV

tools. One of them, for example, is the following.

I ABCDCEFGHGIJGIKLMNOPRFG IKLMNOPQS ]

RNET was given only one event stream for this example.

The reason is that, since RNET is purely statistical in na-

ture, results for a small example such as the ISPW 6/7 pro-

cess can vary significantly on different sample input streams.

To show the best obtainable results for RNET, this one

stream artificially contained a balanced proportion of dif-

ferent event sequences.

Figure 9 shows the FSM that was discovered by the

RNET neural network method. For this example, we use a

network of 20 input neurons, 30 hidden neurons, and 20 out-

put neurons. We also use an event window of size 3.

Looking at the results for RNET, we see that the lfodi~y

Design subprocess (represented by states 2, 3, and 4) and

the Modijy Code subprocess (represented by states 5 through

9) are evident in the FSM. Overall, however, the results are

fairly poor, even given an artificially balanced sample. In

particular, RNET has failed to differentiate the state tran-

sitions of some important event sequences. For example,
state 14 has recurrent edges for three different events, which

is not very informative. A similar problem arises with state

13. The root of the problem is that, since RNET looks at
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Figure 9: RNET Discovery of Process in Figure 8,

the statistical history, it does poorly at differentiating loop

exits. That is, upon seeing the exit token, for example the

E in C-D-C-D-C-E (states 3 and 4), it still activates the state

in the loop that can accept a D (state 4). Thus, the real exit

of the loop does not happen until one token (F) later. This

is true for all loops in this example; O continues the loop

at 13, R and Q at 14, and K at 8. One effect of this is that

a Schedule Tasks subprocess is hard to locate in the FSM,

since the intermediate scheduling states are not distinct.

Figure 10 shows the FSM that was discovered by the

MARKOV method. For this example, since we know that the

data are exactly correct (i. e., contain no noise), the proba-

bility threshold is set to zero, so that no non-zero transition

is ignored,

One can see that this method produces a good model

that is very close to the one in Figure 8; it is equivalent in

most all of its structure. The subprocesses are easily located

in this model, and the loop paths, though having usually

one extra state in them, are easily distinguished. The extra

state for each loop results from the fact that the algorithm

creates an entry state, such as 3, for each loop. However,

MARKOV failed to merge the states 6 and 18 in Schedule

Tasks, both of which provide an entry into the subprocess

Modify Code. All in all, however, the method provides a

clean and understandable representation of the process.
Figure 11 shows the FSM discovered by the KTAIL

method. For this example, we use a value of 2 for the tuning

parameter k.

79



MCdi, r.. m,k.$a
. . . . . . . . . . . . . . . . . . .

a13

M

N
14 15 N;

. . . . . . . . . . . . . . . . ... ..,. . . .

. . . . . . . . .’ s..,..

u:.. .. ..............,.,,.”

Figure 10: MARKOV Discovery of Process in Figure 8.

The FSM successfully captures all the behavior of the

example process. It has the correct number of states in the

Schedule Tasks subprocess, finds the loops, and implements

a correct machine that allows no anomalous behavior. How-

ever, as explained in Section 3.2, the algorithm consistently

unrolls loops. The (11,12) and the (13,14,22) subgraphs

both have the same feature; their loops are unrolled by one

state and, in the case of node 13, two exit paths are pro-

duced. Notice that the Mo+fy Code subprocess shows dis-

tinct execution paths for each possible loop and for the exit

pathin that subgraph. With a straightforward merging of

states 7, 18, and 19, and then a consequent merging of 8

and 20, the subgraph would become identical to the corre-

sponding subgraph in Figure 8.

In contrast to MARKOV, the KTAIL method correctly pro-

duces asingle state (5) in the Schedule Tasks subprocess for

the two possible paths into Modify C’ode, thus showing that

it can recognize ashared subprocess in its entirety. This fact,

along with the fact that most extra loop states can be algo-

rithmically removed, causes us to view KTAIL as producing

the best results of the three methods for this example.
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Figure 11: KTArL Discovery of Process in Figure 8.

Robustness

to Noise none good good

Table 2: Comparison of Discovery Methods.

4.1 Comparisons and Characterizations of the Inference
Methods

Table 2 shows a comparison of the three methods with re-

spect to several characteristics. An in-depth description of

those characteristics follows.

Correct Model. Since KTAIL is purely algorithmic, it

will always generate a correct model for the data it
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is given. MARKOV could potentially not generate a

complete and correct model for the data given, since

a threshold can be set to ignore low-probability event

sequences. But if the threshold is set to O, the method

will always generate a complete and correct model.

RNET, being purely statistical, cannot be configured

to guarantee the generation a correct model.

Speed. The numbers in Table 2 are taken from the perfor-

mance of the methods on the ISPW 6/7 example on a

Spare 2 Sun workstation. There are considerable dif-

ferences between the times, with MARKOV extremely

fast, KTAIL somewhat slower, but RNET vastly slower

than the other two. This slowness is due mainly to the

large amount of training required, and the size of the

neural net being used. While this is not a definitive

evaluation of the methods, these measurements pro-

vide a feel for the relative performance potential for

the methods.

Tunability and Usability. These two characteristics are

quite related, because often the more tunable some-

thing is, the more complicated is its interface. In this

respect, it seems that RNET is overly tunable, in that

it takes too much knowledge of neural networks to es-

tablish a reasonable set of initial settings. KTAIL and

MARKOV, being only tunable in one dimension, might

be overly restrictive, but using them is straightforward.

Robustness to Noise. Both the MARKOV and RNET

methods have the potential of being good at inferring

models in the presence of collection errors and abnor-

mal process events. KTAIL has no such ability.

5 Conclusions

We have described three methods of process data analy-

sis that can be used to produce formal models correspond-

ing to actual process executions. This analysis supports

the process engineer in constructing initial process models.

Based on our early experience with these methods, we con-

clude that the KTAIL and MARKOV methods show the most

promise, and that the neural-network-based RNET method

is not sufficiently mature to be used in practical applications.

Of course, more experiments are needed to fully explore the

strengths and weaknesses of all three methods.

To date, we have not addressed the issue of modeling

concurrency in a process. There are several directions that

we plan to explore:

● preprocess the event stream to separate unrelated

events based on their attributes;

● modify the data collection method to generate separate

event streams for different threads; and

c develop inference methods that use formalisms having

concurrent behavioral models, such as communicating

finite state machines [8].

Process discovery is not restricted to creating new for-

mal process models. Any organization’s process will evolve

over time, and thus their process models will need to evolve

as well. Methods for process discovery may give a process

engineer clues as to when and in what direction the pro-

cess model should evolve, based on data from the currently

executing process.

There seems to be little related work in the area of pro-

cess discovery. The most closely related efforts take a rather

different view from that described in this paper. We snm-

m arize that work below.

Garg and Bhansali [13] describe a method that uses

explanation-based learning to discover aspects and

fragments of the underlying process model from pro-

cess history data and rules of operations and their ef-

fects. This work centers on using a rule base and goals

to derive a generalized execution flow from a specific

process history. By having enough rules, they show

that a complete ancl correct process fragment could be

generated from execution data.

Huff and Lesser [17] describe plan recognition, whereby

a plan and its goal are inferred from a sequence of ac-

tions and an initial state. The use of this is to help

interactively guide software developers along action se-

quences that achieve the correct goal, rather than to

infer a model of the process.

Garg et al. [14] employ process history analysis (mostly

human-centered data validation and analysis) in the

context of a meta-process for creating and validating

domain-specific processes and software kits. This work

is more along the lines of a process post-mortem that

analyzes, through participant discussion, the changes

that a process should undergo for the next cycle.

Madhavji et al. [25], present a rigorous method (and

corresponding tool) to help people elzcit a process

model from their collective knowledge about the ex-

ecutions of that process. It does not make an attempt

to infer any portion of a formal process model from

data.

We know of no previous work in the field that investigates

techniques for semi-automatic generation of formal process

models from process execution data.
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