
Real-Time Training of Team Soccer Behaviors

Keith Sullivan and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA

{ksulliv2, sean}@cs.gmu.edu

Abstract. Training robot or agent behaviors by example is an attractive
alternative to directly coding them. However training complex behaviors
can be challenging, particularly when it involves interactive behaviors
involving multiple agents. We present a novel hierarchical learning from
demonstration system which can be used to train both single-agent
and scalable cooperative multiagent behaviors. The methodology applies
manual task decomposition to break the complex training problem into
simpler parts, then solves the problem by iteratively training each part.
We discuss our application of this method to multiagent problems in
the humanoid RoboCup competition, and apply the technique to the
keepaway soccer problem in the RoboCup Soccer Simulator.

1 Introduction

In this paper we describe a Learning from Demonstration (LfD) system called
Hierarchical Training of Agent Behaviors, or HiTAB, and its application to
problems in RoboCup. In LfD, an agent learns a behavior in real-time based on
provided examples from a human demonstrator, usually through teleoperation of
the agent. The goal of HiTAB is to learn complex stateful behaviors in the form of
hierarchical finite-state automata (HFA), in real time, based on a small number of
samples provided by a demonstrator. HiTAB can be applied both to single-agent
training and to command hierarchies of arbitrarily large swarms of agents. We
have used HiTAB to train humanoid robots, a team of differential-drive robots,
and a variety of virtual agents, up to thousands of agents at a time, on many
different problems.

The distinguishing feature of (single-agent) HiTAB is its approach to learning
behaviors based on a small number of samples, which in turn enables rapid
training in areas, such as behavior-based robotics, where samples are sparse.
HiTAB achieves this through manual task decomposition, breaking a complex
joint finite-state automaton into a hierarchy of much smaller automata to be
iteratively learned and composed. Though HiTAB uses standard classification
techniques to learn these automata, the resulting learned automata are often very
simple, indeed trivial. This is exactly the goal: simple automata in turn define a
low-dimensional space which can be learned with a small number of samples.

All machine learning methods combine some degree of automated machine
induction and human domain knowledge. At the very least, a human is choosing



an appropriate representation and bias. HiTAB lies at the far end of the induc-
tion/knowledge tradeoff. By manually decomposing the problem into a hierarchy
of subproblems, the experimenter is defining the automaton’s general architecture:
HiTAB’s machine learning is filling in the gaps. This puts HiTAB somewhere
between machine learning and outright programming by demonstration.

In 2011 we applied HiTAB to train a humanoid kid-sized robot soccer behavior
the night before the RoboCup competition, then fielded it in the competition
alongside hardcoded robot behaviors. Our ultimate goal is to train all the top-level
behaviors in our robot soccer team while at the competition.

In this paper we demonstrate another application of HiTAB to the Robocup
domain: the keepaway problem in simulated soccer, using the RoboCup Soccer
Simulator. In this problem, a group of keepers must collectively pass the ball
amongst one another so as to prevent another team, the takers, from acquiring it.
This problem requires the experimenter to train a homogeneous but interactive
behavior among three agents.

The rest of this paper is organized as follows. We first discuss related work,
then detail how HiTAB works in the single-agent case (for details on the multia-
gent/swarm case, see [28]). We then discuss our prior and current attempts in
the RoboCup Kid-Size Humanoid league. Then, we show how HiTAB may be
applied to the keepaway problem in the RoboCup Soccer Simulator.

2 Related Work

Learning from Demonstration is a method to train agents by having a human
demonstrator perform actions for the agent [1, 2]. Since the agent is given the
proper action to perform in a given situation, LfD is, broadly speaking, a super-
vised learning problem, though authors often use reinforcement learning, with
a reward signal based on how closely a learned solution matches a trajectory
shown by the demonstrator [7, 19]. A variation of LfD, called imitation learning,
attempts to mimic a demonstrator’s actual actions (as a human) rather than
observe the demonstrator teleoperate the robot [14, 15].

The LfD literature may be divided into two categories: those which learn
plans [22, 31] and those which learn (usually stateless) policies [3, 19] (for stateful
examples see [8, 13]). In most cases, the plan literature builds sparse machines
describing occasional changes in behavior, whereas many, but not all, policy
methods learn fine-grained changes in action, such as might be found in trajectory
planning or control. The crucial difference between the two is that a plan learner
may receive a new sample only when the user occasionally specifies a new behavior
to perform; whereas trajectory policy learners may be inundated with samples
with every slight modification or course correction. This in turn has an impact on
the difficulty of learning: plan methods must often deal with an extreme sparsity
in samples. Our work lies in the plan method category.

Like our own work discussed here, a number of other authors construct
complex behaviors via scaffolding: breaking the task into smaller, easier to learn
pieces and combining these smaller tasks to form complex behaviors [16, 25, 27].



Our approach requires manual decomposition and reassembly, but this is not the
only approach. Instead of the demonstrator specifying how to combine simpler
behaviors, the idea of behavior fusion has the agent learn how to automatically
combine simple behaviors into more complex behaviors [20, 21]. Closely related
is the notion of automatic task decomposition which determines how to break
complex behavior into simpler components [9, 10].

Our work is distinguished in its application to both single- and multi-agent
scenarios. Though in this paper we focus largely on single-agent learning, it is done
in a collective environment. Multiagent learning from demonstration is a very
difficult problem because of the gulf which exists between the desired emergent
macrophenomena and the per-agent microbehaviors which give rise to them. This
is particularly problematic for supervised learners, because in order to learn in a
supervised fashion each agent must receive the correct action as a microbehavior:
but the experimenter does not know what microbehaviors should be done to
achieve the desired macrophenomenon, and parallel control of large numbers
of agents is also difficult. As a result the vast majority of multiagent research
has focused on reward-based techniques (reinforcement learning, evolutionary
computation, etc.) rather than supervised learning [23]. Of those supervised
learning methods used, most fall into the category of agent modeling, where
agents learn about each other rather than a task given by a demonstrator. Still,
there has been some work in multiagent LfD. Chernova et al. use confidence
estimation to train multiple robots individually and rely on emergent multirobot
behavior to accomplish the task [5, 6]. A similar approach was used to train Sony
AIBO robots to play soccer [4, 11, 12].

3 Hierarchical Training with a Single Agent

HiTAB’s basic model consists of hierarchical finite-state automata. Each state
in a HiTAB automaton corresponds to an agent behavior: and when in a given
state, the agent performs the associated behavior. Behaviors may be either
atomic behaviors hard-coded in the agent, or may themselves be other finite-
state automata. Every automaton begins in its Start state, a blank state which
immediately transitions to some other state. Automata may also have flag states,
such as the Done state, which raises a flag indicating that the automaton believes
it is done, then transitions to the Start state. Flag states allow parent automata
to detect completion of sub-behaviors as if they were sensor features.

Transitions between states are controlled by transition functions which map
the current state and feature vector to a new state. HiTAB’s states are fixed
(they are the current behaviors in its library), but it learns a transition function
for every state in the automaton.

Learning the transition function is a classification task where the class labels
are the individual states and attributes are the environmental features. While
many classification algorithms are applicable, HiTAB at present uses a version of
the C4.5 decision tree algorithm [24] with probabilistic leaf nodes. Decision trees
nicely handle different types of data (e.g., continuous, toroidal, and categorical



data), and do not require scaling of features relative to one another. Additionally,
many agent tasks can be approximated by rectangular partitions of the feature
space, which makes them a good target for decision trees. Leaf nodes in decision
trees traditionally deterministically compute the class using the plurality of
examples which reach that leaf. HiTAB instead uses a probability distribution
over the classes appearing at a leaf node.

The motivation behind HiTAB was to develop a LfD system which could
rapidly train complex, stateful agent behaviors in real time. As mentioned
before, training complex agent behaviors typically requires many samples. HiTAB
employs task decomposition to reduce the number of samples necessary to produce
a detailed behavior. It does this in various ways:

– Behaviors (which take the form of finite-state automata) are organized into
a hierarchy, allowing the operator to decompose a large joint behavior into
many simpler behaviors which are trained independently, then reused in
different situations by higher-level trained behaviors.

– Each behavior may be trained solely in the context of features and lower-level
behaviors relevant to it. In contrast, training a single large behavior would
require the joint of all basic behaviors and features, resulting in a much
higher dimensional learning space. This results in dramatic savings: typically
decomposition allows the dimensionality, and corresponding need for samples,
to decrease from exponential to polynomial sizes.

– Behaviors and sensor features are parameterizable. Thus an operator may
train a behavior such as go to X, and later reuse it as go to the ball or go to
the nearest wall, etc.

– Incorrectly trained behaviors may be retrained without having to retrain the
entire top-level joint behavior.

Running HiTAB An automaton starts in its Start state. Each timestep, while
in state St, the automaton first queries the transition function to determine the
next state St+1, transitions to this new state, and if St 6= St+1, stops performing
St’s behavior and starts performing St+1’s behavior. It then performs one pulse
of the state’s underlying behavior: if the behavior is an atomic behavior such as
“go forward”, this might result in a single step forward. If the behavior is itself an
HFA, this results in recursively performing the aforementioned transition and
pulsing procedure on the underlying automaton.

Training with HiTAB To begin training an automaton, the operator first selects
the features to be used as attributes for the automaton’s transition classifiers.
Training then iterates between a training mode and a testing mode.

In the training mode, the demonstrator is in control. Each time the demon-
strator directs the agent to perform a new behavior, the agent begins performing
it, and also records a tuple 〈St, ~ft, St+1〉 which stores the current feature vector,
along with the previous and new states. If state St+1 has a behavior designed to
be executed exactly once, then no additional examples are recorded. Otherwise, a
useful default example is stored of the form 〈St+1, ~ft, St+1〉. This helps HiTAB’s



classifier realize that St+1 should be continuously performed unless, as indicated
by a further example, the situation changes again.1

Ultimately the demonstrator switches to the testing mode, which causes the
transition functions to be built from the collected examples. For a given state
Si, HiTAB reduces all examples of the form 〈Si, ~ft, Sj〉 to samples of the form

〈~ft, Sj〉 which are input to the classifier (~ft are the features and Sj are the labels).
The resulting classifier defines the transition function for outgoing edges from Si.

The agent then starts following the learned behavior autonomously. If the
demonstrator observes the agent performing an incorrect behavior, he may step
in and switch the agent back to training mode to collect additional examples.

Ultimately the trained behavior is saved to the behavior library. To do this,
HiTAB first trims unused states and features. In addition, any parameterized
behaviors and features are bound to a target (e.g., “nearest obstacle”), or to a
parameter of the automaton itself. After saving to the library, the behavior may
be used as a state in a higher-level automaton to be learned at a later time.

Formal Model The HFA is at the heart of HiTAB. An automaton is a tuple
〈S,B, F, T,G〉 ∈ H defined as follows:

– S = {S1, . . . , Sn} is the set of states in the automaton. Included is one special
state, the Start state S0, and zero or more flag states (such as Done). Exactly
one state is active at a time, designated St. The purpose of a flag state
is simply to raise a flag in the automaton to indicate that the automaton
believes that some condition is now true. Flags in an automaton appear as
optional features in its parent automaton.

– B = {B1, . . . , Bk} is the set of basic behaviors. Each state is associated with
either a basic behavior or another automaton from H, though recursion is
not permitted.

– F = {f1, . . . , fm} is the set of observable features in the environment. At any
given time each feature has a numerical value. The collective values of F at
time t is the environment’s feature vector ~ft = 〈f1, ..., fm〉.

– T = ~ft × S → S is the transition function which maps the current state St

and the current feature vector ~ft to a new state St+1.
– Optional free variables (parameters) G = {G1, . . . , Gn} for basic behaviors

and features generalize the model: each behavior Bi and feature fi are re-
placed as Bi(G1, . . . , Gn) and fi(G1, . . . , Gn). The evaluation of the transition
function and the execution of behaviors are based on ground instances of the
free variables. For example, rather than have a behavior called go to the ball,
we can create a behavior called goTo(A), where A is left unspecified. Similarly,
a feature might be defined not as distance to the ball but as distanceTo(B). If

1 Default examples are distinguished in HiTAB’s decision tree mechanism: if the
decision tree is choosing to place its pivot between a default example and a non-
default example, the pivot is placed immediately adjacent to the non-default example.
This differs from the normal case, where the pivot is placed exactly half-way between
the two examples.



such a behavior or feature is used in an automaton, either its parameter must
be bound to a specific target (such as “the ball” or “the nearest obstacle”), or
it must be bound to some higher-level parent of the automaton itself. Thus
HFAs may themselves be parameterized.

4 Training Teams of Agents

We have applied HiTAB in three ways to train teams or swarms of agents to
perform group behaviors:

1. A single agent behavior is trained in isolation, then distributed to multiple
agents. The behavior does not require agent interaction and can be essentially
done in parallel.

2. A homogeneous behavior is trained to be used by multiple coordinated agents.
For example, the agents learn to form ranks, or work together to capture
a prey. Because the behavior must interact with other agents, this kind of
training can be challenging. In lieu of training multiple agents simultaneously,
we have taken a new approach, which we call behavior bootstrapping. Here,
we train an agent to perform a rudimentary version of the desired behavior
in the context of do-nothing teammates. We then distribute this rudimentary
behavior to the teammates, then train the agent on a slightly more capable
behavior in the context of teammates performing the rudimentary behavior.
We then distribute the slightly more capable behavior to the teammates, and
train an even more capable behavior, and so on, until the desired sophisticated
behavior is achieved. This approach is only really effective with a relatively
small number of agents.

3. A collection of coordinated homogeneous behaviors are trained among a
swarm of a (potentially very large) number of agents. The way this is done is
by organizing the swarm into a command hierarchy: small groups of agents
are assigned a commander (a virtual agent); then small groups of commanders
are assigned a commander, and so on until the whole swarm is structured
as a tree. We use HiTAB to train commanders in essentially the same way
as real (leaf node) agents are trained. A commander’s atomic behaviors
correspond to the learned top-level behaviors of its subordinate agents, and
when it begins to perform an atomic behavior it directs its subordinates to all
begin performing the equivalent top-level behavior. The resulting hierarchical
command structure strikes a mid-ground between a fully distributed swarm
and a fully centralized one.

Examples of the third approach may be found in [28]. Because the number of
agents is small (three teammates), in this paper we concentrate on the first two
approaches, and particularly on the novel use of behavior bootstrapping to train
three agents in concert.

We note that these methods, or at least the last two, fall under the multiagent
learning subcategory defined in [23] as team learning, whereby a single learner is



used at any particular time to train a team of agents. This is in contrast to con-
current learning, where multiple learners are simultaneously operating. Further,
we note that the group behaviors described above are all homogeneous. However
ultimately we aim to be able to train heterogeneous or mixed homogeneous and
heterogeneous behaviors in large numbers of agents.

5 Team Robot Training of Humanoids at RoboCup

The goal of HiTAB is to allow real-time training of behaviors fast enough that it
can be done in the field and on-the-fly by an operator. This has been demonstrated
in previous work [18, 29] for virtual agents, a single differential-drive robot, and a
humanoid robot. But it had never been tested in a real-world challenge scenario.
Thus as a proof of concept we fielded HiTAB-trained robots in RoboCup 2011.

Since 2009, we have competed in the RoboCup Kid-sized Humanoid League
with the RoboPatriots [30]. Our humanoid robots have top-level behaviors in the
form of hard-coded hierarchical finite-state automata. Such behaviors include
locating the ball, servoing and approaching the ball, aligning with the goal,
kicking and reattempting kicks, and so on.

On the soccer field the night before the 2011 competition, we deleted one
of the hard-coded behaviors (servoing and approaching the ball) and trained a
behavior in its place. We did this by directly teleoperating the humanoid on the
field. We then saved out the trained behavior, and during the competition, the
robots loaded this behavior from a file and used it in an interpreter along side
the remaining hard-coded behaviors.

This behavior was not complex: it was meant as a proof of concept. However,
the learned behavior worked perfectly. After discussions with colleagues at the
competition, we have come to the conclusion that, to the best of our knowledge,
this is the first time a team at RoboCup has used a behavior taught to the robots
on the field at the competition itself.

For RoboCup 2012, our goal is to train most, if not all, of the top-level
behaviors on the field at the competition. In essence, we will attempt to teach
the team how to play soccer the night before the competition.

6 Team Robot Training of Keepaway Soccer

In preparation for the RoboCup 2012 humanoid goal, we applied HiTAB to the
task of simulated soccer keepaway in the RoboCup Soccer Simulator. In the
keepaway problem, a team of keepers tries to maintain possession for as long as
possible from a team of takers. The two teams compete in a bounded area (in
our case, a 20m × 20m box) within a regular soccer field in the RoboCup Soccer
Simulator. In our version of keepaway, the agents have 360 degree and infinite
view and cannot collide with the ball. We did not permit our keepers to dribble.

The keepaway problem presents several challenges. First, its limited inter-
agent communication requires agents to learn independently, but the resulting



GoSlow

GoMedium

GoFast

Stop

Pass

TurnToBall

ApproachBall

ControlBall

GotoBall

GetOpen Start

Done

Stop Start

distance to ball ≤ 1.6

distance to ball ≤ 3.3

distance to ball ≤ 1.1

always

distance to ball > 1.8

distance to ball > 3.4

distance to ball > 6.6

always

angle to ball ≤ ±3angle to ball ≥ ±3

Start

always

always

distance to closest taker ≤ 5.5

can kick ballcannot kick ball

always

Start

I am the closest 
teammember to 

the ball

otherwise

doneI was yelled at

ApproachBall 

GotoBall 

ControlBall 

Keepaway 

Fig. 1. Four automata trained for the Keepaway Problem. In each case, the automaton
begins in Start. The Done behavior does nothing but raises a done flag in the automaton’s
parent, which is detected by the done feature (compare ControlBall with Keepaway).
Real-valued numbers shown are the result of the training examples provided.

behaviors require coordination. Second, keepaway (and soccer in general) has a
large state space. Third, the RoboCup Soccer Simulator injects random noise in
agents’ actions and sensors.

In this example we used HiTAB plus behavior bootstrapping to learn coor-
dinated behaviors among the three agents. We first manually decomposed the
keeper behaviors into a structure similar to Stone et al [26]. The keepers were
provided with the following hard-coded behaviors: GoFast, GoMedium, GoSlow,
Stop, Pass, GetOpen, and TurnToBall.

– The GoFast, GoMedium, and GoSlow functions moved the keeper straight
ahead at velocities of 100, 90, and 75 respectively.

– The Pass function kicked the ball to the “most open” teammate. Openness
was defined by determining the maximum angle subtended by the vector
between the passer and receiver, and the vector between the passer and the
closest taker. Kick strength accounted for friction and was proportional to



the distance between the passer and receiver2. The passer would then yell to
the receiver to inform him of the incoming ball.

– GetOpen moved the keeper away from its teammates via a simple potential
field, but constrained to be within 10 meters of the center of the box.

– TurnToBall rotated the keeper to directly face the ball.

The features we used were: DistanceTo(X), DirectionTo(X), IWasYelledAt,
BallIsKickable, and ATeammateIsCloserToBall, where X could be set to either
the ball, the closest keeper, or closest taker. The binary features IWasYelledAt,
BallIsKickable and ATeammateIsCloserToBall were true when a yell message was
received (from a passer), the ball was within kicking range, or another keeper
was closer to the ball, respectively, and were false otherwise.

Given these basic behaviors and features, we trained four automata in the
following order, as shown in Figure 1:

1. ApproachBall: A P-Controller in automaton form, based on GoFast,
GoMedium, GoSlow, Stop, and DistanceTo(ball). This automaton attempted
to move the agent until it was within kicking distance of the ball location.

2. GotoBall: Iterated between ApproachBall and TurnToBall, using the angle
to ball. This automaton attempted to servo on the ball location, and did not
require state.

3. ControlBall: Used the GotoBall, Stop, and Pass behaviors, the optional
Done state, and the DistanceTo(Closest Taker) and BallIsKickable features.
This automaton servoed on the ball, waited until a taker was sufficiently
close, then passed the ball, plus some error handling.

4. Keepaway: The top-level automaton, used GetOpen and ControlBall, plus
three features: ATeammateIsCloserToBall, IWasYelledAt, and Done. This
automaton would initially either get open or take control of the ball depending
on whether the agent was initially closest to the ball. It then iterated between
the GetOpen and ControlBall behaviors depending on whether the agent
believed it was in control of the ball at any given time.

Keepaway was notable in that it was trained via a simple form of behavioral
bootstrapping. We began by training a single agent to either go to ControlBall or
GetOpen when started. We then distributed this behavior to all the agents. We
next restarted the game, which caused one agent to go to ControlBall while the
others went to GetOpen. We further trained the ball-controlling agent to pass
the ball and then get open, and then copied that behavior to all agents. After
restarting again, we trained a single open agent to transition to ControlBall when
yelled at, and distributed the final version of the behavior.

7 Experiments

We ran our learned keepaway behaviors for 200 episodes. An episode ended when
the takers gained possession of the ball, or when the ball was kicked out of the

2 The exact kick strength computation followed the U Texas Austin code used in
http://www.cs.utexas.edu/~AustinVilla/sim/keepaway/.



Behavior Number of Examples Time to Train (minutes)

ApproachBall 18 10
GotoBall 10 10

ControlBall 11 45
Keepaway 10 90

Table 1. Number of data points to train the final behaviors, and an approximation of
the total time to train the final behaviors.

keepaway box. The takers were from [26], but running at one quarter the speed
of the original. All experiments were conducted using the MASON multiagent
simulation package [17] (running HiTAB) plus the RoboCup Soccer Simulator.

Our trained keepers maintained possession for an average of 14.6 ± 0.87
seconds, and completed an average of 3.8 passes per episode. We were able to
train the behaviors to play successfully: but obviously they will require more
tweaking to keep the ball away from the takers for a longer duration.

We also wanted to examine how quickly behaviors could be trained using
HiTAB. Table 1 shows the length of time spent actually training the agents
(including collecting the samples and constructing the HFA), and the number
of examples collected for the final trained model. Typically, the demonstrator
required several iterations to train the final behavior due to demonstrator error
or experimentation with different ways of achieving the desired behavior (and
thus different automata structures). Keepaway took longer to train due to the
behavioral bootstrapping involved. In particular, the majority of the time was
spent determining how to manage the system such that two agents were in the
correct configuration to collect appropriate data: inability to manipulate the
agents was largely a GUI issue which can be remedied in the future.

We believe the experiments show HiTAB’s ability to train a complex multi-
agent behavior in a reasonable timeframe, and without requiring a significant
amount of data. Based on these results, we think our goal to train the RoboPatriot
soccer behavior in Mexico City is viable.

8 Conclusions and Future Work

This paper demonstrated a supervised learning from demonstration system
capable of training complex behaviors in a multiagent problem domain in real
time. Our system, HiTAB, achieves this through manual behavior decomposition,
per-sub-behavior feature reduction, and machine learning through classification.
HiTAB’s purpose is to do learning on a very small number of samples. Its use of
behavior decomposition places us on the far end of what may be reasonably called
machine learning, and very close to explicit programing by example. Multiagent
supervised training (as opposed to user modeling) is unusual, and HiTAB is
nearly unique in tackling this problem.

The primary difficulties we encountered in adapting HiTAB for the soccer
keepaway problem centered on representation: HiTAB employs classification



rather than regression, yet many of the behaviors in the robot soccer domain ben-
efit from regression. For example, the GetOpen behavior computed the direction
to go based on a potential field, which HiTAB could not easily do. Intelligent
interception would also benefit from regression, as was originally demonstrated in
[27]. It is reasonable to use HiTAB to train higher-level behaviors composed from
lower-level behaviors which were either hard-coded or developed through another
learning technique (such as a regression technique). Finally, our ultimate goal is
to develop HiTAB towards heterogeneous multiagent behaviors. In the keepaway
problem there is little need for heterogeneity: but in the Robocup Humanoid
leagues it is plausible for all three robots to be heterogeneous, either by differences
in capability (goalies) or simply behavior (a forward versus a midfielder).

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and Autonomous Systems 57, 469–483 (2009)

2. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: Fisher, D.H.
(ed.) Proceedings of International Conference on Machine Learning (ICML). pp.
12–20. Morgan Kaufmann (1997)

3. Bentivegna, D.C., Atkeson, C.G., Cheng, G.: Learning tasks from observation and
practice. Robotics and Autonomous Systems 47(2-3), 163–169 (2004)

4. Browning, B., Xu, L., Veloso, M.: Skill acquisition and use for a dynamically-
balancing soccer robot. In: Proceedings of the American Association of Artificial
Intelligence (AAAI). pp. 599–604 (2004)

5. Chernova, S.: Confidence-based Robot Policy Learning from Demonstration. Ph.D.
thesis, Carnegie Mellon University (2009)

6. Chernova, S., Veloso, M.: Confidence-based multi-robot learning from demonstration.
International Journal of Social Robotics 2, 195–215 (2010)

7. Coates, A., Abbeel, P., Ng, A.Y.: Apprenticeship learning for helicopter control.
Communications of the ACM 52(7), 97–105 (2009)

8. Dixon, K., Khosla, P.K.: Learning by observation with mobile robots: A compu-
tational approach. In: Proceedings of IEEE International Conference on Robotics
and Automation (ICRA) (2004)

9. Eyharabide, V., Amandi, A.: Automatic task model generation for interface agent
development. Inteligencia artificial 9(26), 49–57 (2005)

10. Garland, A.: Learning hierarchical task models by demonstration. Tech. Rep. TR-
2001-03, Mitsubishi Electric Research Laboratories (2001)

11. Grollman, D., Jenkins, O.: Dogged learning for robots. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA). pp. 2483–2488.
IEEE (2007)

12. Grollmand, D.H., Jenkins, O.C.: Can we learn finite state machine robot controllers
from interactive demonstration? In: From Motor Learning to Interaction Learning
in Robots. pp. 407–430. Springer (2010)

13. Hovland, G., Sikka, P., McCarragher, B.: Skill acquisition from human demon-
stration using a hidden markov model. In: Proceedings of IEEE International
Conference on Robotics and Automation (ICRA). pp. 2706–2711. IEEE (1996)

14. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynam-
ical systems in humanoid robots. In: Proceedings of IEEE International Conference
on Robotics and Automation (ICRA). pp. 1398–1403 (2002)



15. Jenkins, O., Mataric, M., Weber, S.: Primitive-based movement classification for
humanoid imitation. In: Proceedings of the IEEE-RAS International Conference on
Humanoid Robotics (Humanoids) (2000)

16. Lockerd, A., Breazeal, C.: Tutelage and socially guided robot learning. In: Proceed-
ings of IEEE International Conference on Intelligent Robots and Systems (IROS).
vol. 4, pp. 3475–3480. IEEE (2004)

17. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multia-
gent simulation environment. Simulation 81(7), 517 – 527 (July 2005)

18. Luke, S., Ziparo, V.: Learn to behave! rapid training of behavior automata. In: Grześ,
M., Taylor, M. (eds.) Proceedings of Adaptive and Learning Agents Workshop at
AAMAS 2010. pp. 61 – 68 (2010)

19. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learning
from demonstration and adaptation of biped locomotion. Robotics and Autonomous
Systems 47(2-3), 79–91 (2004)

20. Nicolescu, M., Jenkins, O., Olenderski, A.: Behavior fusion estimation for robot
learning from demonstration. In: Proceedings of Workshop on Distributed Intelligent
Systems: Collective Intelligence and Its Applications. IEEE Computer Society (2006)

21. Nicolescu, M., Jenkins, O., Stanhope, A.: Fusing robot behaviors for human-level
tasks. In: Proceedings of the International Conference on Development and Learning
(ICDL). pp. 76–81. IEEE (2007)

22. Nicolescu, M.N.: A Framework for Learning from Demonstration, Generalization
and Practice in Human-Robot Domains. Ph.D. thesis, University of Southern
California (2003)

23. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

24. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in
Machine Learning, Morgan Kaufmann, 1 edn. (January 1993)

25. Saunders, J., Nehaniv, C., Dautenhahn, K.: Teaching robots by molding behavior
and scaffolding the environment. In: Proceedings of the ACM/IEEE International
Conference on Human-Robot Interaction (HRI) (2006)

26. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup-soccer
keepaway. Adaptive Behavior 13(3), 165–188 (2005)

27. Stone, P., Veloso, M.: Layered learning and flexible teamwork in robocup simulation
agents. In: Veloso, M., Pagello, E., Kitano, H. (eds.) RoboCup-99: Robot Soccer
World Cup III, pp. 65–72. Springer (2000)

28. Sullivan, K., Luke, S.: Learning from demonstration with swarm hierarchies. In:
Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS) (2012)

29. Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from demonstration
on humanoid robots. In: Proceedings of the Humanoid Robots Learning from
Interaction Workshop at Humanoids 2010 (2010)

30. Sullivan, K., Russell, K., Andrea, K., Stout, B., Luke, S.: RoboPatriots: George
Mason University 2012 RoboCup team. In: Proceedings of the 2012 RoboCup
Workshop (2012)

31. Veeraraghavan, H., Veloso, M.M.: Learning task specific plans through sound
and visually interpretable demonstrations. In: Proceedings of IEEE International
Conference on Intelligent Robots and Systems (IROS). pp. 2599–2604. IEEE (2008)


