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Abstract

Software production processes are subject to
changes during their life-time. Therefore, software
process formalism must include mechanisms to support
the analysis and dynamic modification of process mod-
els, even while they are being enacted. It is thus nec-

essary for a process model to have the ability to reason

about its own structure. Petri net based process lan-

guages have been cm”ticized because of the lack of these

reflective features and their inability to effectively sup-

port process evolution. In this paper we present the

rej?eciive features offered by SLANG, a process for-

malism based on an high-level Petri net notation. In

particular, we discuss the mechanisms to create and

modify difierent net fragments while the modeled pro-

cess is being enacted.
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1 Introduction

process modeling, process lan-
reflection, process evolution.

Recently, many researchers and practitioners have
pointed out that software processes need to be an-

alyzed and carefully modeled, in order to support

and facilitate their understanding, assessment, and au-

tomation (see for example [18, 6]). To address such is-

sues, several research efforts have been launched both

in industry and in academia. The ultimate goal of

such efforts is to provide innovative means to increase

the quality of software production processes and, con-

sequently, of the applications delivered to final users.

The first results of these activities are several proto-

type languages and experimental environments, which
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provide specific features to create, analyze, and enact

software process models [1, 14].

In order to effectively support modeling, analysis,

and automation of processes, a soflware process lan-

guage must exhibit several characteristics:

1.

2.

3.

4.

5.

6.

It must be formally defined and based, so that it

is possible to automatically analyze and execute

(enact) a process model.

It must allow the process specifier to describe

both the activities which constitute the process,

and the results produced during its execution (the

process artifacts).

Software processes are human-oriented systems,

i.e. systems in which humans and computerized

tools cooperate in order to achieve a common

goal. Therefore, a process formalism must pro-

vide means to describe such interaction, by clearly

defining, for instance, when and how a task is del-

egated to a tool or a human, and how to coordi-

nate the operations of different human agents.

The target architecture for process enactment

must be a concurrenttdistributed environment,

possibly operating on different, heterogeneous

systems.

Software process models are often very large, and

it is therefore mandatory to enrich a process for-

malism with effective constructs supporting mod-

eling in-the-large concepts, such as information

hiding, abstract modeling, and reuse of process
model fragments.

Finally, software processes are dynamic entities,

that must evolve in order to cope with changes

in the software development organization, in the

market, or in the technologies and methodologies

used to produce software. Accordingly, it must
be possible to incrementally refine and change a

software process model, even while it is being en-

acted.
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As we said, many approaches have been proposed in

the last years, but it does not seem that any existing

solution is able to effectively cope with all the above-

mentioned issues. In particular, the last point on pro-

cess model evolution seems to constitute one of the

most challenging problems which the software process

community is facing.

The core of the evolution problem can be summa-

rized w follows. A process model must include the de-

scription of the activities and tasks constituting both

the actual software process and the meta-process used

to create and evolve the process model itself [5]. Con-

sequently, the process machine accessing the process

model must be able to use it as the “code” to be exe-

cuted in order to support and automate the software

process, and also as the “data” to be edited in order to

apply modifications to the process model itself. This

interleaving of execution and editing activities must

be managed in such a way that it is possible to grace-

fully migrate from the old process model to the new

one, without interrupting or restarting from the very

beginning the operations being carried out within the

software process, unless this is explicitly required by

the meta-process.

The problem of producing a program that is able
to “reason” about its structure has been largely dis-

cussed within the programming languages community.

Languages such as LISP and Prolog allow programs to

be manipulated as data (for example a Lisp program

is a list that can be executed using the eval func-

tion, and the assert and retract rules in Prolog al-

low modification of the program while it is running).

More recent developments in the area of object ori-

ented languages offered new chances and challenges

to researchers interested in this issue (see for example

[16]). This research topic is very often referred to as

computational reflection [15].

From the above discussion, it is clear that, in or-

der to effectively address the process model evolution

problem, a process formalism must provide reflective

features. In some existing systems, this is achieved

by building the process model as a rule-based system,

where powerful mechanisms are provided to add, mod-

ify, or retract rules during the evaluation of a program,

using mechanisms quite similar to those provided by

LISP and Prolog. However, as we will discuss in Sec-

tion 5, rule-based systems suffer from other problems

that may adversely affect other aspects of process en-

actment.

SPADE is a research process modeling environment

that supports software process analysis, design, and

enactment. Within this project, we have defined a

language, called SLANG (SPADE LANGu~age), that

addresses most of the issues discussed abcwe and, in

particular, provides language features and execution

mechanisms to cope with the process evolution prob-

lem. In this paper, we present SLANG characteristics,

with a special emphasis on its reflective facilities, that

can be used to model the meta-process fo~ managing

the modification and evolution of the process model.

The paper is organized as follows: Section 2 intro-

duces SLANG and summarizes its basic features using

a simple example process. Section 3 explains the ar-

chitecture supporting the enaction of a process model

and the basic reflective mechanisms of SLANG. Sec-

tion 4 discusses how the reflective features of SLANG

can be used to support process evolution, and provides

some hints and examples on how to describe a met a-

process as part of the process model. Related works

are surveyed in Section 5. Finally, Secticm 6 draws

some conclusions.

2 An introduction to SLANG

SLANG is a domain-specific language for software

process modeling and enactment, based on ER netsl.

ER nets [8] are a high-level extension of Petri nets,

that provide the designer with powerful means to de-

scribe concurrent and real-time systems. In ER nets,

it is possible to assign values to tokens and relations

to transitions, that describe the constraints on tokens

consumed and produced by transition firings.

SLANG addresses all the process language require-

ments presented in the introduction. Process enact-

ment and interaction with humans and tools is dis-

cussed in [2], while problems related to process mod-

ularization are treated in [3]. SLANG specifications

are hierarchically structured, using the high-level ac-

tivity construct. Activities may be associated with

different process engines for their execution. In ad-

dition, SLANG provides a way to deal with time in

process specification and supports ways to formally

reason about the temporal evolution of a process. In

this paper we will focus on the SLANG facilities to

support process evolution and, in particular, on the

SLANG mechanisms to manipulate process models as

data.

In order to present SLANG, we will refer to an ex-

ample process throughout the paper. The example,

inspired by the ISPW example [13], is presented in

the next section.

1A SLANG specification may be given semantics by a trans-

lation to the formal ER net model.
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2.1 An example process

The example refers to the modification of a software
unit, triggered by requirements change. It is composed
of the following steps:

●

●

●

●

2.2

The “design” step involves the modification of the

design document. It uses as input the require-

ments change document.

The “coding” step corresponds to the implemen-

tation of the modifications. It includes the editing

of the source code and its compilation. The “cod-

ing” step uses as input the requirements change

document and the modified design. However, it

may be initiated even if the design hss not been

completed. The coding has to be finished within

5 days from its beginning, otherwise, the process

manager has to be notified by e-mail.

The “prepare test package” step involves the

preparation of the test package for the unit. The

test package contains the software to drive and

evaluate the coded unit. This step takes as input

the unit design. Its output is the requested test

package.

The “testing” step involves the application of the

test package on the object code produced by the

“coding” step. Therefore, it cannot start before

both the “coding” and the “prepare test data”

steps have been completed. It takes as inputs

the object code and the test package. If the test

results are OK, the test step terminates success-

fully. Otherwise, the code has to be revised: the

“coding” step is reinitiated using as input the test

feedback, and then the module has to be retested.

Basic SLANG features

A SLANG process specification is a pair of sets:

SLANGSpec = (Process Types, ProcessActivities)

Process Types is a set of type descriptions organized in

a type hierarchy. Each type is a class description in an

object oriented style. The hierarchy contains a prede-

fine type called Activity. The second component of

a SLANG specification is ProcessActivities which is a

set of instances of type Activity.

The Process Types hierarchy is described in Figure
1. The root of this hierarchy is ProcessData, the ances-

tor of all types used in SLANG. All the elements of a

SLANG specification are defined by the Process Types

ProcessDate

TokL[ksition

/’t\
Activity Metatype ModelType

$&

I
Unit

SourceCode CompiledUnit

Figure 1: The Process Types hierarchy

hierarchy. Since SLANG is based on a Petri net for-

malism, the hierarchy includes the definition of the

components of a Petri net. Place, Transition, and Arc

respectively describe the types of places, transitions,

and arcs.

Token describes the tokens of the net and has three

subtypes Model Type, Activity, and Mets Type. Model-

Type the root of all types needed for the description

of the objects manipulated within a software process,

such as modules, documents, resources, . . . (with the

exception of activities and types). The subhierarchy

whose root is ModelType depends on each particular

process, and thus may vary from one SLANG speci-

fication to another. Moreover, it may change during

process enactment. Activity is the type that defines

a SLANG activity as a Petri net composed of places,

transitions and arcs. The Metatype type defines how

types are described. There is one Metat ype instance

for each subtype of type Token, including Metatype

itself. Each inst ante is a tuple (TypeName, Type-

Descr, Type Version), where TypeName is the name of

a type, TypeDeacr is its description, and Type Version

is a version number incremented each time TypeDescr

is changed.

While all subtypes of Mode!Type are user modifi-

able, the types Metatype, ModelType and Activity are

not. Thus, the instances of Metatype representing

types Activity, ModelType, and Mets Type itself cannot

be changed; their definitions are built-in. Changes to

other instances of Metatype will cause a correspond-

ing modification in the ModelType sub-hierarchy. Note
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that, since Mets Type and Activity are subtypes of type

Token, activities and types are also tokens. This fact

plays a fundamental role in the reflexive mechanism

of SLANG, as we will see later on.

Example 2.1: Type definitions As an example of

a type definition, consider the types Unit, Source Code

and Compiled Unit, shown in Figure 1 (operations are

omitted). These types, as all user-defined types, are

subtypes of type ModelType.

Unit k a subtype of ModelType;

name: string;

SourceCode is a subtype of Unit;

source-code: text;

CompiledUnit is a subtype of Unit;

n-compilationfirrors: positive_integer;

source-code: text;

object-code: code;

❑

An activity definition includes an interface and an

implementation part. The activity interacts with the

rest of the process through its interface. The interface

is composed of

● a set of interface transitions,

● a set of interface places,

● a set of arcs, connecting interface places to inter-

face transitions and vice versa.

Interface transitions are partitioned in two subsets:

the set of transitions representing starting events (SE),

and the set of transitions representing ending events

(EE). An activity begins executing when one starting

event occurs and finishes with the occurrence of an

ending event.

Interface places are classified in three disjoint sets.

The set of input places, that are input for any of the

starting events; the set of output places, that are out-

put places for any of the ending events; and the set

of shared places, that can be input or output places

for any transition in the implementation part. Basi-

cally, input and output places play the role of formal

parameters, while shared places are similar to tradi-

tional global variables. Any other place internal to the

implementation part (not belonging to the interface)

is called a local place. The implementation part of

an activity describes how inputs are transformed into

outputs.

Example 2.2: Activity definition. Figure 2

shows the activity that describes the coding step of

the example process. It gives the user two possibili-

ties for the editing of the unit code: with and without

access to the approved design. The code is then com-

piled and the process is iterated until no errors are

obtained during compilation. If the compiled unit is

not ready within .5 days, the project leader is notified

via e-mail. The interface of the activity is identified

by the entities external to the dashed rectangle, while

the implementation part is represented by all the en-

tities internal to it. In this example, SE = {Restart

Coding, Begin Coding}, and EE = {End Coding}; Test

Feedback and Requirement Change Document are in-

put places, Coded Unit is an output place. Place Units

To Be Edited (UTBE) is of type Source Code; Compiled

Unit (CU) and Ready Object Code (ROC) have type

Compiled Unit. E

Since Token Type is the root of the hierarchy that

cent ains token definitions, every token is inst ante of a

subtype of Token Type (hence also instance of Token-

Type). In a given SLANG specification, we will denote

with Tok the set of all (potential) instances defined by

the sub-hierarchy whose root is Token Type.

Each place has a name and a type. A place works as

a token repository that may only contain tokens of its

type or any subtype of it. The only way a place may

change its contents is by the firing of a transition con-

nected to it. A particular kind of places, called user

interface places may change their contents by human

intervention. User interface places are depicted with a

double line and are used to communicate events pro-

voked by humans to the system .

Transitions represent events taking a negligible

amount of time to occur: the occurrence c)f an event

corresponds to the firing of a transition. Each tran-

sition is associated with a guard and an action. The

transition’s guard is a predicate on input tokens and

is used to decide whether an input token tu ple enables

the transition (an input tuple satisfying a transition

guard is called enabling tuple). The dynamic behavior

of a transition is described by a jiring rule. The firing

rule stat es that when a transition fires, tokens sat is-

fying the guard are removed from input places and

the transition’s action is executed. As a result of the

action execution, an output tuple is inserted in the

output places of the fired transition.

Example 2.3: Guards and actions. Consider

transitions Compilation OK and Compilation not OK

of the coding activity implementation of Figure 2.
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Figure 2: SLANG implementation of the “coding” ac-

tivity.

Compilation OK. It takes as input a Compiled

Unit (CU); if no errors occurred in compilation,

it produces a Ready Object Code (ROC).

Compilation not OK. It takes as input a Compi[ed

Unit-(CTJ); if any error occurred during compila-

tion, it produces as output a Unit To Be Edited

(UTBE), so that more editing can be done.

Guards and actions may be specified in SLANG as

follows.

Event CompilationOK (CU; ROC)

Guard

any CU from Place(CU)

such that CU.n.compilationfirrors = O

Action

ROC.name := CU.name

ROC.source_code := CU.source-code

ROC.object-code := CU.object-code

Event CompilationNotOK (CU; UTBE)

Guard

any CU from Place(CU)

such that CU.n-compilation_errors > 0

Action

UTBE.name := CU.name

UTBE.source_code := CU.source-code

•1

A software development process involves the acti-

vation of a large variety of software tools. Tool in-

vocation is modeled in SLANG by using black transi-

tions. A black transition is a special transition where

the action part has been replaced by a call to a non-

SLANG executable routine (e.g., a Unix executable

file). When the black transition “fires”, the routine is

executed asynchronously. This means that other tran-

sitions may be fired while the black transition is being

executed. It is also possible to fire the black transition

itself many times with different input tuples, without

waiting for each activation to complete.

Example 2.4: Black transitions. In Figure 2,

transitions Edit, Compile, and Mad To Project Leader

are examples of black transitions. ❑

Arcs are weighted (with default weight 1). The

weight indicates the number of tokens which flow

through the arc at each transition firing. It can be

a statically defined number or it may be dynamically

computed. In the I at t er case, the arc weight is known

only at run-time. This is useful to model events re-

quiring, for example, all tokens that verify a certain

property. Besides “normal” arcs, SLANG provides

two other special kinds of arcs: read-only (depicted
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using a dashed line) and overwrite (they are depicted

with a double arrow). A read-only arc may connect a

place to a transition. The transition can read and use

token values from the input place in order to evaluate

the guard and the action, but no token is actually re-

moved or modified. An overwrite arc may connect a

transition to a place. When the transition fires, the

following atomic sequence of actions occurs. First the

output place is emptied of all its tokens. Then, the

token(s) produced by the firing are inserted in the

output place. The overall effect is that the produced

tokens overwrite any previous content of the output

place.

An activity implementation may contain calls to

other activities. Considering the different activities in

a SLANG specification it is possible to define the rela-

tion uses. We say that A uses B iff A’s implementation

contains a call to B.

The uses relationship may be represented by a

graph, where nodes represent activities. There is a di-

rected arc from A to B iff A uses B. Recursive calls are

not allowed in SLANG, and thus, the graph is a DAG

(Direct Acyclic Graph). This graph does not change

as long as the process specification is not changed. For

this reason we call it activity static DA G (ASD). In a

SLANG specification, there is one “main” activity at

the top of the ASD. This activity is called root activity

and is launched by a specialized boot program to start

the process execution.

Example 2.5: Activity call. Figure 3 shows the

activity modify unit that cent ains calls to other activ-

ities that implement the different steps of the example

process. This high-level view gives a general abstract

idea of the relationships among the different steps. u

3 SLANG reflective features

In a process centered environment, the process

model plays the role of the “code” to be executed in

order to control and monitor the process. The SLANG

interpreter is the tool that executes a SLANG speci-

fication. We use the name process engine to refer to

each running instance of the SLANG interpreter.

The dynamic behavior of a SLANG activity is de-

fined operationally by the firing rule that describes

possible state changes. The process engine evaluates

the guards associated with the transitions and ana-

lyzes their time constraints. From all enabled transi-

tions (fessible events), one is chosen (automatically or

with user intervention) and it is fired. The firing re-

k Requirements
change document

Current
Cede

Test /1

feedba

gp

Design

/

A

~esign ) $:Gr

Coding to be
coded

\
Prepare

-,, teat pack

Figure 3: High-level specification of the example pro-

moves tokens from the input places, executes the cor-

responding action, and inserts the produced tokens in

the output places. This produces a state change that

may enable new firings. The procedure is iterated and

this yields a firing sequence that is the net execution

trace.

In order to have an efficient execution and favor

distribution, a SLANG specification is concurrently

interpreted by several process engines that commu-

nicate and are synchronized via interface places, as

discussed next.

3.1 Act hit y execution

If during the execution of an activity A, one of the

starting events in the interface of activity B used by

A is selected to fire, the following steps are executed:

- First, the process engine executing A creates a

new copy of B, called an active copy of B. An

active copy of an activity is obtained by creating

a new inst ante of the activity. Thus, each new

active copy of an activity has its own local places.

Interface places are shared by the different active

copies and the calling activity.
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- A’s process engine extracts the tokens enabling

the starting transition from the input places.

Then, a new process engine is assigned to execute

the newly created active copy of B.

- This process engine receives as input parame-

ters the name of the starting transition that has

caused the invocation of B, and the related en-

abling tuple. Then, it executes the action of the

specified starting transition with the given en-

abling tuple.

A’s process engine continues the execution of ac-

tivity A, while, in parallel, B’s new active COPY k

executed by the new process engine.

When one of the transitions corresponding to the end-

ing events of an active copy is selected to fire, the ac-

tive copy terminates by executing the following steps.

The process engine in charge of the active copy

execution synchronizes with other active copies

in order to access the output places of the caller

activity and insert the produced tokens.

The process engine of the ending active copy deal-

loca~es all locai places, whose c~ntents are-there-

fore lost, and then terminates its execution.

SLANG guarantees that the ending transitions of

an activity are not enabled as long as all the active

copies that have been launched by the current active

copy are not terminated. Namely, if an active copy

Aactive has instantiated several active copies al, az,

etc., during its execution, AaCtiVe will not be enabled

to terminate until al, or az, etc. terminate their own

processing.

The issue of persistence of places and tokens re-

quires a few comments. The first step of the procedure

used to create an active copy includes the creation of

local places for each new active copy that has to be

launched. These places and their contents are deal-

located when the active copy terminates. This means

that a place and its contents exist as long as the active

copy is running. Thus, in general, the contents of local

places are persistent only while the amociated active

copy is running. The only true persistent places in a

SLANG specification are the interface places of root

activity, since they are not local to any other activity.

The activity invocation schema that has been out-

lined before can be described in terms of a lower level

net using only events and one black transition (see

Figure 4). This is based on the fact that there is no

restriction about the tool that may be invoked by a

black transition. Since activities are also tokens of the

) I ) { ‘>
Staning

Q? Transitions

\

)
,, ( ,,, ,

1 w
Create
prcceee engine

+

\
Endiq
Transitions

t
,>

Figure 4: Activity invocation in SLANG.

net, it is possible to call a tool that operates on an

activity. In particular it is possible to call the SLANG

interpreter. The interpreter takes as input a net rep-

resenting an activity and a corresponding input tuple

and then the net is executed.

Since the token representing an activity is only

read, and the execution of the black transition is asyn-

chronous, it is possible to launch different, indepen-

dent active copies of the same activity in parallel.

In this approach, it is also possible to access a to-

ken describing an activity in order to modify it, even

if there exist several active copies of the same activity.

In particular, it is possible to design an editing activity

which reads the token of the activity to be modified

from place Activities and passes it to a tool support-

ing activity editing. This tool produces a new version

of the token (i.e. of the activity) that will become

available as soon as it is stored back in the Activities

place, superseding the old one. In this way, the new

definition of the activity will be used when a new ac-

tive copy of that activity is created: the existing active

copies are not affected.

A similar mechanisms is adopted to manage type

definitions. In Figure 4 a place called Types is in-

troduced to contain all the tokens of type Metatype,

describing the types used in the SLANG specification.

It is possible to access any token in this place and

modify it much the same way as we did to modify

activity definitions. The new version of a Metatype

token becomes “visible” when it is accessed to create

new places of that type.

150



3.2 State of an enacted SLANG specifica-

tion

When a SLANG specification is accessed by one or

more process engines, we say that it is being enacted

and we call it an enacted SLANG specification. We

characterize the state of an enacted SLANG specifica-

tion as the union of the states of all the active copies

of activities in ProcessActivities at a given time, as

detailed in the following.

Given a SLANG specification

Spec = (ProcessTypes, ProcessActiuities), we will

denote with ACTt the set of active copies of all activi-

ties in ProcessActivities at time t.The active copies of

AC’Tt are related to each other through the relation-

ship has invoked, which links an active copy with all

the active copies that it has created so far. This rela-

tionship defines a tree in which each node is an active

copy, and each arc connects an active copy with one of

the active copies it has launched. This tree is modified

when an active copy is created or destroyed, for this

reason we call it activity dynamic hierarchy. Notice

that this is a tree and not a DAG, since each time an

activity is invoked, a new active copy is created.2

The root of this hierarchy is the (unique) active

copy of the root activity. There is only one active

copy of root activity because the static graph is acyclic,

and thus root activity cannot be invoked by any other

activity (as we said, it is created by a specialized boot

program). Moreover, it is the first active copy to start

and the last one to terminate.

The state of an active copy of an activity is de-

fined by the marking of the corresponding Petri net.

The state of an enacted SLANG specification at time

t is defined by the union of all markings of the active

copies in ACTt.

In general the firing of a transition causes a change

in the state of the enacted SLANG specification.

1. When a normal (white) transition fires, it pro-

vokes a change in the marking of the correspond-

ing active copy. In this case, the state of an active

copy is modified, but the set ACTt remains un-

touched.

2. If the firing of a black transition or of a transition

belonging to the starting or ending set of an ac-

tivit y occurs, the process state changes, due to a

modification of set ACTt.

Notice that if the contents of place Activities or of

place Types is modified, the change of the state of the

2This hierarchy is the dynamic counterpart of the activity

static DAG (ASD), discussed in Section 2.

enacted SLANG specification causes also abchange in

the SLANG specification itself.

3.3 Types and process enactment

As a consequence of the dynamicity of t he SLANG

binding rule we have:

1.

2.

3.

Every definition is bound at run-time. Thus, type

checking is completely dynamic.

Different versions of a type definition can be used

at the same time in different active copies, even

for the same activity definition. Changes in type

and activity definitions are effective only when

they are used. In other words, there is a possible

latency time between the change of a definition

and use of the new definition in the enacted pro-

cess.

Places Activities and Types are predefine as

shared places of root activzt y. Their definition

cannot be changed.

The resulting behavior supports a controlled and

smooth migration from an existing process specifica-

tion to its modified version, as discussed in more detail

in Section 4.

4 Process model evolution

One of the key aspects of the enacting scheme pre-

sented in Section 3 is the invocation (or instantiation)

mechanism, and its relation with the editing of an ac-

tivity. As we said, tokens describing activities are kept

in the Activities place and therefore may be read and

modified by transitions. This means that, for exam-

ple, it is possible to launch several process engines ex-

ecuting multiple instances of the same activity, and at

the same time change its definition. The termination

of the editing session (which causes the new token to

be stored in the Activities place) does not affect the

active copies of the modified activity which are being

executed, since the related process engines operates

on a copy of the activity implementation net. There-

fore, if new invocations of the modified activity occur

before the older instances are terminated, it happens

that different versions of the same activity are concur-

rently executed.

This is a general and flexible scheme, since it sup-

ports a gradual or “lazy” migration from the older

process specification to the new one. In an “eager”

approach, changes to type or activity definitions have
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an immediate effect on all involved active copies and

tokens. The latter strategy can be explicitly modeled

in SLANG, for example, by adding to an activity an

ending transition enabled by a shared place. A to-

ken in this place represents a request to the activity

to terminate immediately. When a new version of an

activity or type has been made available, a token is

inserted in the above-mentioned shared place to force

the termination of all the active copies of that activ-

ity. The choice of having the lazy strategy aa the basic

mechanism in SLANG gives more flexibility to the lan-

guage and, as we saw, permits the implementation of

other strategies.

Consider Figure 5 as an example of changing an

act ivit y. On the left-hand side, a black transition is

used to model the invocation of a SLANG editor. If

no consistency checks are done, the token is directly

put back in the Activities place. On the right-hand

side the modification of the activity is performed by

a complex activity. This may correspond to the case

of modifying the interface of an activity which may

have an impact on other activity definitions where the

modified activity is used. Thus, the change activity

may involve a sequence of editing and check steps,

before producing a definitive result. The modifications

to an activity are visible when a new active copy of

the activity is created.

Activities

(a)

Activities

A more sophistical

(b)

Figure 5: Editing of tokens representing activities.

A very last comment concerns the relationship be-

tween the SLANG constructs and the portion of the

process model used to modify the process model itself.

To support reflection in SLANG we have tried to en-

rich our basic formalism with the minimum set of fea-

tures that are sufficient to develop a reflective system.

Therefore, we have provided only basic mechanisms to

support reflection, leaving the task of creating specific

modification policies to the process specifier.

Summing up, the reflective features described above

allow us to create process models that includes the ca-

pabilities of modifying themselves. In particular, it is

possible to change a SLANG specification by the fir-

ing of a transition that changes the contents of place

Activities and/or place Types, dynamically modifying

already existing tokens or creating new ones. Dynamic

evolution of a specification is not the only application

of reflective features. In effect, reflective features may

be used for analysis purposes or for defining measure-

ment policies wit hin the process model. For inst ante,

a SLANG specification may include an activity that

collects data about the enactment of the specification

itself.

5 Related work

Most of the currently available systems provid-

ing some form of support to process model evo-

lution exploit the rule-based approach to process

modeling (e.g., MARVEL, Merlin, OIKOS, EPOS,

ALF/MASP). A non rule-based system which pro-

vides specific functionalities to deal with process evo-

lution is MELMAC, which is based on the extended

Petri nets formalism called FUNSOFT Nets.

In FUNSOFT Nets a transition can be used to

model the editing of a subnet sn (i.e. sn is a part of

the whole net executed by the MELMAC interpreter).

In order to perform such modification, no further to-

kens are passed to sn (i.e., no new instances of sn can

be started), and all the agencies internal to sn are ter-

minated before the editing of the subnet is enable to

start. When the edit ing operation terminates, the new

version of sn replaces the old one and it is enabled to

receive new tokens (i.e., sn’s transitions are enabled

to fire) [9]. Notice that, since the body (the actions)

associated with each transitions are specified in the C

language, “on-the-fly” modifications can only concern

the topology of the subnet. If the “code” associated to

a transition is changed, it haa to be recompiled. This

means that the whole system must be stopped and re-

Iinked [10]. In SLANG, the modification mechanism

is more flexible since several instances of an activity

(similar to FUNSOFT’s subnets) can be executed in

parallel with the editing of the activity itself. This is

possible since SLANG associates a new process engine

wit h each new activity inst ante. Moreover, the new

process engine operates on a (virtual) copy of the im-

plementation net of the activity. Finally, the actions
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associated with a SLANG transition are interpreted,

thus providing a more effective approach to process

model change.

In MARVEL one may include consistency predi-

cates to decide whether an evolution step is permissi-

ble or not. A modification to the rule set describing

the process is permitted only if the consistency impli-

cations after the evolution step are either weaker than

the implications before the evolution step is carried

out, or are independent of them [4]. This limits the

possible evolutions of a process, but these limitations

may turn out to be too strong. For example it may be

not permitted to further constrain an existing model,

since it is not possible to statically ensure that the new

constraints are verified by all the instances stored in

the object base. For these cases, a mechanism to per-

form a lazy transformation of the object base should

be added, in order to accommodate the data to the

new constraints.

In ALF [17], a software process is described by a hi-

erarchy of MASPS. Each MASP describes a set of ob-

jects, the relationships existing among objects, and a

set of inference rules. MASPS are instantiated to cre-

ate IMASPS (Instantiated MASPS) that are enacted

by the IMASP server. Even if the dynamic instantia-

tion of MASP guarantees a high degree of flexibility, it

is not clear how it is possible to ensure or check that

the object base is still congruent after the modifica-

tion to a MASP is applied. In fact, as in MARVEL,

a MASP includes inference rules defining triggers on

the object base, and it seems reasonable that, if some-

thing changes in a MASP definition, they should be

applied to all objects in order to verify that the object

base is still consistent.

In EPOS [12] activities are described through a hi-

erarchy of task types. To execute a task, the EPOS

planner instantiates from the task definition (a task

type) the set of lower level tasks to be executed, and

then activates the tasks Execution Manager. The dis-

tinction between task types and task instances is the

basic reflective feature in EPOS. In this way, it is pos-

sible to apply modifications to the process model even

during enactment, since a task definition can be ma-

nipulated as any other object in the system. Multiuser

support is achieved by synchronizing all the operations

performed by the Execution Manager through a cen-

tralized, versioned Object Oriented database.

MERLIN [19, 11] is a rule-based language support-

ing forward and backward chaining, and specific com-

mand to alter the set of rules and facts being inter-

preted by the MERLIN executor, using a mechanism

similar to Prolog assert and retract rules. From

the available published literature, however, it is not

clear how dynamic changes of the process model can

be accommodated and managed when multiple users

access and/or execute the same process rule set.

6 Conclusions

In this paper we have presented the basic features

provided by SLANG to support the enactment and,

in particular, dynamic evolution of a process model.

We have emphasized the well-known idea that a pro-

cess formalism aiming at supporting such functional-

ities must provide reflective features to support the

integration of the meta-process as part of the process

model itself.

In the last years, several process formalisms have

been proposed. In order to cope with the evolution

problem, most of them have been built as rule-based

systems, since within this approach it is possible to

provide simple and effective features to assert and re-

tract rules during program execution. In the SPADE

project, which is based on an operational formalism,

we have been able to support evolution by lproviding:

. Concurrent interpretation of different cooperat-

ing process model fragments.

● Late-binding.

● Mechanisms to build re-entrant process model

fragments.

In SLANG, we added these features to the basic mech-

anisms offered by Petri nets. In this way, we are able

to retain the advantages deriving by the adoption of a

formal, graphical, state-oriented notation, and at the

same time provide new reflective features to support

the process model evolution problem.
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