
Verifying Properties of Process Definitions

Jamieson M. Cobleigh, Lori A. Clarke, Leon J. Osterweil
Laboratory for Advanced Software Engineering Research

Department of Computer Science
University of Massachusetts at Amherst

Amherst, MA 01003-6410
+1 413 545 2013

fjcobleig, clarke, ljog@cs.umass.edu

Abstract

It seems imperative that the complex processes that syner-
gize humans and computers to solve widening classes of
societal problems be subjected to rigorous analysis. One
approach is to use a process definition language to spec-
ify these processes and to then use analysis techniques to
evaluate these definitions for important correctness proper-
ties. Because humans demand flexibility in their participa-
tion in complex processes, process definition languages must
incorporate complicated control structures, such as various
concurrency, choice, reactive control, and exception mecha-
nisms. Well-designed process languages provide powerful
abstractions for concise and precise specification of such
control, but balance this with visualization support to help
users also obtain intuitive insights. The underlying complex-
ity of these control abstractions, however, often confounds
these intuitions as well as complicates any analysis.

Thus, the control abstraction complexity in process def-
inition languages presents analysis challenges beyond those
posed by traditional programming languages. This paper ex-
plores some of the difficulties of analyzing process defini-
tions. Specifically, we explore issues arising when applying
the FLAVERS finite state verification system to processes
written in the Little-JIL process definition language and il-
lustrate these issues using a realistic ecommerce auction ex-
ample. Although we employ a particular process definition
language and analysis technique, our results seem more gen-
erally applicable.

Keywords

Process, Formal Methods, Dataflow Analysis, Verifica-
tion, Auctions, ecommerce

1 Introduction

Processes are pervasive in areas of human and computer
interaction, including software engineering processes [11],
data mining tasks [10], and work flow models [7]. With the
growth of the internet, for example, the role of processes in
ecommerce activities, such as auctions, supply chain man-
agement, and on-line ordering, has become very prevalent
[12, 13, 20]. At the same time, societal vulnerability to poor
quality in these processes has become worrisome. Thus, we
advocate rigorous analysis of process definitions to demon-
strate that they are free from faults that could lead to serious
failures.

In earlier work it has been suggested that processes are
a particular kind of software [19], and that they should be
developed, verified, and evolved using approaches that are
analogous to those used for application software. In ear-
lier work it has also been suggested that static analysis ap-
proaches are effective in helping to reason about software
systems. In this paper, we demonstrate the applicability and
benefits, as well as some of the research challenges, associ-
ated with applying finite state verification to process defini-
tions. Although we continue to be convinced that software
processes are software too, we argue that process software
has characteristics that tend to differentiate it from most con-
ventional application software in ways that complicate static
analysis. Thus, while the need for analysis remains strong,
the complications in doing so are noteworthy.

Ongoing process research suggests that graphical process
models are useful in raising human awareness and intuition
about process characteristics. Unsurprisingly, the most ef-
fective models incorporate high-level abstractions that sup-
port concise, generally visual, representation of common

process notions. While intuitively appealing, we have found
that such process models often entail subtleties that lead to
error-prone process definitions.

We have developed a visual language, Little-JIL, that
provides a range of process abstractions that have proven
to be effective for describing human and computer interac-
tion. We have also developed an interpreter that supports
execution of Little-JIL processes. Our experience suggests
the need for technology to reason about such process defi-
nitions, to assure that their executions conform to important
desired characteristics.

In this paper we describe how FLAVERS, a finite state
verification system, has been used to verify properties of
processes that have been defined using Little-JIL. The paper
demonstrates that process abstractions can be quite effective
in supporting precise and concise process definitions, but the
underlying semantic complexity poses challenges for static
analysis. Our work addresses those challenges, and, in do-
ing so, provides experience that should be of importance for
future research in both finite state verification and in pro-
cess language design. Although we present an example in
terms of a particular process definition language and a partic-
ular analysis technique, we contend that the insights gained
are also applicable to other process definition languages and
other static analysis techniques.

In the next section we describe a subset of Little-JIL.
This subset is chosen so that the reader can follow the ex-
ample and the ensuing discussion about analysis of Little-
JIL process definitions. In section 3 we describe an auction
process and present a Little-JIL process definition for it. In
section 4 we provide a brief overview of FLAVERS. Like all
automated verification systems, FLAVERS must create an
accurate model of the computation upon which to base the
analysis. FLAVERS builds its model from annotated control
flow graph models of the artifacts being analyzed. Section
5 describes the control flow graph model needed to support
the Little-JIL constructs. In section 6 we present the results
of verifying several properties of the auction example. Sec-
tion 7 describes how our work builds upon current trends in
process languages and software analysis. In the conclusion,
we discuss the implication of this work and potential future
directions of investigation.

2 Little-JIL

Little-JIL is an expressive process definition language that
uses a graphical notation that helps users quickly grasp the
meanings of process definitions. It also has well defined for-
mal semantics that allow Little-JIL definitions to be executed
and analyzed. A Little-JIL process definition describes the
coordination of activities of agents, where anagentis an en-
tity, either human or computer, that can be assigned work to
do. In Little-JIL, stepsrepresent work that can be assigned
to an agent.

Reactions Badge

StepName

Handlers Badge

Post-requisite Badge

Interface Badge

Sequencing Badge

Step Bar

Pre-requisite Badge

Figure 1: A Little-JIL step

Posted

Retracted

Terminated

Started

Completed

Figure 2: Execution of a Little-JIL step

Steps:
Each step in a Little-JIL definition is represented by a step
icon as shown in Figure 1. Each step is given a unique name
and has a set of badges that represent key information about
the step, including the step’s control flow, the exceptions the
step handles, the parameters needed by the step, and the re-
sources needed to execute the step. Each step can only be
declared once in a Little-JIL definition, but a step can be
referenced many times in the process definition. These ad-
ditional references are depicted by a step with its name in
italics and no badges.

Step Execution:
The execution semantics of a Little-JIL step are defined by a
finite state machine, whose behavior can be summarized by
five states: posted, retracted, started, completed, and termi-
nated. Figure 2 shows the normal flow of control for a Little-
JIL step. The step’s execution can end when it is in any of
the three states that have an arrow pointing to the filled cir-
cle. A step is moved into the posted state when it is eligible
to be started. A step is moved into the started state when
the step’s agent begins executing the step. When the work
specified by a step is successfully finished, the step moves to
the completed state. When the step cannot be successfully
completed, it moves to the terminated state. A step is put
into the retracted state if it had been posted, but not started,
and is no longer eligible to be started.

2

Sequencing Badges:
A Little-JIL process is represented by a tree structure where
children of a step are the substeps that need to be done to
complete that step. The parent-child relation is depicted
by a line between the child and parent’s sequencing badge.
All non-leaf steps must have a sequencing badge, which de-
scribes the order in which the substeps are performed. Our
experience to date indicates that four different substep se-
quencings are needed for the concise, yet clear definition of
processes. They are shown in the key in Figure 3

A sequential stepindicates that its substeps are to be per-
formed one at a time, from left to right. Aparallel step
indicates that its substeps can be done concurrently, and that
the step is completed if and only if all of its substeps have
completed. Achoice stepindicates that a step’s agent must
make a choice among any of its substeps. All of the substeps
are available to be performed, but only one can be selected
at a time. If a selected substep completes, then the choice
step completes. Atry stepattempts to perform its substeps
in order, from left to right, until one of them completes. If a
substep terminates, then the next substep is tried.

Requisites:
Process definitions seems to benefit substantially from the
attachment of pre- and post-requisites to steps. These con-
structs are natural vehicles for measuring and monitoring
agent performance of steps, and support the retention of pro-
cess control, while still granting substantial agent latitude
and initiative in step performance. Thus, a step in Little-JIL
can have pre- and post-requisites. Apre-requisiteis per-
formed after a step starts, but before the work of the step
can be initiated. Apost-requisitehas to be done before a
step can complete. A failure of a requisite for a step throws
an exception that is handled by the matching handler at the
step’s nearest ancestor. This failure terminates the step with
the requisite.

Exception Handling:
There is considerable evidence that processes have extensive
and complex exception structure. Thus, steps in Little-JIL
can throw exceptions, which are caught by the nearest ances-
tor having a matching handler, as indicated by the ancestor’s
handler badge. To concisely represent complex exception
handling, Little-JIL enables handlers to be steps, they may
have a full hierarchical structure. Our experience also in-
dicates that concise and articulate expression of process ex-
ceptional flow is facilitated by the attachment of any of four
different kinds of handler control-flow badges that indicates
how the step catching the exception should proceed after the
handler completes. These are shown in the key of Figure 3.

When a handler with arestartbadge completes, the step
catching the exception is restarted. When a handler with
a continuebadge completes, the step catching the excep-
tion continues as if the substep that generated the excep-

tion completed normally. When a handler with acomplete
badge completes, the step catching the exception moves into
the completed state. When a handler with arethrow badge
completes, the step catching the exception terminates and
rethrows the exception up to its parent. Some handlers may
consist only of a badge, but no step structure.

Interface Badges:
Artifact flow and resource specification have both been
found to be absolutely essential to the articulate and pre-
cise definition of realistic processes. In Little-JIL interface
badges are used to declare what parameters a step has, what
exceptions it throws, and what resources it needs. Param-
eters declared in a Little-JIL step have a name, type, and
mode. The name is used to identify the parameter and the
type declares what type of object the parameter is. Little-JIL
uses copy-in/copy-out semantics for parameter passing and
a parameter may have one of four modes. Anin parameter,
denoted by a down arrow, is passed from the parent and its
value should be copied when the step starts. Anout param-
eter, denoted by an up arrow, is passed to the parent, which
must copy the value when the step completes. Anin-out pa-
rameter, denoted by an up-down arrow, indicates the value
of the parameter should be copied in when the step starts and
copied out when the step completes. Alocal parameter, in-
dicated by a diamond, is created by a step to allow passing
of parameters between that step and its descendants.

A full description of Little-JIL can be found in [21].

3 Motivating Example

The utility of these constructs can perhaps be seen best
through an example. Thus, this section demonstrates the use
of Little-JIL to define an auction, a process that is gaining
increasing prevalence in ecommerce. In an auction process
a buyer and seller reach an agreement about an acceptable
price for an item. The process is supervised and controlled
by a third party, the auctioneer. Of the wide variety of differ-
ent types of auctions [6, 15], perhaps the most familiar is the
Open-Cry Auction, in which a group of people, the bidders,
attempt to obtain an item offered for sale by a seller through
a real time, interactive process. In the most common type
of Open-Cry Auction, the English Auction, bidding starts at
a low price and the price is increased as bidders offer suc-
cessively higher prices. The auction closes when one bidder
has offered a price that is higher than what any other bidder
is willing to offer. At this time, the high bidder is awarded
the item and has to pay the amount bid. With online auc-
tions the auctioneer is not a person but a program and the
bidders are distributed across a network. At present bidders
are usually humans, but it is expected that bidding will in-
creasingly be carried out by automated agents. Thus, auc-
tions will be carried out in a more rapid fashion, and with
decreasing amounts of human interaction and scrutiny. For

3

Continue

Rethrow

Restart

Complete

Sequential

Parallel

Choice

Try

Accept Bids From Bidder

Submit Bid
BidIsHigher

Update Best Bid

BidIsBetter

Accept One Bid

AuctionClosed
BidNotHigher
BidNotBetter
DeadlineExpired

Accept Bids From Bidder
AuctionNotClosed

Accept One Bid

Open-Cry Auction

NoMoreBidders

Close Auction

NoMoreBidders
AuctionClosed

Sequencing Badges:

Handler Control-Flow Badges:

deadline: Duration=1m

Figure 3: Open-Cry Auction Process

these reasons, having some way to ensure that the activities
of the auctioneer and bidders proceed in expected ways is
important.

Many different properties of an Open-Cry Auction
should be verified. For example, no bids should be accepted
after an auction has been closed. It is also important to verify
that the auctioneer considers all bids that are submitted and
that the person submitting the highest bid is actually awarded
the item and at the highest bid price. If parts of the auction-
eer’s role are carried out by a computer, then it is important
to check to ensure that the computer software cannot dead-
lock and does not have any undesirable race conditions.

While it may be possible to verify these properties by the
direct analysis of the code used to implement such an auc-
tion, the experience of software engineering confirms that
analysis of an accurate higher level representation gener-
ally offers advantages of scalability and early fault detec-
tion. A Little-JIL definition is just such a higher level rep-
resentation, and it offers the additional advantage of being
supported by an interpreter to assure that process execution
obeys the same semantics used to verify desirable properties.
Little-JIL has many features that make it effective for defin-
ing auction processes [3], inviting exploration of the feasi-
bility of verifying properties of such definitions. Figure 3
shows a simplified version of an Open-Cry Auction written
in Little-JIL.

At a high level, this process is very straightforward, be-

ing decomposed into two parallel steps, “Close Auction” and
“Accept Bids From Bidder”. Little-JIL has no direct looping
construct, and instead provides support for recursion. Thus,
one “Accept Bids From Bidder” step is created for each bid-
der. Each bidder is handed off to an “Accept One Bid” step,
which is responsible for handling all bids made by a sin-
gle bidder. Because all of these “Accept One Bid” steps
can happen in parallel, multiple bidders can be submitting
bids simultaneously. All of this bidding happens in paral-
lel with the “Close Auction” step, which the auctioneer per-
forms when it is time to close the auction (presumably after
the auction has been open for a fixed amount of time or after
no bids have been submitted for a while).

For a bid to be accepted in the auction, the bidder must
first submit the bid and then the auctioneer must examine
the bid to determine if it is higher than the best bid sub-
mitted so far. Then, the bidder can submit another bid for
consideration. The “Accept One Bid” step in Figure 3 rep-
resents this process for a single bidder. When “Accept One
Bid” is started, it first executes a pre-requisite, “AuctionNot-
Closed” to assure that the bidder cannot submit a bid after
the auctioneer has executed the “Close Auction” step. If the
pre-requisite completes, then “Submit Bid” is posted for the
bidder to execute. If the bidder submits a bid, then a post-
requisite, “BidIsHigher” is executed. This requisite ensures
that the bid submitted is higher than the bidder’s previous
bids. If this post-requisite fails, then a “BidNotHigher” ex-

4

ception is generated. This exception is handled by “Accept
One Bid”, which has a restart handler causing “Accept One
Bid” to restart, giving the bidder a chance to submit a valid
bid. “Submit Bid” also has a local parameter named “dead-
line” of type “Duration” that causes the step to terminate af-
ter it has been posted for a specified amount of time, in this
case one minute. This generates the exception “DeadlineEx-
pired”, which is handled by a restart handler on “Accept One
Bid”. This deadline is necessary to ensure that the process
completes. If this deadline were not here, then if a bidder
started a “Submit Step” but never completed it, no ancestor
steps would complete and the process would never termi-
nate. When the deadline expires, the “Accept One Bid” step
is restarted, and “AuctionNotClosed” is reevaluated assuring
that “Accept One Bid”, and the entire process, will complete.

If “Submit Bid” completes, then the auctioneer is given
“Update Best Bid” to perform. This step’s “BidIsBetter”
pre-requisite ensures that the update cannot occur unless the
bid is better than the best bid submitted, by generating a
“BidNotBetter” exception if it fails. This exception is han-
dled by a continue handler at the step “Accept One Bid”
which causes the “Accept One Bid” step to be reinstantiated
as if the exception never happened.

If the pre-requisite on the recursive call to “Accept One
Bid” fails, then it generates an “AuctionClosed” exception
that is handled by its parent. The parent has a complete han-
dler for this exception, which causes the parent to complete.
When the parent completes, then the entire recursive chain
of calls to “Accept One Bid” completes. This allows the
“Accept Bids From Bidder” step that spawned this chain to
complete when its other substep finishes.

This definition provides a compact, yet clear and pre-
cise, representation of a complicated process. The Little-
JIL constructs seem effective in supporting intuitive under-
standings through appropriate process abstractions. Yet, as
noted above, these abstractions conceal complex underlying
semantics that can mask serious process definition faults. Fi-
nite state verification should be used to determine the pres-
ence or absence of such faults.

4 FLAVERS

FLAVERS (FLow Analysis forVERification ofSystems) is
a static analysis tool that can verify user specified proper-
ties of sequential and concurrent systems [5]. The model
FLAVERS uses is based on annotatedControl Flow Graphs
(CFG). Annotations are placed on nodes of the CFGs to rep-
resent events that occur during execution of the actions asso-
ciated with a node. Since a CFG corresponds to the control
flow of a sequential system, this representation is not suffi-
cient for modeling a concurrent system. FLAVERS uses a
Trace Flow Graph(TFG) to represent concurrent systems.
The TFG consists of a collection of CFGs withMay Imme-
diately Precede(MIP) edges between tasks to show intertask

control flow. A CFG, and thus a TFG, over-approximates the
sequences of events that can occur when executing a system.

FLAVERS requires that a property to be checked be
represented as a Finite State Automaton (FSA). FLAVERS
uses an efficient state propagation algorithm to determine
whether all potential behaviors of the system being analyzed
are consistent with the property. FLAVERS will either return
conclusive, meaning the property being checked holds for all
possible paths through the TFG, or inconclusive, meaning
FLAVERS found some path through the TFG that cause the
property to be violated. FLAVERS analyses are conserva-
tive, meaning FLAVERS will only return conclusive results
when the property holds for all TFG paths. If FLAVERS re-
turns inconclusive results, this can either be because there is
an execution that actually violates the property or because
the property is violated on infeasible paths through the TFG.
Infeasible pathsdo not correspond to any possible execu-
tion of the system but are an artifact of the imprecision of
the model. If the inconclusive result is because of infeasible
paths, then the analyst can introducefeasibility constraints,
which are also represented as FSAs, to improve the precision
of the model and thereby eliminate some infeasible paths
from consideration. An analyst might need to iteratively add
feasibility constraints and observe the analysis results sev-
eral times before determining whether a property is conclu-
sive or not. Feasibility constraints give analysts some control
over the analysis process by letting them determine exactly
what parts of a system need to be modeled in order to prove
a property.

The FLAVERS state propagation algorithm has worst-
case complexity that isO

�
N2 � jSj

�
, whereN is the number

of nodes in the TFG, andjSj is the product of the number of
states in the property and all constraints. In our experience,
a large class of interesting and important properties can be
proved by using only a small set of feasibility constraints.

5 Modeling Processes

Earlier we described a representative set of Little-JIL con-
structs and demonstrated their use in writing a clear, precise,
and concise definition of an auction process. In this section
we indicate the complexity concealed by some of these con-
structs by demonstrating their flowgraph models. Moreover,
the exception handlers on a step can greatly affect the model
for that step. In this section we indicate how some of this
complexity can arise. Space does not permit complete spec-
ifications of all models of all possible combinations of steps
and exception handlers. Rather, we illustrate the models of
each step kind using one kind of exception handler, usually
one that simplifies the model for that step.

5

LeafPosted

LeafStarted

LeafTerminatedLeafCompleted

Figure 4: Model of a Leaf Step

5.1 Leaf Steps

A Leaf Step in Little-JIL represents a unit of work to be per-
formed by an agent. The model for a Leaf Step is shown in
Figure 4. Control flows in from the parent of the Leaf Step
and the step is posted. After being posted, the step can be
started. From the started state, the step can either complete
or terminate. A pre-requisite can be added by putting its
model between the “LeafPosted” and “LeafStarted” node. A
post-requisite can be added by putting its model immediately
before the “LeafCompleted” node. Since steps terminate if
their requisites terminate, the model should have the termi-
nated path out of the pre- and post-requisites connected to
the “LeafTerminated” node.

5.2 Sequential Steps

A sequential step performs the work of all of its substeps,
one at a time, from left to right. Suppose, for simplicity,
the sequential step has rethrow handlers for any exception
thrown by its substeps. This means that when an exception
is thrown, the sequential step terminates. This model, gen-
eralized ton substeps, is shown in Figure 5. As before, flow
comes in from the sequential step’s parent and it is posted
and then started. At this point, the sequential step attempts
to do its first substep. Since this is a recursive model, the
model for the first substep is represented by the oval labeled
Substep1. If Substep1 completes, the process moves on to
the next substep, and continues in this fashion until Substepn

is reached. If Substepn completes, the sequential step com-
pletes. If any substep terminates, then the sequential step
terminates.

5.3 Parallel Steps

A parallel step allows the work of its substeps to proceed
concurrently. As with the sequential step, we assume for
simplicity that the parallel step has only rethrow handlers.
While the parallel step may in general haven substeps, for
simplicity we show a parallel step that has only two substeps.

SeqPosted

SeqStarted

Substep1

SeqTerminated

Substepn

Terminated

Completed

Terminated

Completed

SeqCompleted

..

.. Terminated

Completed

Figure 5: Model of a Sequential Step

The model of this step, as shown in Figure 6, has a dashed
edge in it to represent interactions that may occur due to con-
currency. In particular, the dashed edge represents a set of
FLAVERS MIP edges, which are used to represent the ways
in which flow can move between different tasks. The dashed
edge in this figure represents the addition of MIP edges be-
tween every pair of nodes in Substep1 and Substep2.

In addition, the parallel step cannot finish until all of its
substeps have finished1. The potential parallelism involved
makes representing this behavior directly in a TFG difficult,
so we have chosen to use FLAVERS’ feasibility constraint
mechanism to ensure that the parallel step cannot complete
or terminate until all of its substeps have finished. This ap-
proach is consistent with how FLAVERS models some of
the concurrency constructs in Java [17].

5.4 Try Steps

Although our Open-Cry Auction process example does not
include any choice steps or try steps, we now describe how
their semantics can be modeled. Try steps are designed to
try their substeps one at a time, in order, until one com-
pletes. For the model shown in Figure 6, we assume a try
step has only continue exception handlers, so that the try
step can attempt all of its substeps. The try step begins by
attempting Substep1. If an attempted substep completes, the
step completes, but if it terminates, the process moves on to
the next substep. If any of the substeps completes, the try
step completes; if all of the substeps terminate, the try step
terminates.

1 In some instances, the substeps may need to be retracted. Modeling this, while
possible, exceeds the scope of this paper.

6

Completed

Completed Terminated

Terminated

ParCompleted

ParStarted

ParPosted

ParTerminated

1Substep 2Substep

Substep1

Substepn

..

..

TryPosted

TryStarted

TryTerminated TryCompleted

Terminated

Completed

Completed

Completed

Terminated

Terminated
ChoiceTerminated

. . . .

..

.

.
n

ChoicePosted

ChoiceStarted

1 n

1

n

ChoiceCompleted

Completed

HasNotStarted HasNotStarted

HasStarted

HasStarted

Terminated

1 SubstepSubstep

Substep Substep

Substep

Substep

Parallel Step Try Step Choice Step

Figure 6: Models of Parallel, Try, and Choice Steps

Substep Startedi

Substep HasNotStartedi

viol.

Substep HasNotStartediSubstep HasStartedi

Substep Startedi
Substep HasStartedi

1 2

Figure 7: A Feasibility Constraint for the Choice Step

5.5 Choice Steps

Choice steps are similar to try steps, except there is no re-
striction on the order in which the substeps are attempted;
substeps are selected one at a time until one completes. The
choice step completes when a substep completes2. We as-
sume that all exception handlers in our model of the choice
step, shown in Figure 6, are continue handlers. For this
model, we have again chosen to use FLAVERS’ feasibility
constraints to reduce the size of the model. This model has
nodes annotated with events, like Substep1HasNotStarted,
that are used in feasibility constraints to limit the ways in
which the TFG model is traversed during analysis. These
constraints prevent FLAVERS from starting substeps more
than once and from terminating the Choice Step before all
of the substeps have been attempted. Adding these specially
annotated nodes does increase the size of the TFG, but not
as much as it would be increased if we were to represent all
the ways of selecting the substeps explicitly in the TFG.

The FSA in Figure 7 is a constraint that is used to en-
2As with the try step, retraction of substeps, which exceeds the scope of this paper,

may be required.

sure that FLAVERS does not consider paths on which the
ith substep is started more than once. State 1, the start state,
represents the state of the system in which theith substep
has not been started. When an event “SubstepiStarted” oc-
curs, then the constraint moves into state 2. This event does
not appear in the model for the Choice step, but will appear
in the model for the substep. State 2 represents the state of
the system in which theith substep has been started at least
once. Both states 1 and 2 have transitions on the assertion
“SubstepiHasNotStarted”. In state 1, this transition is a self
loop, so encountering this event does not affect the analysis.
In state 2, this transition goes to the violation state. When a
constraint transitions into its violation state, then FLAVERS
treats the path it is currently examining as an infeasible path
and does not consider it further in the analysis. In this way,
the feasibility constraint prevents the analysis from consider-
ing paths on which a substep is started twice. The transitions
“SubstepiHasStarted” behave in a similar fashion and pre-
vent the Choice step from terminating unless this step has
been started. This constraint only deals with substepi, so
for a choice step withn substeps, we may need to usen
constraints in the analysis.

The unlabeled node in the model represents a decision
point, where the process can choose between one of itsn

substeps. From this point, there is a branch representing
each choice, guarded by an assertion. If the selected sub-
step completes, the choice step completes. Otherwise, the
process moves back to the decision node. Once all of the
substeps have been tried, the process can no longer choose
any of the substeps, so the feasibility constraints allow the
choice step to terminate by following the branch withn
“SubstepiHasStarted” guards. The feasibility constraints are

7

Property TFG Nodes TFG Edges Result Time (s)
No Late Bids Accepted1 216 11;837 Inconclusive – fault 6:56

No Late Bids Accepted2 316 30;881 Conclusive 41:10

Possible Race Condition 327 35;788 Inconclusive – fault 143:25

No Race Condition (no lock) 189 7;710 Inconclusive – fault 15:07

No Race Condition (with lock) 269 20;910 Conclusive 17:52

Table 1: FLAVERS Analysis Results

used to ensure that the choice step cannot terminate until all
of its substeps have been attempted.

The choice step can add considerable complexity to the
model of a Little-JIL process definition. If there aren sub-
steps to a choice step, it is possible that alln substeps might
be tried before the choice step finishes. There aren ways that
one of them can be chosen,n(n� 1) ways that two of them
can be chosen, and so on. This means that in the worst case
there areO ((n+ 1)!) possible paths that need to be consid-
ered. Experience has shown that human agents require the
empowerment that constructs such as the choice step pro-
vide. The model needed to represent the execution seman-
tics shows, however, that the behavior of the choice step is
far from straightforward. This suggests that users may well
be attracted to its use, but that reasoning about processes us-
ing the choice step is likely to be costly. Our expectation is
that human users will greatly benefit from automated aids in
reasoning about such processes.

6 Experimental Results

To evaluate our approach to analyzing properties of process
definitions, we used FLAVERS to check several properties
of the Open-Cry Auction. All experiments were run on
a Pentium II 400 Mhz PC with 384 MB of memory, run-
ning RedHat Linux 5.1 with kernel version 2.0.34. The
FLAVERS state propagation algorithm has been written in
C and compiled with gcc 2.7.2.3. Currently, we cannot auto-
matically build models directly from Little-JIL process def-
initions. The purpose of this experiment was to investigate
the feasibility of performing analyses on processes. So, for
now, we used a combination of manual and automated tech-
niques to generate annotated CFGs, the input FLAVERS ex-
pects. These CFGs were used to construct the TFG. When
constructing a TFG, FLAVERS abstracts away parts of the
model that are irrelevant to the property being checked, so
the size of the TFG changes depending on the property be-
ing evaluated.

6.1 No Late Bids Accepted

To verify that no late bids can be accepted, it is necessary
to verify that on no executions of the process can “Update
Best Bid” be started and completed for a bid after “Close
Auction” is completed. For this sequence of events, we want

Update Best Bid

AuctionNotClosed
BidIsBetter

Figure 8: Corrected Step

the “Update Best Bid” that is started and completed to be in
the same step. Thus, we need to check this property for each
bidder separately. Since each bidder is an instantiation of the
same step, we only need to demonstrate that this property
holds for one representative bidder.

As shown in Table 1 under the property “No Late Bids
Accepted1”, FLAVERS returned inconclusive results for this
property. Using FLAVERS, we were able to compute an ex-
ecution trace of a violating path. Upon examination of this
path, it was easy to identify the problem with the process.
The “Submit Bid” step can be posted before the auction is
closed, and started after the auction is closed. There is noth-
ing preventing a bid submitted in this fashion from reaching
and being considered by the “Update Best Bid” step. We can
correct this by adding an “AuctionNotClosed” pre-requisite
in the “Update Best Bid” step, as shown as part of Figure
8. This property with the corrected process was verified
conclusively. The details for this are in the row “No Late
Bids Accepted2”. The reason that the checking this property
took longer than the checking of the original version is that
FLAVERS is able to stop state propagation as soon as it de-
termines a property is violated. However, with conclusive
results, it has to perform state propagation until all possible
executions are considered.

6.2 Possible Race Condition

It is possible to use FLAVERS to analyze process defini-
tions to see if there is the potential for race conditions. In
order to illustrate this, our Open-Cry Auction model needs
to be annotated with some parameter information. The pro-
cess shown in Figure 9 is still not a complete depiction of
the process, but has enough parameter information shown to
enable us to check the property.

In Little-JIL, parameter passing is done with a copy-
in/copy-out mechanism. For the most part, this prevents
multiple steps from using the same variable, which helps re-
duce the likelihood of race conditions. In our process, how-

8

Accept Bids From Bidder

NoMoreBidders
AuctionClosed

Accept Bids From Bidder

Close Auction

Accept One Bid

Open-Cry Auction

NoMoreBidders

best: BidReference

best: BidReference

best: BidReference

best: BidReference

AuctionClosed
BidNotHigher
BidNotBetter
DeadlineExpired

best

bestbest

best

best

AuctionNotClosed
Accept One Bid

Update Best BidSubmit Bid
BidIsHigher

AuctionNotClosed
BidIsBetter

deadline: Duration=1m

Figure 9: Revised Open-Cry Auction Process

ever, there is a parameter “best” of type BidReference. This
makes “best” a pointer to a bid, meaning even with copy-
in/copy-out semantics several steps can be accessing the bid
pointed to by “best” at the same time. This is necessary so
the auctioneer, during “Update Best Bid”, is able to examine
the current high bid at all times. This, however, could also
lead to a race condition.

To determine if there is the potential for a race condition
in the process, we first need to determine which steps can
use the variable “best”. This is necessary since “best” is
passed into many steps, but only used by a small subset of
them. This identification cannot be done directly from the
process definition, since it requires knowledge of the agents’
behaviors. In this Open-Cry auction we assume that the only
step that uses the variable “best” is “Update Best Bid”. We
can then determine if it is possible for a race condition to
exist by checking a property to see if two “Update Best Bid”
steps can be started at the same time.

In the Open-Cry Auction, FLAVERS returns inconclu-
sive for this property. By examining the trace provided by
FLAVERS, it is clear that two “Update Best Bid” steps for
two different bidders can be started at the same time. Since
we know now that a race condition can exist, we can take
steps to ensure that a failure does not occur from any error
in using the variable “best”.

6.3 No Race Condition

Suppose there were no protections on the variable “best” to
prevent it from being used multiple times simultaneously.
Assume that an auctioneer agent is in charge of the “Update
Best Bid” step. Then if the auctioneer agent were consid-
ering two bids at the same time, it could compare both bids
to “best” in any order, but never to each other. As a result,
the bid pointed to by “best” at the end of these steps would
depend on the order of comparison, and the value of “best”

may not end up being the highest bid in the auction.
Thus, we want to ensure that no access to variable “best”

occurs between the time a bid is determined to be better than
“best” and the time that “best” is updated to be this new high-
est bid. FLAVERS was unable to determine conclusively
that this property holds if no protections on access to “best”
are specified. But, when we incorporated a model the behav-
ior of a lock on variable “best” using a feasibility constraint,
we were able to verify the property conclusively. The com-
putation times for both of these checks are shown in Table
1.

We have proven conclusively that if the auctioneer agent
locks the variable “best”, then this undesirable race condi-
tion can be avoided. We have not, however, verified that this
process definition does not have a race condition on variable
“best”. Doing this analysis would require performing analy-
sis on the implementation of the auctioneer agent. Especially
for an ecommerce application, it cannot be expected that the
analyst will always have access to the implementations of all
the agents that will be coordinated by a process definition. If
the implementation of the auctioneer were available, then it
would be relatively simple to use verification to prove that
the auctioneer performs the proper locking and unlocking
of the variable “best”. Alternatively, we can use feasibility
constraints, as we did in this example, to represent the rel-
evant behavior of the missing components. First we would
need to show that the process, along with these feasibility
constraints is consistent with the specified properties. When
the missing agents become available for analysis, we would
then need to show that they indeed satisfied the feasibility
constraints that we used to model their behavior. This al-
lows us to decompose the analysis process, providing the
potential for analyzing large systems that may be distributed
among various sites and companies, and written in different
languages.

It is important to acknowledge, however, that key com-
ponents of real world processes may not be available for in-
spection and analysis. In such cases, verifications of prop-
erties such as the one we have been discussing can still be
completed and lead to definitive results, but only if credible
assurances about their behavior can be provided. It is not un-
reasonable to envision a future in which participants in pro-
cesses such as auctions may not wish to provide their com-
ponentry, but may be willing to have key properties (such as
the one we have been considering) established and certified
by disinterested third parties.

7 Related Work

This work expands on the types of analyses that have been
explored for process definition systems. For example, the
IDEF0 system uses simple forms of analysis to demonstrate
certain sorts of well-formedness properties in its diagram-
matic definitions [16]. IDEF0 is essentially a dataflow rep-

9

resentation of a process. As such the analyses performed
check for consistent specification of operand inputs and out-
puts and appropriate nesting. The ProcessWeaver system
incorporates stronger semantic features, and uses them for
more powerful and diverse sorts of consistency checking
[7]. In particular, its greater attention to the specification
of operand flows enables ProcessWeaver to perform limited
sorts of type checking. In Statemate process definers can de-
velop up to three separate process representations [8]. State-
mate performs well-formedness checks on each of the three,
but in addition it carries out limited forms of cross-diagram
consistency checks.

Perhaps the most ambitious static analysis is carried out
in the FunsoftNets system [2]. This system uses a Petri Net-
like model to define processes. The system incorporates ana-
lyzers that evaluate well-formedness and detect such defects
as deadlocks and traps in the underlying Petri Net. In ad-
dition, such process specific defects as unprocessable object
types (which are analogous to dead variable definitions) are
also detected.

We are not aware of any other process definition system
that has been used as the basis for finite state verification of
properties, as described here. However, there is a rich litera-
ture describing the application of finite state verification to a
wide range of software. Perhaps the work that comes closest
to this, is the work on applying verification techniques to ar-
chitecture description languages (ADL) [1, 18]. ADLs tend
to focus on a high level description of system to system com-
munication and on the mechanism for that communication,
for example, remote method invocation or event based notifi-
cation. From one perspective, process languages are similar
in that they also provide a high-level language for describ-
ing systems of systems. Unlike ADLs, process languages
also focus on the interactions of humans with systems. This
mix of humans and systems necessitates more complex con-
trol flow constructs, including exception handling and reac-
tive control. As a result, dealing with the models of process
definitions can be more difficult than the models of ADLs.

Besides FLAVERS, there are several other finite state
verification techniques that could be used to verify proper-
ties of processes, such as INCA [4], which uses integer nec-
essary conditions, SMV [14], which uses symbolic model
checking, and SPIN [9], which uses reachability analysis.
We do not believe that any of these would be better able to
handle the complex control flow in process definitions but
this hypothesis deserves further investigation.

8 Conclusions

The Open-Cry Auction example shows how important it is to
apply validation techniques, such as finite state verification,
to process definitions. Process definitions are often written
at a high level, which allows users to quickly obtain an in-
tuitive understanding of the process. This rapid conveyance

of intuition, while an advantage, can cause problems by mis-
leading people into incorrect understandings because subtle,
yet important, details have been overlooked. The incorrect
process shown in Figure 3 was examined by several people
who were knowledgeable about both auctions and Little-JIL.
Yet it took several days before anyone realized that there was
a defect in the process.

We were pleased that the FLAVERS finite state verifi-
cation system was able to detect this defect, and to verify
other properties. But this verification was not without prob-
lems. Little-JIL uses recursion instead of an explicit looping
construct. Finite state verifiers, such as FLAVERS, how-
ever, require that recursive constructs be converted to finite
representations. In doing this, care must be taken to ensure
the consideration of event sequences that only happen after
deep recursion occurs. The exception handling mechanism
of Little-JIL poses still other problems. For example, in a
parallel step, more than one substep may generate an excep-
tion. If this happens, then the exception handlers can execute
concurrently, and the behavior of the process after the han-
dlers finish is dependent on the types of handlers that were
executed. Other features of the language may present chal-
lenges. For example, some of the popular features of Little-
JIL, such as the choice step, required sizeable flow graphs
for their representation, which could lead to increased exe-
cution times for FLAVERS’ verification. In addition, Little-
JIL is a factored language, with the resource manager being
a separate component. Certain analyses might require that
the control flow of the process and the resource model both
be represented. This means that we need to determine a way
to represent the resource model for FLAVERS. Feasibility
automata may provide a mechanism for doing this, but pos-
sibly at the expense of additional complexity and an increase
in the time needed for analysis.

In this work, representation problems were dealt with by
a human, who used ad hoc techniques to translate the Little-
JIL definition of the auction process into a suitable input for
FLAVERS. Certainly it is desirable for this translation to
be done automatically. But the language issues just enu-
merated will certainly complicate this automation. For all
of these reasons we believe that the constructs in Little-JIL
(and by implication other advanced process definition lan-
guages) need to be reconsidered in the light of the problems
that they may pose for static verification.

Our success in applying FLAVERS to reason about pro-
cess definitions suggests that other verification tools and ap-
proaches should also be tried. We plan to investigate the
use of other static analysis techniques, for example INCA
[4], SMV [14], and SPIN [9], to see how they can handle
the complexities of analyzing process definitions written in
languages such as Little-JIL. Continuation of this research
line should lead to better understandings of which verifica-
tion techniques might be most effective in analyzing which
process languages.

10

9 Acknowledgements

The authors would like to thank Aaron Cass, Sandy Wise,
and Hyungwon Lee for their help in developing the example
Little-JIL process. Aaron and Sandy were particularly help-
ful in clarifying the semantics of Little-JIL and assuring the
accuracy of the FLAVERS model of the auction process.

This research was partially supported by the Defense
Advanced Research Projects Agency and the Air Force
Research Laboratory/IFTD under agreement F30602-97-2-
0032, and by the National Science Foundation under Grant
CCR-9708184. The views, findings, and conclusions pre-
sented here are those of the authors and should not be inter-
preted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency, the Air Force Research
Laboratory/IFTD, or the U.S. Government.

References

[1] R. Allen, D. Garlan, and J. Ivers. Formal modeling and
analysis of the HLA component integration standard.
In Proc. of the Sixth Int. Symp. on the Foundations of
Software Engineering, pages 70–79, 1998.

[2] A. Bröckers and V. Gruhn. Computer-aided verification
of software process model properties. InProc. of the
5th Int. Conf. on Advanced Information Systems Engi-
neering, pages 521–546, 1993.

[3] A. G. Cass, H. Lee, B. S. Lerner, and L. J. Osterweil.
Formally defining coordination process to support con-
tract negotiations. TR 99-39, University of Mas-
sachusetts, Department of Computer Science, 1999.

[4] J. C. Corbett and G. S. Avrunin. Using integer pro-
gramming to verify general safety and liveness proper-
ties.Formal Methods in System Design, 6:97–123, Jan.
1995.

[5] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. InProc.
of the ACM SIGSOFT ’94 Symp. on the Foundations of
Software Engineering, pages 62–75, Dec. 1994.

[6] R. Engelbrecht-Wiggans. Auctions and bidding mod-
els: A survey. Management Science, 26(2):119–142,
Feb. 1980.

[7] C. Fernström. PROCESS WEAVER: Adding process
support to UNIX. InSecond Int. Conf. on the Software
Process, pages 12–26, 1993.

[8] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtul-Trauring, and
M. Trakhtenbrot. STATEMATE: A working environ-
ment for the development of complex reactive systems.

IEEE Trans. on Software Engineering, 16(4):403–414,
Apr. 1990.

[9] G. J. Holzmann. The model checker SPIN.IEEE Trans.
on Software Engineering, 23(5):279–295, May 1997.

[10] D. Jensen, Y. Dong, B. S. Lerner, E. K. McCall, L. J.
Osterweil, S. M. Sutton Jr., and A. Wise. Coordinating
agent activities in knowledge discovery processes. In
Proc. of Work Activities Coordination and Collabora-
tion Conf., pages 137–146, 1999.

[11] R. Kadia. Issues encountered in building a flexible
software development environment: Lessons from the
Arcadia project. InFifth ACM SIGSOFT Symp. on
Software Development Environments, pages 169–180,
1992.

[12] M. Kumar and S. I. Feldman. Business negotiations on
the internet. TR, IBM Institute for Advanced Com-
merce, March 1998.

[13] M. Kumar and S. I. Feldman. Internet auctions. TR,
IBM Institute for Advanced Commerce, Nov 1998.

[14] K. L. McMillan. Symbolic Model Checking: An Ap-
proach to the State Explosion Problem. Kluwer Aca-
demic Publishers, 1993.

[15] P. Milgrom. Auctions and bidding: A primer.Journal
of Economic Perspectives, 3(3):3–22, Summer 1989.

[16] National Institute of Standards and Technology.In-
tegration Definition For Function Modeling (IDEF0),
1993. Federal Information Processing Standards 183.

[17] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent
Java programs. InProc. of the Int. Conf. Software En-
gineering, pages 399–410, 1999.

[18] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Applying static analysis to software archi-
tectures. InProc. of Fifth ACM SIGSOFT Symp. on the
Foundations of Software Engineering/Sixth European
Software Engineering Conf., pages 77–93, 1997.

[19] L. Osterweil. Software processes are software too. In
Proc. of the Int. Conf. on Software Engineering, pages
2–13, 1987.

[20] T. Sandholm and V. Lesser. Issues in automated negoti-
ation and electronic commerce: Extending the contract
net framework. InFirst Int. Conf. on Multi-Agent Sys-
tems, 1995.

[21] A. Wise. Little-JIL 1.0 language report. TR 98-24,
University of Massachusetts, Department of Computer
Science, 1998.

11

