
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL Ih. NO. 4. APRIL 1990

STATEMATE: A Working
Development of Complex

DAVID HAREL, MEMBER, IEEE, HAG1 LACHOVER,

403

Environment for the
Reactive Systems

AMNON NAAMAD, AMIR PNUELI,
MICHAL POLITI, RIVI SHERMAN, AHARON SHTULL-TRAURING,

AND MARK TRAKHTENBROT

Abstract-This paper provides an overvien of the STATEMATE”
system, constructed over the past several years by the authors and their
colleagues at Ad Cad Ltd., the R&D subsidiary of i-Logix, Inc.
STATEMATE is a set of tools, with a heavy graphical orientation, in-
tended for the specification, analysis, design, and documentation of
large and complex reactive systems, such as real-time embedded sys-
tems, control and communication systems, and interactive software or
hardware. It enables a user to prepare, analyze, and debug diagram-
matic, yet precise, descriptions of the system under development from
three interrelated points of view, capturing structure, furrctionafity, and
behavior. These views are represented by three graphical languages,
the most intricate of which is the language of statecharts 141, used to
depict reactive behavior over time. In addition to the use of state-
charts, the main novaelty of STATEMATE is in the fact that it “under-
stands” the entire descriptions perfectly, to the point of being able to
analyze them for crucial dynamic properties, to carry out rigorous ex-
ecutions and simulations of the described system, and to create run-
ning code automatically. These features are invaluable when it comes
to the quality and reliability of the final outcome.

Index Terms-Code-generation, executable specifications, func-
tional decomposition, propotyping, reactive systems, statecharts,
STATEMATE.

I. INTRODUCTION

R EACTIVE systems (see [181, [6]) are characterized
as owing much of their complexity to the intricate

nature of reactions to discrete occurrences. The compu-
tational parts of such systems are assumed to be dealt with
using other means, and it is their reactive, control-driven
parts that are considered here to be the most problematic.
Examples of reactive systems include most kinds of real-
time computer embedded systems, control plants, com-
munication systems, interactive software of varying na-
ture, and even VLSI circuits. Common to all of these is
the notion of reuctive hehaviov, whereby the system is not
adequately described by specifying the output that results
from a set of inputs, but, rather. requires specifying the
relationship of inputs and outputs over time. Typically,
such descriptions involve complex sequences of events,

Manuscript received May 12. 1988: revised November 13. 1989. Rec-
ommended by L. A. Belady. This work wah wpported tn part by the Bird
Foundation and the Israel Ministry ot’ Industry and Commerce.

D. Hare1 and A. Pnueli are with i-Logix Inc.. Burlington. MA 01803.
Ad Cad Ltd.. Rehovot. Israel. and the Department of Applied Mathemattcs
and Computer Science. The Weizmann lnstttute of Science. Rehovot 76100,
Israel.

H. Lachover. A. Naamad. M. Politi. R. Sherman. A. Shtull-Trauring.
and M. Trakhtenbrot are with I-Logix Inc., Burlington. MA 01803. and
Ad Cad Ltd.. Rehovot. Israel.

IEEE Log Number 8933740.
“STATEMATE is a registered trademark of i-Logix. Inc.

actions, conditions and information flow, often with ex-
plicit timing constraints, that combine to form the sys-
tem’s overall behavior.

It is fair to say that the problem of finding good meth-
ods to aid in the development of such systems has not
been satisfactorily solved. Standard structured analysis
and structured design methods do not adequately deal with
the dynamics of reactive systems, since they were pro-
posed to deal primarily with nonreactive, data-driven ap-
plications, in which a good functional decomposition and
data-flow description are sufficient. Some of these meth-
ods have recently been extended to deal with real-time
systems (see, e.g., [8], [9], [16], [17], (20)~[221), and
our approach, developed independently,’ can be viewed
as being consistent with many of the ideas in these. See
the comparisons in the recent 1221. As to commercially
available tools for real-time system design, most are, by
and large, but sophisticated graphics editors, with which
one can model certain aspects of reactive systems, but
with which a user can do little with the resulting descrip-
tions beyond testing them for syntactic consistency and
completeness and producing various kinds of output re-
ports. These systems are often helpful in organizing a de-
signer’s thoughts and in communicating those thoughts to
others, but they are generally considered severely inade-
quate when it comes to the more difficult task of preparing
reliable specifications and designs that satisfy the require-
ments, that behave over time as expected, and from which
a satisfactory final system can be constructed with relative
ease.

If we were to draw an analogy with the discipline of
conventional programming, there is an acute need for the
reactive system’s analog of a programming environment
that comes complete with a powerful programming lan-
guage, a useful program editor and syntax checker, but,
most importantly, also with a working compiler and/or
interpreter, and with extensive debugging facilities. Pro-
grams are not only to be written and checked for syntax
errors; they must also be run, tested, debugged, and thor-
oughly analyzed before they are set free to do their thing
in the real world.

As it turns out, the problems arising in the design of a
typical reactive system are far more difficult than those

‘Moat of the ideas described in thi\ paper were concetved between 1983
and 1985.

0098-5589/90/0400-0403$01 .OO 0 1990 IEEE

404 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 4. APRIL 1990

arising in the preparat ion of a typical computat ional or
data-processing program. Most reactive systems are
highly concurrent and distributed; they fall quite naturally
into multiple levels of detail, and usually display unpre-
dictable, often catastrophic, behavior under unanticipated
circumstances. More often than not, the development
phases of such systems are laden with misunderstandings
between customers, subcontractors, and users, as well as
among the various members of the design team itself, and
their life-cycle is replete with trouble-shooting, modifi-
cations, and enhancements.

The languages in which reactive systems are specif ied
ought to be clear and intuitive, and thus amenable to gen-
eration, inspection and modification by humans, as well
as precise and rigorous, and thus amenable to validation,
simulation, and analysis by computers. Such languages
ought to make it possible to move easily, and with suffi-
cient semantic underpinnings, from the initial s tages of
requirements and specification to prototyping and design,
and to form the basis for modifications and maintenance
at later stages. One of the underlying principles adopted
in this paper is that clarity and intuition can be greatly
enhanced by the adopt ion of visual languages for the bulk
of the description effort, behavioral aspects included.
This, together with the need for precision and rigor, leads
naturally to the notion of visual formalisms [5], i.e., lan-
guages that are highly visual in nature, depending on a
small number of carefully chosen diagrammatic para-
digms, yet which, at the same time, admit a formal se-
mantics that provides each feature, graphical and non-
graphical alike, with a precise and unambiguous meaning.
For reactive systems, this means that it should be possible
to prepare intuitive and comprehensive specifications that
can be analyzed, simulated, and debugged at any stage
with the aid of a computer ized support system.

This paper descr ibes the ideas behind STATEMATE, a
computer ized environment for the development of reac-
tive systems, which adheres to these principles. The
reader is also referred to additional material about the sys-
tem, particularly [12]-[14].

II. STATEMATE AT A GLANCE

The underlying premise of STATEMATE is the need
to specify and analyze the system under development
(SUD in the sequel) from three separate, but related,
points of view: structural, functional, and behavioral.
The latter two are closely linked, as we shall see later,
and constitute together the conceptual model of the SUD.
See Fig. 1.

In the structural view, one provides a hierarchical de-
composit ion of the SUD into its physical components,
called modules here, and identifies the information that
flows between them: that is, the “chunks” of data and
control signals that flow through whatever physical links
exist between the modules. The word “physical” should
be taken as rather general, with a module being anything
from an actual piece of hardware in some systems to the

A m
Fig. I. Structure of a STATEMATE model.

subroutines, packages and tasks in the software parts of
others.

The conceptual model of the SUD consists of a hier-
archy of activities, complete with the details of the data
items and control signals that flow between them, and,
significantly, control activities that specify behavior. Let
us be a little more explicit here. The activity hierarchy
and flow information (without the control activities) con-
stitute our functional view, and are essentially what is
often called the funcrional decomposit ion of the SUD.
However, in the functional view we do not specify dy-
namics; we do not say when and why the activities are
activated, whether or not they terminate on their own, and
whether they can be carried out in parallel. The same is
true of the data-flow; in the functional view we specify
only that data can flow, and not whether and when it will.
For example, if we have identified that two of the subac-
tivities of an automatic teller machine are identify-cus-
tomer and report-balance, and that the data item ac-
count-number can flow from the former to the latter, then
no more and no less than that is implied; we still have not
specif ied when that item will flow, how often will it flow,
and in response to what, and, indeed, whether the flow
will be initiated by the former activity or requested by the
latter. In other words, the functional view provides the
decomposit ion into activities and the possible flow of in-
formation, but it says virtually nothing about how those
activities and their associated inputs and outputs are con-
trolled during the cont inued behavior of the SUD.

It is the behavioral view, our third, that is used to spec-
ify the control activities. These can be present on any level
of the activity hierarchy, controll ing that particular level.
It is these controllers that are responsible for specifying
when, how and why things happen as the SUD reacts over
time. Among other things, a controll ing statechart can
start and stop activities, can generate new events, and can
change the values of variables. It can also sense whether

HAREL <‘r <il. STATEMATE-COMPLEX REACTIVE SYSTFMS 405

activities are active or data has flowed, and it can respond
to events and test the values of condit ions and variables.
These connect ions between activities and control will be
seen in Section Ill to be rather elaborate and multifaceted,
so that the conceptual model should be regarded as a
closely knit aggregate. The relationship between this con-
ceptual model and the physical view, on the other hand,
is far simpler, and consists essentially of specifying which
modules implement which activities.

For these three views, the structural, functional, and
behavioral, STATEMATE provides graphical, diagram-
matic languages, module-charts, activitycharts, andstare-
charts, respectively. All three languages are based on a
common set of simple graphical convent ions (see [S]) and
come complete with graphics editors that check for syn-
tactic validity as the specifications are developed, and,
more importantly, with formal semantics that are embed-
ded within. The languages are descr ibed in some detail in
Section Ill, and in more detail in [121 (statecharts are de-
scr ibed in [4]).

Fig. 2 illustrates the overall structure of STATE-
MATE. The database is central, and obtains much of its
input from the three graphics editors, and also from an
editor for a fortns language. in which additional infor-
mation is specified, as we shall see later.

The most interesting parts of STATEMATE, however,
are the analysis capabilities, descr ibed in Sections IV and
V and in [131. As mentioned, the entire approach is gov-
erned by the desire to enable the user to run, debug and
analyze the specifications and designs that result from the
graphical languages. To this end, the database has been
constructed to make it possible to r igorously execute the
specification and to retrieve information of a variety of
kinds from the description of the SUD provided by the
user. Some of the special tools provided for these pur-
poses are 1) a means for querying the database and re-
trieving information from it; 2) an execut ion ability with
a simulation control language, allowing the user to emu-
late the SUD’s environment and execute the specifica-
tions, interactively or in batch or programmed mode, with
or without graphic animated response, and using break-
points if desired; 3) a set of dynamic tests, e.g., for reach-
ability and the detection of deadlock and nondeterminism,
which are based on exhaust ive executions; 4) an auto-
matic translation of the specification into a high-level pro-
gramming language, such as Ada or C, yielding code that
can be l inked to a real or simulated target environment.

STATEMATE has been under development and exten-
sion since early 1984, and has been commercially avail-
able since late 1987. The currently available versions run
on Sun, Apollo and Vax color’ workstations (or networks
of such). Many of the ideas and methods embodied in
STATEMATE have been field-tested successfully in a
number of large real-world development projects. among
which is the mission-specific avionics system for the Lavi

fighter aircraft des igned by the Israel Aircraft Industries,
which was specif ied in part using statecharts (see 141).
The reader is also referred to [191, a case study of using
STATEMATE, to [111, in which an application to pro-
cess model ing is described, and to the recent comparat ive
evaluation [22].

Ill. THE MODELING LANGUAGES OF STATEMATE
In this section we present the highlights of the three

graphical languages and the forms language that the user
of STATEMATE employs to specify the SUD. No formal
syntax or semantics are given here. neither are all of the
features presented. The reader is referred to [121 for a
more comprehensive description, and to [4], [141 for a
detailed treatment of the language of statecharts. The lan-
guages are descr ibed with the help of a simple example
of an early warning system (EWS in the sequel). which
has the ability to take measurements from an external sen-
sor, compare them to some prespecif ied upper and lower
limits, and warn the user when the measured value ex-
ceeds these limits.

The structural view of the SUD is descr ibed using the
language of module-charts, which descr ibe the SUD tnod-
ules (i.e., its physical components) , the environment
modules (i.e.. those parts that for the purpose of specifi-
cation are deemed to be external to the SUD), and the
clusters of data and/or control signals that may flow
among them. Modules are depicted as rectilinear shapes
and storage modules as rectangles with dashed sides. En-
capsulat ion is used to capture the submodule relationship.
Environment modules appear as dashed-l ine rectangles
external to that of the SUD itself. Information flow is rep-
resented by labeled arrows or hyperarrows.’ Various kinds

‘A hqperarrou ha3 more than two endpoint>

406 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL. 16. NO. 4. APRIL 1990

Fig. 3. Module-chart of the early warning system

of connectors can appear in these charts, both to abbre-
viate lengthy arrows and to denote compound chunks of
data.

Fig. 3 is (part of) the module-chart of our early wam-
ing system. It specifies in a self-explanatory fashion that
the modules, or subsystems, of the EWS are a main com-
ponent, a man-machine-interface (MMI), and a signal-
handler, and that the operator-terminal, sensor, timer,
and alarm are considered to be external to the system.
The MM1 is further decomposed into submodules, as
shown. There is also a storage module, by the name of
shared-data, and the information flowing between the
modules is specified as well.

Turning to conceptual modeling, the functional decom-
position of the SUD is captured by the language of activ-
ity-charts. Graphically, these are very similar to module-
charts, but here the rectilinear shapes stand for the activ-
ities, or the functions, carried out by the system. Solid
arrows represent the flow of data items and dashed arrows
capture the flow of control items.4 See Fig. 4. A typical
activity will accept input items and produce output items
during its active time-spans, its inner workings being
specified by its own lower level decomposition. Activities
that are atomic, or basic (i.e., they reside on the lowest
level) may be described as simple input/output transfor-
mations using other means, such as code in a high-level
programming language.

Activity-charts may contain two additional kinds of ob-
jects: data-stores and control activities. Data-stores can
be thought of as representing databases, data structures,
buffers, and variables of various kinds, or even physical
containers or reservoirs, and typically correspond to the
storage modules in the module-chart. They represent the
ability to store the data items that flow into them and to
produce those items as outputs upon request.

‘In displaying module-charta and activity-charts on the screen, we em-
ploy different conventions regarding color and arrow type. so that a user
can distinguish between them quite easily. Thus. for example. the arrows
in module-charts are drawn using rectilinear segments parallel to the axes.
whereas in activity-charts they are drawn using smooth spline functions.

r----t
1 oprrntor 1

terrr~iml fault-msg 1 1
--- J

fault~orr

1
r--1-1

alarm 1
L---J

C
I----,
I E3

I \ I
L---J

Fig. 4. An activity-chart

The control activities constitute the behavioral view of
the system and they appear in the activity-chart as empty
boxes only. A control activity may appear inside an ac-
tivity on any level, as shown in Fig. 4. The contents of
the control activities are described in the third of the
graphical languages, statecharts, which we discuss be-
low. In general, a control activity has the ability to control
its sibling activities by essentially sensing their status’ and
issuing commands to them. Thus, for example, in Fig. 4
the control activity St can, among other things, perform
actions that cause subactivities A, B, and D to start and
stop, and can sense whether those subactivities have
started or stopped by appropriate events and conditions.
Various consequences of such occurrences are integrated
into the semantics of the activity-charts language, such as
the fact that all subactivities stop (respectively, suspend)
upon the stopping (respectively, suspension) of the parent
activity.

We now turn to the behavioral view. Statecharts, which
were introduced in [4] (see also [5]), are an extension of
conventional finite-state machines (FSM’s) and their vi-
sual counterpart, state-transition diagrams. Conventional
state diagrams are inappropriate for the behavioral de-
scription of complex control, since they suffer from being
flat and unstructured, are inherently sequential in nature,
and give rise to an exponential blow-up in the number of
states (i.e., small extensions of a system cause unaccept-
able growth in the number of states to be considered).
These problems are overcome in statecharts by supporting

HAREL <‘I <il.. S- fAIE.MATE-COMPLEX RtACTlVti SYS’I EMS 307

the repeated decomposit ion of states into substates in an
AND/OR fashion, combined with an instantaneous
broadcast communicat ion mechanism. A rather important
facet of these extensions is the ability to have transitions
leave and enter states on any level.

Consider Fig. 5, in which (a) and (b) are equivalent. In
Fig. 5(b) states S and T have’been clustered into a new
state U so that to be in U is to be either in S or in T. The
f-arrow leaving U denotes a high-level interrupt, and has
the effect of prescribing an exit from U, i.e., from which-
ever of S or T the system happens to be in, to the new
state V. The h-arrow entering U would appear to be un-
derspecif ied, as it must cause entry to S or T; in fact, its
meaning relies on the internal default arrow at tached to
T, which causes entrance to T.

Turning to AND decomposit ion, consider Fig. 6, in
which, again, Fig. 6(a) and (b) are equivalent. Here, to
be in state U the system must be in both S and T. An
unspecif ied entrance to U relies on both default arrows to
enter the pair { I/, W }, from which an occurrence of e,
for example, would lead to the new pair {X, Y), and k
would lead to { I’, Z }. The meaning of the other transi-
t ions appear ing therein, including entrances and exits, can
be deduced by compar ing Fig. 6(a) and (b). It is worth
mentioning that this AND decomposit ion, into what we
call or thogonul state components, can be carried out on
any level of states and is therefore more convenient than
allowing only single-level sets of communicat ing FSM’s.
Orthogonali ty is the feature statecharts employ to solve
the state blow-up problem, by making it possible to de-
scribe independent and concurrent state components; see
[4], [5]. Also, or thogonal state decomposit ion eliminates
the need for multiple control activities within a single ac-
tivity, as is done, e.g., in [9], [21].

The general syntax of an expression labeling a transi-
tion in a statechart is

4CllP
where 01 is the event that tr iggers the transition, C is a
condit ion that guards the transition from being taken un-
less it is true when CY occurs, and fl is an action that is
carried out if, and precisely when, the transition is taken.
All of these are optional. Events and condit ions can be
considered as inputs, and actions as outputs, except that
here this cor respondence is more subtle than in ordinary
FSM’s, due to the intricate nature of the statecharts them-
selves and their relationship with the activities. For ex-
ample, if /3 appears as an action along some transition,
but it also appears as a triggering event of a transition in
some orthogonal component , then execut ing the action in
the first transition will immediately cause the second tran-
sition to be taken simultaneously. Moreover, in the
expression CY//~, rather than being simply a primitil’e ac-
tion that might cause other transitions, p can be the spe-
cial action start (A) that causes the activity A to start.
Similarly, rather than being simply an external, primitive
event, cx might be the special event stopped(B) that oc-
curs (and hence causes the transition to take place) when

(a) (b)
Fig. 5. OR-~ecompo\i l ion in il statechar?

(a) (b)
Fig. 6. AND~decomposit ion in a statechart

B stops or is stopped. Table I shows a selection of the
special events, condit ions, and actions that can appear as
part of the labels a long a transition. It should be noted
that the syntax is also closed under boolean combinations,
so that, for example, the following is a legal label:

entered(S) [in< T) and not active(C)]/

suspend(C); X := Y + 7

Notice that we have incorporated another extension of
the FSM approach- the use of conventional variables. The
changing of a value is now al lowed as an event, s tandard
compar isons are al lowed as condit ions, and assignment
statements are al lowed as actions.

Besides allowing actions to appear along transitions,
they can also appear associated with the entrance to or
exit from a state (any state, of course, on any level).’ This
associat ion is currently specif ied nongraphical ly, in the
forms language discussed below. Thus, if we associate
the action resume(A) with the entrance to state S, activ-
ity A will be resumed whenever S is entered.

Some of the special constructs appear ing in Table I thus
serve to link the control activities with the other objects
appear ing in an activity-chart, and, as such, are part of
the way behavior is associated with functionality and data-
flow. There are other facets to this association, one of
which is the ability to specify an activity A as taking place
throughout state (S), which is the same as saying that A
is started upon entering state S and is s topped upon leav-
ing it. This connect ion is also stated via forms.

The power to control and sense the status of activities
is limited by a scoping rule to the control activity appear-

he sxn to both Mcalj

408 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL. 16. NO. 4. APRIL 1990

Fig. 7. Activity-chart of the early warning system.

mands to the control activity; this is an informationjow,
which, via a form, is specified to consist of set-up, exe-
cute, and reset instructions. The operator can also send
the upper and lower required limits to the get-check
subactivity of set-up. These limits can be stored in the
data-store range, and can subsequently be used by the
compare and report-fault activities. (The item req-lim-
its is a compound data item, and stands for the pair con-
taining the required upper and lower limits.) A special
activity, get-measurements, can receive the signal from
the sensor and a clock reading from the timer, and trans-
lates these into a t ime-stamped digital value sample, which
can be sent to the comparing activity. If out of range, a
signal and value can be sent to the controller and the re-
port-fault activity, respectively. The latter is responsible
for sending out an alarm and formatting and sending the
user an appropriate message. The second level of Fig. 7
is self explanatory.

It is important to emphasize that Fig. 7 is not required
to provide dynamic, behavioral information about the
EWS; that is the role of the controlling statecharts. Fig.
8, for example, shows one possible statechart for the high-
level control activity of Fig. 7, i.e., EWS-control, and
the reader should be able to comprehend it quite easily.

The connections between activity-charts and statecharts
are rather intricate, resulting in a tightly knit conceptual
model. In contrast, the connections between this model
and the structural view are more strightforward. What we
have to do is to assign implementational responsibility for
each part of the former to appropriate parts of the latter.
This is done by associating modules with activities, and
storage modules with data stores. In our example, some
of these associations are that the MAIN module imple-
ments the EWS-control activity, SIGNAL-HANDLER

TABLE I
SOME SPECIAL EVENTS, CONDITIONS, AND ACTIONS

REFERRISG ‘TO El.ESTS COSDITIOSS 1 ACTIOSS

data items

D,F

condition C

rcnrl(D)

written(D)

hut(C)

f&?(C)

t

I
ing on the same level as the activities and flow in ques-
tion. Thus, in Fig. 4, for example, some of the events and
actions that can appear in the statechart S, are:6 st (A),
rs! (B) and wr! (d), but ones referring to, say, H and K,
such as st! (H), cannot, and would appear only in S,. This
scoping mechanism for hiding information is intended to
help in making specifications modular and amenable to
the kind of division of work that is required in large proj-
ects. The scoping rule can easily be overridden by explic-
itly-flowing events and actions, but we shall not get into
the details here.

Fig. 7 shows the activity-chart of the early warning sys-
tem. The user, via the operator terminal, can send com-

‘Here. and also in Fig. 8. we use abbreviations for the elements ap-
pearing in Table I. such as st instead of started, rs! instead of resume,
and tm instead of timeout. STATEMATE recognizes these abbreviations
too.

HAREL PI n/ STATEMA-I’E-COMPLEX RkACTIVE SI’STEhf.5’

_____- --------
readjng-signal

Fig. 8. Statechart for the high-level activity of the warning system

implements get-measurements and compare, and MM1
implements set-up and report-fault. Within the MM1 as-
sociation, the send-err subactivity is implemented by the
output-proc submodule and the other three by set-up-
main. The associations themselves are input in the forms
of the activities.

We now turn to the forms language itself. A special
form is maintained for each of the elements in the descrip-
tion, in which additional information can be input. This
includes details that are nongraphical in nature, such as
lengthy definitions of compound events and conditions,
or the type and structure of data items. Fig. 9 shows an
example of the form for a data item, in which most fields
are self-explanatory. The “Consists of” field therein
makes it possible to structure data items into components,
and the “Attribute” fields make it possible to associate
attributes with the items (e.g., units and precision for cer-
tain kinds of data-items, or the names of the personnel
responsible for the specification for certain high-level ele-
ments). The attributes are recognizable by the retrieval
tools of STATEMATE and are therefore able to play a
role in the evaluation and documentation of the model, as
we shall see later.

The color graphical editors for all three charts lan-
guages continuously check the input for syntactic sound-
ness, and the database is updated as graphical elements
are introduced. The editors are mouse- and menu-based,
and support a wide range of possibilities, including move,
copy, stretch, hide, reveal, and zoom options, all appli-
cable to single or multiple elements in the charts, that can
be selected in a number of ways. The form for a selected
element can be viewed and updated not only from the spe-
cial forms editor, but from the appropriate graphical edi-
tor as well.

Consists Of

(1

Attribute Name AttrIbute Value

Fig. 9. The form for 3 data Item.

Extensive consistency and completeness tests, as well
as more subtle sratic logic tests can be carried out during
a session. Examples include checking whether informa-
tion flow in the module-chart is consistent with that in the
activity-chart, listing modules that have no outputs, or ac-
tivities that are never started, and identifying cyclic defi-
nitions of nongraphical elements (e.g., events and con-
ditions).

IV. QUERIES. REPORTS, AND DOCUMENTS

In this section, we describe some of the tools that are
available for retrieving and formatting information from
the model.

STATEMATE provides a querying tool, the object list
generator, with which the user can retrieve information
from the database. It works by generating lists of ele-
ments that satisfy certain criteria. At all times it keeps a
pending list that gets modified as the user refines the cri-
teria or asks for a list of elements of another type. For
example, starting with an empty pending list, one can ask
for all states in the controlling statechart of activity A, and
the resulting list promptly becomes the new pending list.
This list might then be refined by asking for those states
therein that have an attribute named “responsibility-of”
whose value is “Jim Brown.” Then one might ask for
all activities that are started within any of those states,
and so on. This query language, on the face of it, might
appear to be bounded in its expressive power by that of
the conjunctive queries of [2]. However, since it actually
supports certain kinds of transitive closures (such as the
ancestor and descendent relationships between states or
activities), it is not directly comparable with the conjunc-
tive queries, and can be shown to be a subset of the more
general fixpoint queries (see [I]).

The charts that constitute the SUD’s description can be
plotted. The user can control the portion of the chart to
be plotted, as well as its size and depth. In addition, the
user can ask for several kinds of fixed-format reports that
are compiled directly from the description of the SUD in
the database, and which can be displayed on the worksta-

410 IEEE ‘IRANSACTIONS O N SOFTWARt ENGIKEERING. VOL 16. N O 1. APRIL IYYO

tion screen or output to an alphanumeric terminal or
printer. Each of these can be projected. so to speak, on
any part of the description that is retrievable by the query
language. In other words, the user may first use queries
to capture, say, a set of activities of particular interest.
and then request the report; it will be applied only to the
activities in the list. Among the reports currently imple-
mented are d&u dictionaries of various kinds, textual
prorocols of states or activities that contain all the infor-
mation relevant to them, interface diagrams, tree ver-
sions of various hierarchies, and so-called &“-diagrams
of [151. Using certain parameters, the user can control
various aspects of the reports produced, such as the depth
of the trees in the tree reports, and the keys by which the
dictionaries are to be sorted.

In addition to fixed-format reports, STATEMATE has
a document generation language with which users can tai-
lor their own documents. Programs can be written in this
language to produce documents with particular structure,
contents and appearance. One uses the language to design
a document template, containing formatting commands
for one’s desired word processor,’ interleaved with in-
structions to incorporate information from the model.
These instructions activate queries in the query language
to retrieve information, or routines to extract graphical
charts, and then format these according to the template.
A document generation program can therefore be pre-
pared once, in advance, and can then be run whenever the
document is needed. The templates for some particular
documents have been prepackaged, and are available
ready-made to the user. They include the main parts of
the US DOD Standards 2167 and 2167A. Programmed
documents too can be generated at any stage of the de-
velopment, and for the complete model or portions
thereof.

V. EXECUTIONS AND DYNAMIC ANALYSIS

We now turn to the analysis capabilities of STATE-
MATE, which constitute one of its main novelties. In [131
we have tried to set out the underlying philosophy in some
detail, emphasizing the analysis capabilities.

The heart of these is the ability to carry out a step of
the SUD’s dynamic behavior, with all the consequences
taken into account. A step, briefly, is one unit of dynamic
behavior, at the beginning and end of which the SUD is
in some legal status. A status captures the system’s cur-
rently active states and activities, the current values of
variables and conditions, etc. During a step, the environ-
ment activities can generate external events, change the
truth values of conditions, and update variables and other
data items. Given the potentially intricate form that a
STATEMATE description of the SUD might take on, such
changes can have a profound effect on the status, trigger-
ing transitions in statecharts, activating and deactivating
activities, modifying other data items, and so on. Clearly,
each of these changes, in turn, may cause many others.

‘Several standard word processors are supported

The portion of STATEMATE that is responsible for
calculating the effect of a step contains involved algo-
rithmic procedures, which reflect the formal semantics that
have been defined mathematically for the modeling lan-
guages. The particular semantics of statecharts that has
been adopted is described in [14], and is somewhat dif-
ferent from that described in (71, although on most stan-
dard examples the two are equivalent.

The most basic way of “running” the SUD is in a step-
by-step interactive fashion. At each step the user gener-
ates external events, changes conditions and carries out
other actions (such as changing the values of variables) at
will, thus emulating the environment of the system. All
of these are assumed to have occurred within a single step,
the most recent one. When the user then gives the “go”
command, STATEMATE responds by transforming the
SUD into the new resulting status. Typically, there will
be one or more statecharts on the screen while this is hap-
pening, and often also an activity-chart. The currently ac-
tive states and activities will be highlighted with special
coloring. *

This ability to run through dynamic scenarios has ob-
vious value as a debugging mechanism in the specification
stage. If we find that the system’s response is not as ex-
pected we go back to the model, change it (by modifying
a statechart, for example), and run the same scenario
again.

At times, however, we want to be able to see the model
executing noninteractively, and under circumstances that
we do not care to spell out in detail ourselves. We would
like to see it perform under random conditions, and in
both typical and less typical situations. This more pow-
erful notion of executing the model is achieved by the idea
of programmed executions. To that end, a specially tai-
lored simulation control language (SCL) has been de-
signed and incorporated into STATEMATE, enabling the
user to retain general control over how the executions pro-
ceed, yet exploit the tool to take over many of the details.

Programs in SCL look a little like conventional pro-
grams in a high-level language; they employ variables and
support several control structures that can be combined
and nested. They are used to control the simulation by
reading events and changes from previously prepared files,
and/or generating them using, say, random sampling from
a variety of probability distributions. Several kinds of
breakpoints can be incorporated into the program, caus-
ing the execution to stop and take certain actions when
particular situations come up. These actions can range
from incrementing counters (e.g., to accumulate statistics
about performance), through switching to interactive
mode (from which the user can return to the programmed
execution by a simple command), and all the way to ex-
ecuting a lengthy calculation constituting the inners of a
basic activity that was left unspecified when modeling the
SUD.

‘Actually. the .\yatem will highlIght only those state\ and activities that
are on the lowest level \ isible.

HARtL L', <I/.. STAl tMATE~COMPLEX RtACTlVE SYS.l tMS 311

Executions can thus be s topped and restarted, and in-
tervening changes can be made; the effects of events gen-
erated with prescr ibed probabilit ies can be checked, and
the computat ional parts of the SUD and its environment
can be emulated. Moreover, dur ing such simulated exe-
cutions a trace database is maintained, which records
changes made in the status of the SUD. The trace data-
base can later be reviewed, filed away, printed or dis-
carded, and, of course, is important for inspecting the ex-
ecution and its effects off-line. A variety of simulation
reports can be produced, in which parts of the information
are gathered as the execut ion proceeds, via instructions in
the SCL program, and other parts are taken from the trace
database after the execut ion ends. Moreover, we may view
the progress of a programmed execut ion graphically just
as in the interactive case; the same color codes are used
to continuously update the displayed charts. The result is
a visually pleasing discrete animation of the behavior of
the SUD.”

The part of the SUD that is simulated (in either inter-
active or p rogrammed mode) can be restricted in scope.
For example, one can simulate an activity and its inners,
and the rest of the STATEMATE specification is consid-
ered to be nonexistent for the durat ion of that simulation.
Moreover, there is no need to wait until the entire SUD
is specif ied before initiating execut ions and simulations;
a user can start simulating, or running, a description from
the moment the port ion that is available is syntactically
intact (and this can be checked by the static tests). In the
simulation the user will typically provide those events and
other items of information that are external to the speci-
fied portion, even though later they might become internal
to the complete specification.

In general, then, a carefully prepared SCL program can
be used to test the specification of the SUD under a wide
range of test data, to emulate both the environment and
the as-of-yet unspecif ied parts of the SUD, to check the
specification for time-critical per formance and efficiency,
and, in general, to debug it and identify subtle run-time
errors. Needless to say, the kinds of errors and miscon-
ceptions that can be discovered in this way are quite dif-
ferent from the syntactic completeness and consistency
checks that form the highlights of most of the other avail-
able tools for system design, and which STATEMATE
carries out routinely.

It is important to keep in mind that the role of the SCL
programs is to oversee the execut ion of the model; they
are not intended to replace it. Thus, SCL is not a mod-
eling language but a meta- language that serves as a ve-
hicle for some of our analysis capabilities. It should not
be compared with simulation languages in the sense that
term is often used, where the programs themselves con-
stitute the model.

Now, since STATEMATE can fully execute steps of
dynamic behavior, and since SCL programs can be writ-

“There are
example. 131

auppol l

ten to control the execut ion of many scenarios, it becomes
tempting to provide the ability to execute all scenarios-
as long as the number of possibilities is manageable- in
order to test for crucial dynamic properties. STATE-
MATE has been programmed to provide a number of these
dynamic tests, all of which proceed essentially by carry-
ing out exhaustive, brute-force, sets of executions. They
include reachability, nondeterminism, deudlock, and
usage of transitions. For the first of these, given an ini-
tial configuration and a target condition, the test seeks se-
quences of external events and other occurrences that lead
from the initial status to one that satisfies the condition,
producing these sequences if they exist and stating that
there are none otherwise. It is important to stress that this
is run-time, dynamic, reachability, not merely a test for
whether two boxes in some diagram are connected by ar-
rows. The same applies to the other dynamic tests too.

One must realize, however, that even if we limit the
values of variables to finite sets, the number of scenarios
that have to be tested in an exhaust ive execut ion quickly
becomes unmanageable. This means that unless the por-
tion of the model that we are testing is sufficiently small
and has only a few external connect ions, we will not al-
ways be able to complete our exhaust ive test. Indeed,
these dynamic tests should be used only on very critical,
well isolated parts of our model. W h e n larger parts re-
quire exhaust ive testing, we may limit the scope of the
test by instructing it, for example, to ignore some of the
external events, or to avoid simulating the details of cer-
tain activities. W e have used the reachability test suc-
cessfully on a number of occasions. In one real-world sit-
uation, when analyzing part of the specification of the
trigger mechanism in a certain deployed missile system,
our reachability test d iscovered a new sequence of events
(that was unknown to the design team!) leading to the
firing of a missile.

The reachability test can be used in a more sophisti-
cated way, by attaching watchdog statecharts to the model
being tested. Thus, we can test whether it is possible to
reach situations of temporal, dynamic nature, by adding
a watchdog statechart that enters a special state S when
the situation in case arises. A reachability test is then run
on the original statechart with the new one added as an
orthogonal component , and the condit ion being sought for
is specif ied to be in (S).

An additional feature that is p lanned for a future ver-
sion is the ability to verify a STATEMATE specification
against a formula in temporal logic.

VI. CODE-GENERATION AND RAPID PROTOTYPING

Once a model of the SUD has been constructed, and
has been executed and analyzed to the satisfaction of the
designer, STATEMATE can be instructed to translate it
automatically into code in a high-level programming lan-
guage. This is analogous to the compilation of a program
in a high-level language, whereas the executability of the
model is analogous to its interpretation. Currently, trans-

412 1EF.F. TRANSACTlONS O N SOFTWARE ENGINEERING. VOL. 16. NO. 1. APRIL IWO

lations into Ada and C are supported. Technically, any
activity-chart (together with its controlling statecharts) can
be translated. which, again, means that one need not wait
until the entire model is ready but can produce code from
portions thereof. If code was supplied by the bottom-level
basic activities, it can be appropriately linked to the gen-
erated code, resulting in a complete running version of
the system.

We term the result protorxpe code, since it is generated
automatically, and reflects only those design decisions
made in the process of preparing the conceptual model. It
may thus not be as efficient as final real-time code, though
it runs much faster than the executions of the model itself,
just as compiled code runs faster than interpreted code.
Future plans call for enhancing the code generator with
the ability to incorporate decisions made interactively by
the human designer, as well as with various further opti-
mization features. We might add that an interesting way
to further exploit STATEMATE for analyzing the model
is to construct special statechatts, which are not part of
the model itself, and whose role is to test the model. Of
course, for these test suites (and also for the watchdog
statecharts described earlier) the output from the code-
generation is actually final code.

One of the main uses of the prototype code is in ob-
serving the SUD performing in circumstances that are
close to its final environment. The code can be ported and
executed in the actual target environment, or-as is more
realistic in most cases-in a simulated version of the tar-
get environment. Often we have linked the prototype code
with “soft” panels, graphical mock-ups of control panels,
dials, gauges, etc.. that represent the actual user interface
of the final system. These panels appear on the screen and
are manipulated with the mouse and keyboard. Unlike
conventional prototypes of such systems, however, here
the soft panels are not driven by hastily-written code pre-
pared especially for the prototype, but by code generated
automatically from the STATEMATE model, which typ-
ically will have been thoroughly tested and analyzed be-
fore being subjected to code-generation. The idea is to use
this feature for goals that go beyond the development
team. We envision mock-ups of the SUD driven by our
prototype code being used as part of the communication
between customer and contractor or contractor and sub-
contractor. It is not unreasonable to require such a run-
ning version of the system to be one of the deliverables
in certain development stages, such as the preliminary de-
sign review.

Associated with the code-generation facility is a debug-
ging mechanism, with which the user can trace the exe-
cuting parts of the code back up to the STATEMATE
model. Breakpoints can be inserted to stop the run of the
code when chosen events occur, at which point one may
examine the model’s configuration (states. activities, etc.)
and modify elements (conditions, data-items, etc.), prior
to resuming the run. Of course, if substantial problems
arise in the running of the code, changes can be made in
the STATEMATE model itself, which is then recompiled
down into Ada or C, and rerun. As in simulations, trace

files can be requested. in which the changes in desired
elements can be recorded. Continuing the analogy be-
tween conventional compilation and our generation of
code from a STATEMATE model, this debugging facility
might be termed source-level debugging.

Finally, the code-generation facility can be used for
bringing the model gradually closer to a final software
implementation. This is done by incremenfal subsrirurion,
whereby increasingly larger parts of the system are re-
placed by code, the process being interleaved with the
making of design decisions. This procedure, which we
hope to discuss more fully in a subsequent paper, is dif-
ferent from conventional integration in that the medium
is changed (from conceptual model to code) as the inte-
gration is being carried out. As a consequence, there is a
need for testing and validation in intermediate steps,
much of which can be carried out in STATEMATE.

In the future, we plan to enrich the code-generator with
the ability to yield VHDL code. This will enable hard-
ware designers to use STATEMATE not only for the
specification and early design stages, but also for the later
stages. Silicon compilation would then be carried out from
code that is generated automatically from a STATE-
MATE specification.

VII. CONCLUSIONS

In conclusion, we might say that the STATEMATE
system combines two principles, or theses, that we feel
should guide future attempts to design support tools for
system development. The first is the long-advocated need
for executable speci$cations, and the second is the advan-
tage of using visual ,formalisms.

As far as the first of these goes, the development of
complex systems must not be allowed to progress from
untested requirements or specifications. Rather, ways
should be found to model the SUD on any desired level
of detail in a manner that is fully executable and analyz-
able, and which allows for deep and comprehensive test-
ing and debugging, of both static and dynamic nature,
prior to, and in the process of, building the system itself.
We might add that the dynamic analysis capabilities of
STATEMATE go far beyond what is normally taken as
the meaning of the term executable specification, i.e., the
simple ability to animate a diagram in a step-by-step fash-
ion.

As to the second principle, we believe that visual for-
malisms will turn out to be a crucial ingredient in the con-
tinuous search for more natural and powerful ways to ex-
ploit computers. It is our feeling that the progress made
in graphical hardware, combined with the capabilities of
the human visual system, will result in a significant change
in the way we carry out many of our complex engineering
activities. The surviving approaches will be, we believe,
of diagrammatic nature, yet will be formal and rigorous,
in both syntax and semantics.

ACKNOWLEDGMENT

We would like to thank J. Lavi and his group at the
Israel Aircraft Industries for their suggestions, their time,

HAREL <'I II/- STATEMATE-COMPLEX REACTIVE SYSTEMS

and their constructive criticism during the lengthy period
in which the STATEMATE system was being developed.
In a way, this project would not have gotten started had
Dr. Lavi not lured the first-listed author into consult ing
for IA1 in early 1983. This action led to the invention of
statecharts in mid-1983, and to the decision to form Ad-
Cad Ltd. and to start work on STATEMATE in early
1984.

W e are grateful to all the technical staff members of Ad-
Cad Ltd., past and present, who were indispensible in
turning the ideas descr ibed here into a real working sys-
tem. They include R. Arnan, E. Bahat, S. Barzilai, A.
Bernstein, M. Cohen, R. Cohen, D. Falkon, A. Farjou,
N. Fogel, L. Gambom, E. Get-y, 0. Hay, R. Heiman, M.
Hirsch, R. Kazmirski, D. Levin, H. Libreich, R. Livne,
A. Maimon, L. Maron, Y. Partosh, S. Pnueli, Y. Pnueli,
A. Polyack, J. Prozan-Schmidt, Y. Rubinfain, A. Sarig,
R. Shaprio, A. Sharabi, I. Shimshoni, M. Trachtman, Y.
Yochai, and B. Yudowitz. In addition, I. Lachover de-
serves special thanks for being the most pleasant manager
imaginable, contributing his exper ience and expert ise to
all phases of the work.

W e would like to thank the Bird Foundat ion, and the
office of the chief scientist of Israel’s Ministry of Industry
and Commerce for financial help. One of the referees pro-
v ided many helpful comments on the penult imate version
of this paper.

REFERENCES

III

121

I31

141

I51

I61

I71

A. K. Chandra and D. Harel. “Structure and Complexity of Rela-
tional Queries.” J. Compur. Syst. SC,/., vol. 25. pp. 99-128. 1982.
A. K. Chandra and P. Merlin. “Optimal implementat ion of conjunc-
tive queries in relational databases,” in Proc. 9rh ACM Swap. Theor)
ofCompurin,y. Boulder, CO. 1977, pp. 77-90.
M. Graf. “Building a visual designer’s environment,” in Principles
of Visutrl Progrmnrning S~src~n~, S.-K. Chang. Ed. Englewood
Cliffs, NJ: Prentice-Hail. 1990. pp. 291-325.
D. Harel. “Statecharts: A visual formalism for complex systems,”
Sci. Cwtput. Pro~rcm.. vol. 8. pp. 23 l-274, 1987 (appeared in pre-
liminary form as Rep. CS84-05, Weizmann Inst. Sci.. Rehovot. Is-
rael, Feb. 1984).
-. “On visual formalisms,” Cormnur~. ACM. vol. 3 I. no. 5. pp.
514-530, 1980.
D. Hare1 and A. Pnueli. “On the development of reactive systems,”
in Logic.\ crud Mode/s of Concurrent Sv.\fc~ris, K. R. Apt. Ed. New
York: Springer-Verlag. 1985. pp. 477-498.
D. Harrl. A. Pnueli. J. P. Schmidt. and R Sherman. “On the formal
semantics of statecharts.” in Proc. 2t1d 1EEE Swzp. Logic in Corn-
purer Science. New York: IEEE Press. 1987. pp. 54-64.
D. J. Hatley, “A structured analysis method for real-time systems,”
in Proc. DECUS Sump. . Dec. 1985.
D. J. Hatley and I: Pirbhai. Srrcrtegiwfor &w/-Time S~.~fm .SJJP+
ccrrim. New York: Dorset. 1987.
J. E. Hopcroft and J. D. Ullman. It,rroducrioti 10 Aurotwttr Thwry.
Ltrn’qu~r.\ , and Compurcrfiorr. Reading, MA: Addison-Wesley.
1979.
W. S. Humphrey and M. I. Kellner. “Software process model ing:
Principles of entity process models.” in Proc. llrh Int. Cmf: Soft-
ilnrc Otg., Pittsburgh. PA. New York: IEEE Press. 1989. pp. 331-
342.
“The languages of STATEMATE.” i-Logix Inc.. Burlington, MA.
Tech. Rep.. 1987.
“The STATEMATE approach to complex systems.” i-Logix Inc.,
Burlington. MA. Tech. Rep.. 1989.
“The semantics of statecharts,” i-Logix Inc.. Burlington. MA, Tech.
Rep.. 1989.
R. J. Lana, A Technique for Soji l%nre md Sysrems Design (TRW
Srrie.5 on Sofnvora Engineering), Amsterdam. The Netherlands:
North-Holland. 1979.

413

116) J. Z. Lavi and E. Kessler. “An embedded computer systems analyst\
method.” Manuscript. Israel Aircraft Induatrtes. Nov. 1986.

1171 J. 7.. Lavi and M. Winokur. “ECSAM-A method for the analysis
of complex embedded systems and their software.” in Proc. Srru(
turrcl Tech~~ique,s A.woc. Cwr,/: STAS. Univ. Chicago. Chicago. IL.
May 1989. pp. 50-63.

118) A. Pnueli, “Applications of temporal logic to the spectlication and
verification of reactive systems: A survey of current trends.” in Car-
rent Trmds in Concurrrnc~ (Lecrure Notes it? Compurer Scirnw. vol.
224). de Bakker cr LI/. . Eds. Berlin: Springer-Verlag. 1986. pp. 5 I@
584.

1191 S. L. Smith and S. L. Gerhart. “STATEMATE and cruise control:
A case2 study.” in Proc. COMPAC ‘88, 12th Int. IEEE Comput. Soft-
wcrrr und Applicot. Cmf. New York: IEEE Press, 1988. pp. 49-
56.

1201 P. Ward, “The transformatton schema: An extension of the data How
diagram to represent control and timing.” IEEE Trcrm. SO$IIUI-O En,y. .
vol. SE-12. pp. 198-210. 1986.

[2 I] P. Ward and S. Mellor. Strucrurcd De~~loprm~nr fbr Recrl-Tirm SJ.\-
rewis. New York: Yourdon. 1985.

[22] D. P. W o o d and W. G. Wood, “Comparat ive evaluations of four
specification methods for real-time systems,” Software Eng. Inst..
Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU/SEI-89.
TR-36, Dec. 1989.

David Hare1 (M’84) received the B.Sc. degree in
mathematics from Bar-Ban University in 1974, the
M.Sc. degree in computer science from Tel-Aviv
University in 1976. and the Ph.D. degree in com-
puter science from the Massachusetts Institute of
Technology in 1978.

He is currently a Professor at the Weizmann
Institute of Science in Israel, and Chairman of its
Department of Appl ied Mathematics and Com-
puter Science. He is also a co-founder and Chtef
Scientist of i-Logix. Inc.. Burlington, MA. He has

been on the research staff of IBM’s Research Center at Yorktown Heights,
NY, and a Visiting Professor at Carnegie-Mellon University’s Department
of Computer Science. His research interests include logics of programs.
computabil i ty theory, systems engineering, and visual languages, topics in
which he has publ ished widely. He is on the editorial boards of Information
and Compurarion and the ACM-Press/Addison-Wesley book series. His
most recent book, The Science of Computing: Exploring rhe Nuture und
Power ofAlgorithms, was publ ished by Addison-Wesley in 1989.

Dr. Hare1 is a member of the Association for Comput ing Machinery and
the IEEE Computer Society.

Hagi Lachover received the B.Sc. degree tn ap-
plied mathematics from Tel-Aviv University in
1967.

In previous positions. he developed operating
systems at the Weizmann Institute of Science and
was Vice President for product development at
Mini Systems, Ltd.. a company that developed the
software for Scitex, Inc., Herzelia, Israel. He is a
co-founder and Vice President for Operations at
Ad Cad, Ltd., the R&D subsidiary of i-Logix,
Inc., Burlington, MA.

Amnon Naamad received the B.Sc. degree in
mathematics and the M.Sc. degree in computer
science from Tel-Aviv University in 1976 and
1979, respectively, and the Ph.D. degree in com-
puter science from Northwestern University in
1981.

He is currently a Project Leader at Ad Cad.
Ltd.. the R&D subsidiary of i-Logix. Inc.. Bur-
l ington, MA. He was responsible for the devel-
opment of the simulation and dynamic analysis
tools of the STATEMATE system, and is cur-

rently developing a translator from STATEMATE descriptions into hard-
ware specification languages such as VHDL.

414 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL. 16. NO. 4. APRIL 1990

Amir Pnueli received the Ph.D. degree in applied Aharon Shtull-Trauring received the B.A. de-
mathematics from the Weizmann Institute of Sci- gree in urban studies from Columbia University
ence. Rehovot. Israel. in 1967. in 1975, and the M.Sc. degree in public manage-

He is currently a Professor of Computer Sci- ment from Carnegie-Mellon University in 1979.
ence at the Weizmann Institute of Science. He is For many years he worked in software devel-
also a co-founder and Chief Scientist of i-Logix. opment, particularly of database systems. From
Inc.. Burlington, MA. He has been a Chief Sci- 1984 to 1988 he was one of the project leaders at
entist at Mini Systems, Ltd., and a Visiting Pro- Ad Cad. Ltd., the R&D subsidiary of i-Logix.
fessor at the Departments of Computer Science of Inc., Burlington. MA, where he was responsible
Stanford University, Harvard University, and for the database and systems aspects of the
Brandeis University. His research interests m- STATEMATE system. He is now involved in the

elude specification and verification of reactive systems, with a special em- international marketing of STATEMATE.
phasis on temporal logic, which he introduced into computer science in
1977. He has published widely on these topics. He is on the editorial boards
of Scirnce ofCompurrr Programrnirt~ and Springer-Verlag’s Lecture Notes
in Computer Science series.

Dr. Pnueli is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Michal Politi received the B.Sc. degree in math-
ematics and physics from the Hebrew University
in 1969. and the M.Sc. degree in computer sci-
ence from the Weizmann Institute of Science.

She has had many years of experience in de-
veloping complex real-time systems in various
places. Since 1986 she has been Product Manager
for the STATEMATE system at Ad Cad, Ltd., the
R&D subsidiary of i-Logix, Inc., Burlington, MA.
Her interests are in methods and languages for the
specification and design of real-time systems.

Rivi Sherman received the B.Sc. degree in math-
ematics from Tel-Aviv Universitv in 1974, and the
M.Sc. degree and Ph.D. degrees in computer sci-
ence from the Weizmann Institute of Science in
1978 and 1984. respectively.

Mark Trakhtenbrot received the M.Sc. degree
in computer science from the University of No-
vosibirsk in 1971, and the Ph.D. degree from the
Kiev Institute of Cybernetics in 1978.

She is currently on the technical staff of Orbot.
Inc.. Yavne, Israel, and has spent three years as
a researcher at the University of Southern Cali-
fornia/Information Sciences Institute in Los An-
geles. She was the first project leader at Ad Cad,
Ltd., the R&D subsidiary of i-Logix, Inc.. Bur-

He has been a Project Manager at Mayda. Ltd..
Rehovot, Israel. developing and implementing an
Ada-based PDL. He is currently a project leader
at Ad-Cad. Ltd., the R&D subsidiary of i-Logix.
Inc., Burlington. MA. where he was responsible
for the development of the prototyping and code-
generation capabilities of STATEMATE. His in-

lington, MA, from 1984 to 1986, and was responsible for the development terests are in methodologies and tools for software and systems engineer-
of the first version of the STATEMATE system. ing.

