Verifying Properties of Process Definitions

Jamieson M. Cobleigh, Lori A. Clarke, Leon J. Osterweil
Laboratory for Advanced Software Engineering Research
Department of Computer Science
University of Massachusetts at Amherst
Ambherst, MA 01003-6410
+1 413 545 2013
{jcobleig, clarke, ljg @cs.umass.edu

Abstract Keywords

It seems imperative that the complex processes that synerf’rocess, Formal Methods, Dataflow Analysis, Verifica-
gize humans and computers to solve widening classes oftiOn, Auctions, ecommerce

societal problems be subjected to rigorous analysis. One

approach is to use a process definition language to specl Introduction

ify these processes and to then use analysis techniques to

evaluate these definitions for important correctness proper-Processes are pervasive in areas of human and computer
ties. Because humans demand flexibility in their participa- interaction, including software engineering processes [11],
tion in complex processes, process definition languages musglata mining tasks [10], and work flow models [7]. With the
incorporate complicated control structures, such as variousgrowth of the internet, for example, the role of processes in
concurrency, choice, reactive control, and exception mecha-ecommerce activities, such as auctions, supply chain man-
nisms. Well-designed process languages provide powerfulagement, and on-line ordering, has become very prevalent
abstractions for concise and precise specification of such[12, 13, 20]. At the same time, societal vulnerability to poor
control, but balance this with visualization support to help quality in these processes has become worrisome. Thus, we
users also obtain intuitive insights. The underlying complex- advocate rigorous analysis of process definitions to demon-
ity of these control abstractions, however, often confounds strate that they are free from faults that could lead to serious
these intuitions as well as complicates any analysis. failures.

Thus, the control abstraction complexity in process def- In earlier work it has been suggested that processes are
inition languages presents analysis challenges beyond thos@ particular kind of software [19], and that they should be
posed by traditional programming languages. This paper ex-developed, verified, and evolved using approaches that are
plores some of the difficulties of analyzing process defini- analogous to those used for application software. In ear-
tions. Specifically, we explore issues arising when applying lier work it has also been suggested that static analysis ap-
the FLAVERS finite state verification system to processes proaches are effective in helping to reason about software
written in the Little-JIL process definition language and il- systems. In this paper, we demonstrate the applicability and
lustrate these issues using a realistic ecommerce auction exbenefits, as well as some of the research challenges, associ-
ample. Although we employ a particular process definition ated with applying finite state verification to process defini-

language and analysis technique, our results seem more gertions. Although we continue to be convinced that software
erally applicable. processes are software too, we argue that process software

has characteristics that tend to differentiate it from most con-
ventional application software in ways that complicate static

analysis. Thus, while the need for analysis remains strong,
the complications in doing so are noteworthy.

Ongoing process research suggests that graphical process
models are useful in raising human awareness and intuition
about process characteristics. Unsurprisingly, the most ef-
fective models incorporate high-level abstractions that sup-
port concise, generally visual, representation of common

process notions. While intuitively appealing, we have found Interface Badge

that such process models often entail subtleties that lead to pre-requisite Badge Post-requisite Badge
error-prone process definitions. g\ O /
We have developed a visual language, Little-JIL, that V StepNameA

provides a range of process abstractions that have proven Step Bar— | = <
to be effective for describing human and computer interac- P

tion. We have also developed an interpreter that supports
execution of Little-JIL processes. Our experience suggests
the need for technology to reason about such process defi-
nitions, to assure that their executions conform to important
desired characteristics.
In this paper we describe how FLAVERS, a finite state

verification system, has been used to verify properties of
processes that have been defined using Little-JIL. The paper

demonstrates that process abstractions can be quite effective {
in supporting precise and concise process definitions, but the Started

Sequencing Badé T \Handlers Badge
Reactions Badge

Figure 1: A Little-JIL step

underlying semantic complexity poses challenges for static
_analysis. O_ur work ad_dresses those challenges, and, in do> Posted
ing so, provides experience that should be of importance for
future research in both finite state verification and in pro-
cess language design. Although we present an example in Retracted
terms of a particular process definition language and a partic-
ular analysis technique, we contend that the insights gained
are also applicable to other process definition languages and
other static analysis techniques.

In the next section we describe a subset of Little-JIL.
This subset is chosen so that the reader can follow the ex-Steps:
ample and the ensuing discussion about analysis of Little- Each step in a Little-JIL definition is represented by a step
JIL process definitions. In section 3 we describe an auction icon as shown in Figure 1. Each step is given a unique name
process and present a Little-JIL process definition for it. In and has a set of badges that represent key information about
section 4 we provide a brief overview of FLAVERS. Like all the step, including the step’s control flow, the exceptions the
automated verification systems, FLAVERS must create an step handles, the parameters needed by the step, and the re-
accurate model of the computation upon which to base thesources needed to execute the step. Each step can only be
analysis. FLAVERS builds its model from annotated control declared once in a Little-JIL definition, but a step can be
flow graph models of the artifacts being analyzed. Section referenced many times in the process definition. These ad-
5 describes the control flow graph model needed to supportditional references are depicted by a step with its name in
the Little-JIL constructs. In section 6 we present the results italics and no badges.
of verifying several properties of the auction example. Sec-
tion 7 describes how our work builds upon current trends in Step Execution:
process languages and software analysis. In the conclusion]he execution semantics of a Little-JIL step are defined by a
we discuss the implication of this work and potential future finite state machine, whose behavior can be summarized by
directions of investigation. five states: posted, retracted, started, completed, and termi-
nated. Figure 2 shows the normal flow of control for a Little-
JIL step. The step’s execution can end when it is in any of
the three states that have an arrow pointing to the filled cir-
Little-JIL is an expressive process definition language that ¢l€- A step is moved into the posted state when itis eligible
uses a graphical notation that helps users quickly grasp thel© Pe started. A step is moved into the started state when
meanings of process definitions. It also has well defined for- (e step’s agent begins executing the step. When the work
mal semantics that allow Little-JIL definitions to be executed SPecified by a step is successfully finished, the step moves to
and analyzed. A Little-JIL process definition describes the the completed state. When the step cannot be successfully
coordination of activities of agents, whereagentis anen- ~ completed, it moves to the terminated state. A step is put
tity, either human or computer, that can be assigned work to into Fhe retracted s@te if it had been posted, but not started,
do. In Little-JIL, stepsrepresent work that can be assigned and is no longer eligible to be started.
to an agent.

Figure 2: Execution of a Little-JIL step

2 Little-JIL

Sequencing Badges: tion completed normally. When a handler wittcamplete

A Little-JIL process is represented by a tree structure where badge completes, the step catching the exception moves into

children of a step are the substeps that need to be done tdhe completed state. When a handler witretnrow badge

complete that step. The parent-child relation is depicted completes, the step catching the exception terminates and

by a line between the child and parent’'s sequencing badge rethrows the exception up to its parent. Some handlers may

All non-leaf steps must have a sequencing badge, which de-consist only of a badge, but no step structure.

scribes the order in which the substeps are performed. Our

experience to date indicates that four different substep se-Interface Badges:

guencings are needed for the concise, yet clear definition ofArtifact flow and resource specification have both been

processes. They are shown in the key in Figure 3 found to be absolutely essential to the articulate and pre-
A sequential stephdicates that its substeps are to be per- cise definition of realistic processes. In Little-JIL interface

formed one at a time, from left to right. Aarallel step badges are used to declare what parameters a step has, what

indicates that its substeps can be done concurrently, and thaexceptions it throws, and what resources it needs. Param-

the step is completed if and only if all of its substeps have eters declared in a Little-JIL step have a name, type, and

completed. Achoice stepndicates that a step’s agent must mode. The name is used to identify the parameter and the

make a choice among any of its substeps. All of the substepstype declares what type of object the parameter is. Little-JIL

are available to be performed, but only one can be selecteduses copy-in/copy-out semantics for parameter passing and

at a time. If a selected substep completes, then the choicea parameter may have one of four modes.id\parameter

step completes. Ay stepattempts to perform its substeps denoted by a down arrow, is passed from the parent and its

in order, from left to right, until one of them completes. If a value should be copied when the step starts.ofhparam-

substep terminates, then the next substep is tried. eter, denoted by an up arrow, is passed to the parent, which
must copy the value when the step completesinAaut pa-
Requisites: rameter denoted by an up-down arrow, indicates the value

Process definitions seems to benefit substantially from theof the parameter should be copied in when the step starts and
attachment of pre- and post-requisites to steps. These coneopied out when the step completeslogal parameteyin-
structs are natural vehicles for measuring and monitoring dicated by a diamond, is created by a step to allow passing
agent performance of steps, and support the retention of pro-of parameters between that step and its descendants.

cess control, while still granting substantial agent latitude A full description of Little-JIL can be found in [21].

and initiative in step performance. Thus, a step in Little-JIL
can have pre- and post-requisites. pfe-requisiteis per-
formed after a step starts, but before the work of the step
can be initiated. Apost-requisitehas to be done before a The utility of these constructs can perhaps be seen best
step can complete. A failure of a requisite for a step throws through an example. Thus, this section demonstrates the use
an exception that is handled by the matching handler at theof Little-JIL to define an auction, a process that is gaining
step’s nearest ancestor. This failure terminates the step Withincreasing preva|ence in ecommerce. In an auction process

3 Motivating Example

the requisite. a buyer and seller reach an agreement about an acceptable
_ _ price for an item. The process is supervised and controlled
Exception Handling: by a third party, the auctioneer. Of the wide variety of differ-

There is considerable evidence that processes have extensivent types of auctions [6, 15], perhaps the most familiar is the
and Complex exception structure. Thus, steps in Little-JIL Open-Cry Auction, in which a group of pe0p|e, the bidders,
can throw exceptions, which are caught by the nearest ancesattempt to obtain an item offered for sale by a seller through
tor having a matching handler, as indicated by the ancestor'sgy real time, interactive process. In the most common type
handler badge. To concisely represent complex exceptionof Open-Cry Auction, the English Auction, bidding starts at
handling, Little-JIL enables handlers to be steps, they may a |ow price and the price is increased as bidders offer suc-
have a full hierarchical structure. Our experience also in- Cessive|y h|gher prices_ The auction closes when one bidder
dicates that concise and articulate expression of process eXhas offered a price that is h|gher than what any other bidder
ceptional flow is facilitated by the attachment of any of four s willing to offer. At this time, the high bidder is awarded
different kinds of handler control-flow badges that indicates the item and has to pay the amount bid. With online auc-
how the step catching the exception should proceed after thetions the auctioneer is not a person but a program and the
handler completes. These are shown in the key of Figure 3. pidders are distributed across a network. At present bidders
When a handler with eestartbadge completes, the step are usually humans, but it is expected that bidding will in-
CatChing the exception is restarted. When a handler with Creasing|y be carried out by automated agents_ Thus’ auc-
a continuebadge completes, the step catching the excep-tions will be carried out in a more rapid fashion, and with
tion continues as if the substep that generated the excepdecreasing amounts of human interaction and scrutiny. For

Sequencing Badges:
—> Sequential
= Parallel
Choice

O
> Try

Handler Control-Flow Badges:

o
Open-Cry Auction

V=X

— NoMoreBidders

T Rethrow O
Accept Bids From Bidder Close Auction

- Contnue V[=_ XA A
</ Complete

P —> NoMoreBidders
| Restart / AuctionClosed

AUCtlon'\ImCIOSedxAccept One Bid Accept Bids From Bidder
x| []

N/ AuctionClosed
<J BidNotHigher
=> BidNotBetter,

.| DeadlineExpired

{deadline: Duration=1

. ®
BidisHigher Update Best Bid Accept One Bid

BidisBetter— Y |:| A |:|

Figure 3: Open-Cry Auction Process

Submit Bid /
V]

these reasons, having some way to ensure that the activitiesng decomposed into two parallel steps, “Close Auction” and
of the auctioneer and bidders proceed in expected ways is‘Accept Bids From Bidder”. Little-JIL has no direct looping
important. construct, and instead provides support for recursion. Thus,
Many different properties of an Open-Cry Auction one “Accept Bids From Bidder” step is created for each bid-
should be verified. For example, no bids should be acceptedder. Each bidder is handed off to an “Accept One Bid” step,
after an auction has been closed. It is also important to verify which is responsible for handling all bids made by a sin-
that the auctioneer considers all bids that are submitted andgle bidder. Because all of these “Accept One Bid” steps
that the person submitting the highest bid is actually awardedcan happen in parallel, multiple bidders can be submitting
the item and at the highest bid price. If parts of the auction- bids simultaneously. All of this bidding happens in paral-
eer’s role are carried out by a computer, then it is important lel with the “Close Auction” step, which the auctioneer per-
to check to ensure that the computer software cannot deadforms when it is time to close the auction (presumably after
lock and does not have any undesirable race conditions. the auction has been open for a fixed amount of time or after
While it may be possible to verify these properties by the no bids have been submitted for a while).
direct analysis of the code used to implement such an auc- For a bid to be accepted in the auction, the bidder must
tion, the experience of software engineering confirms that first submit the bid and then the auctioneer must examine
analysis of an accurate higher level representation gener-the bid to determine if it is higher than the best bid sub-
ally offers advantages of scalability and early fault detec- mitted so far. Then, the bidder can submit another bid for
tion. A Little-JIL definition is just such a higher level rep- consideration. The “Accept One Bid” step in Figure 3 rep-
resentation, and it offers the additional advantage of being resents this process for a single bidder. When “Accept One
supported by an interpreter to assure that process executiomBid” is started, it first executes a pre-requisite, “AuctionNot-
obeys the same semantics used to verify desirable propertiesClosed” to assure that the bidder cannot submit a bid after

Little-JIL has many features that make it effective for defin-
ing auction processes [3], inviting exploration of the feasi-
bility of verifying properties of such definitions. Figure 3
shows a simplified version of an Open-Cry Auction written
in Little-JIL.

At a high level, this process is very straightforward, be-

the auctioneer has executed the “Close Auction” step. If the
pre-requisite completes, then “Submit Bid” is posted for the
bidder to execute. If the bidder submits a bid, then a post-
requisite, “BidIsHigher” is executed. This requisite ensures
that the bid submitted is higher than the bidder’s previous
bids. If this post-requisite fails, then a “BidNotHigher” ex-

ception is generated. This exception is handled by “Accept control flow. A CFG, and thus a TFG, over-approximatesthe
One Bid”, which has a restart handler causing “Accept One sequences of events that can occur when executing a system.
Bid” to restart, giving the bidder a chance to submit a valid FLAVERS requires that a property to be checked be
bid. “Submit Bid” also has a local parameter named “dead- represented as a Finite State Automaton (FSA). FLAVERS
line” of type “Duration” that causes the step to terminate af- uses an efficient state propagation algorithm to determine
ter it has been posted for a specified amount of time, in this whether all potential behaviors of the system being analyzed
case one minute. This generates the exception “DeadlineEx-are consistent with the property. FLAVERS will either return
pired”, which is handled by a restart handler on “Accept One conclusive, meaning the property being checked holds for all
Bid". This deadline is necessary to ensure that the processpossible paths through the TFG, or inconclusive, meaning
completes. If this deadline were not here, then if a bidder FLAVERS found some path through the TFG that cause the
started a “Submit Step” but never completed it, no ancestor property to be violated. FLAVERS analyses are conserva-
steps would complete and the process would never termi-tive, meaning FLAVERS will only return conclusive results
nate. When the deadline expires, the “Accept One Bid” step when the property holds for all TFG paths. If FLAVERS re-
is restarted, and “AuctionNotClosed” is reevaluated assuring turns inconclusive results, this can either be because there is
that “Accept One Bid”, and the entire process, will complete. an execution that actually violates the property or because
If “Submit Bid” completes, then the auctioneer is given the property is violated on infeasible paths through the TFG.
“Update Best Bid” to perform. This step’s “BidlsBetter” Infeasible pathsio not correspond to any possible execu-
pre-requisite ensures that the update cannot occur unless théon of the system but are an artifact of the imprecision of
bid is better than the best bid submitted, by generating athe model. If the inconclusive result is because of infeasible
“BidNotBetter” exception if it fails. This exception is han- paths, then the analyst can introddeasibility constraints
dled by a continue handler at the step “Accept One Bid” which are also represented as FSAs, to improve the precision
which causes the “Accept One Bid” step to be reinstantiated of the model and thereby eliminate some infeasible paths
as if the exception never happened. from consideration. An analyst might need to iteratively add
If the pre-requisite on the recursive call to “Accept One feasibility constraints and observe the analysis results sev-
Bid” fails, then it generates an “AuctionClosed” exception eral times before determining whether a property is conclu-
that is handled by its parent. The parent has a complete hansive or not. Feasibility constraints give analysts some control
dler for this exception, which causes the parent to complete.over the analysis process by letting them determine exactly
When the parent completes, then the entire recursive chainwhat parts of a system need to be modeled in order to prove
of calls to “Accept One Bid” completes. This allows the a property.
“Accept Bids From Bidder” step that spawned this chain to The FLAVERS state propagation algorithm has worst-
complete when its other substep finishes. case complexity thati® (N2 - |S|), whereN is the number
This definition provides a compact, yet clear and pre- of nodes in the TFG, anld| is the product of the number of
cise, representation of a complicated process. The Little- states in the property and all constraints. In our experience,
JIL constructs seem effective in supporting intuitive under- a large class of interesting and important properties can be
standings through appropriate process abstractions. Yet, aproved by using only a small set of feasibility constraints.
noted above, these abstractions conceal complex underlying
s_emantics thqt_ can mask serious process definit?on faults. Fi-g Modeling Processes
nite state verification should be used to determine the pres-

ence or absence of such faults. Earlier we described a representative set of Little-JIL con-
structs and demonstrated their use in writing a clear, precise,
4 FLAVERS and concise definition of an auction process. In this section

we indicate the complexity concealed by some of these con-
FLAVERS (FLow Analysis forVERIification of Systems) is structs by demonstrating their flowgraph models. Moreover,
a static analysis tool that can verify user specified proper- the exception handlers on a step can greatly affect the model
ties of sequential and concurrent systems [5]. The modelfor that step. In this section we indicate how some of this
FLAVERS uses is based on annotat@ahtrol Flow Graphs complexity can arise. Space does not permit complete spec-
(CFG). Annotations are placed on nodes of the CFGs to rep-ifications of all models of all possible combinations of steps
resent events that occur during execution of the actions assoand exception handlers. Rather, we illustrate the models of
ciated with a node. Since a CFG corresponds to the controleach step kind using one kind of exception handler, usually
flow of a sequential system, this representation is not suffi- one that simplifies the model for that step.
cient for modeling a concurrent system. FLAVERS uses a
Trace Flow Graph(TFG) to represent concurrent systems.
The TFG consists of a collection of CFGs witay Imme-
diately PrecedéMIP) edges between tasks to show intertask

[Cotsored | [sensiarted |
Terminated
‘ L eaf Completed ‘ ‘ Leaf Terminated ‘
Completed
Terminated
Figure 4: Model of a Leaf Step Completed
Terminated
Substepy,
5.1 Leaf Steps Completed
A Leaf Step in Little-JIL represents a unit of work to be per- | SeqCompleted | | SeqTerminated |
formed by an agent. The model for a Leaf Step is shown in
Figure 4. Control flows in from the parent of the Leaf Step

and the step is posted. After being posted, the step can be _ _

started. From the started state, the step can either complete Figure 5: Model of a Sequential Step

or terminate. A pre-requisite can be added by putting its

model between the “LeafPosted” and “LeafStarted” node. A e model of this step, as shown in Figure 6, has a dashed
post-requisite can be added by putting its model immediately ¢ e in it to represent interactions that may occur due to con-

before the “LeafCompleted” node. Since steps terminate if ¢ irency. In particular, the dashed edge represents a set of
their requisites terminate, the model should have the termi- r| A/ERS MIP edges, which are used to represent the ways

nated path out of the pre- and post-requisites connected 0, \yhich flow can move between different tasks. The dashed

the “LeafTerminated” node. edge in this figure represents the addition of MIP edges be-
tween every pair of nodes in Substegnd Substep
5.2 Sequential Steps In addition, the parallel step cannot finish until all of its

: ; substeps have finishedThe potential parallelism involved
A sequential step performs the work of all of its substeps, makes representing this behavior directly in a TFG difficult,

one at a time, from left to right. Suppose, for simplicity, , - .
the sequential step has rethrow handlers for any exceptionSO we hqve chosen to use FLAVERS' feasibility constraint
mechanism to ensure that the parallel step cannot complete

hrown by i . This means that when an ex ion : . . - .
thrown by its substeps S means that when an exceptio or terminate until all of its substeps have finished. This ap-

is thrown, the sequential step terminates. This model, gen- . . .
eralized ton substeps, is shown in Figure 5. As before, flow proach is consistent with hpw FLAVERS models some of
the concurrency constructs in Java [17].

comes in from the sequential step’s parent and it is posted
and then started. At this point, the sequential step attempts
to do its first substep. Since this is a recursive model, the 5-4 Try Steps

model for the first substep is represented by the oval IabeledAIthough our Open-Cry Auction process example does not

Substep. If Substep completes, the process moves on 10y de any choice steps or try steps, we now describe how
_the next substep, and continues in this fashlon_untll Substep iheir semantics can be modeled. Try steps are designed to
is reached. If Substgpcompletes, the sequential step COM- v their substeps one at a time, in order, until one com-

pletes. If any substep terminates, then the sequential Steppletes. For the model shown in Figure 6, we assume a try

terminates. step has only continue exception handlers, so that the try
step can attempt all of its substeps. The try step begins by
5.3 Parallel Steps attempting Substep If an attempted substep completes, the

step completes, but if it terminates, the process moves on to
the next substep. If any of the substeps completes, the try
step completes; if all of the substeps terminate, the try step
terminates.

A parallel step allows the work of its substeps to proceed
concurrently. As with the sequential step, we assume for
simplicity that the parallel step has only rethrow handlers.
While the parallel step may in general havesubsteps, for

simplicity we show a parallel step that has only two substeps. !In some instances, the substeps may need to be retracted. Modeling this, while
possible, exceeds the scope of this paper.

TryPosed | ChoiceStarted
rapic_| L s |
Completed
PerStarted ‘ SubsteleasNotStaned‘ C ‘ SubieanasNotStaned‘
Completed
Substepy) Substep, Substep , HasStarted
Completed Terminated
. Completed
Completed Terminated . :
ParCompleted ‘ ‘ ParTerminated ‘ ‘ TryTerminated ‘ ‘ TryCompleted ‘ ChoiceCompleted
Parallel Step Try Step Choice Step
Figure 6: Models of Parallel, Try, and Choice Steps
Substep j HasNotStarted sure that FLAVERS does not consider paths on which the
X substep, Strted GO Substep ; Started ith substep is started more than once. Sta_te 1, the start state,
Substep ; HasStarted represents the state of the system in whichithesubstep
Substep HesSartd Sostep HasNorSarted has not been started. When an event “SuhStgpted” oc-
: : curs, then the constraint moves into state 2. This event does
@ not appear in the model for the Choice step, but will appear

in the model for the substep. State 2 represents the state of
the system in which thé&h substep has been started at least
once. Both states 1 and 2 have transitions on the assertion
“SubstepHasNotStarted”. In state 1, this transition is a self
5.5 Choice Steps loop, so encountering this event does not affect the analysis.
) o) In state 2, this transition goes to the violation state. When a
Choice steps are similar to try steps, except there is N0 re-cqnsiraint transitions into its violation state, then FLAVERS
striction on the order in which the substeps are attempted;eats the path it is currently examining as an infeasible path
substeps are selected one at a time until one completes. The g oes not consider it further in the analysis. In this way,
choice step completes when a substep completéée as- e feasibility constraint prevents the analysis from consider-
sume that all exception handlers in our model of the choice jg paths on which a substep is started twice. The transitions
step, shown in Figure 6, are continue handlers. For this «ghstepHasStarted” behave in a similar fashion and pre-
model, we have again chosen to use FLAVERS' feasibility \en; the Choice step from terminating unless this step has
constraints to reduce the size of the model. This model haspaen started. This constraint only deals with substeso

nodes annotated with events, like SubstégsNotStarted, or 5 choice step with substeps, we may need to use
that are used in feasibility constraints to limit the ways in gnstraints in the analysis.
which the TFG model is traversed during analysis. These Tne unlabeled node in the model represents a decision
constraints prevent FLAVERS from starting substeps more point, where the process can choose between one of its
than once and from terminating the Choige Step before .aII substeps. From this point, there is a branch representing
of the substeps have been attempted. Adding these speciallyach choice, guarded by an assertion. If the selected sub-
annotated nodes does increase the size of the TFG, but nogie, completes, the choice step completes. Otherwise, the
as much as it would be increased if we were to represent a”process moves back to the decision node. Once all of the
the ways of selecting the substeps explicitly inthe TFG. gpsteps have been tried, the process can no longer choose
The FSA in Figure 7 is a constraint that is used to en- oy of the substeps, so the feasibility constraints allow the
?As with the try step, retraction of substeps, which exceeds the scope of this paper, choice step to terminate by following the branch with
may be required. “SubstepHasStarted” guards. The feasibility constraints are

Figure 7: A Feasibility Constraint for the Choice Step

Property TFG Nodes| TFG Edges Result Time (s)
No Late Bids Accepted 216 11,837 Inconclusive —fault 6.56
No Late Bids Accepted 316 30,881 Conclusive 41.10
Possible Race Condition 327 35,788 Inconclusive — fault] 143.25
No Race Condition (no lock) 189 7,710 Inconclusive — faultf 15.07
No Race Condition (with lock 269 20,910 Conclusive 17.52

Table 1: FLAVERS Analysis Results

used to ensure that the choice step cannot terminate until all Uod ?3 i

of its substeps have been attempted. _ pdate Best B
The choice step can add considerable complexity to the AuctionflatClosed Vv 1A

model of a Little-JIL process definition. If there atesub-

steps to a choice step, it is possible thatadubsteps might Figure 8: Corrected Step

be tried before the choice step finishes. Thereiasays that

one of them can be chosen(n — 1) ways that two of them)) .
can be chosen, and so on. This means that in the worst casé€ “Update Best Bid” that is started and completed to be in
there are? ((n + 1)!) possible paths that need to be consid- the same step. Thus, we need to check this property for each
ered. Experience has shown that human agents require th&idder separately. Since each bidder is an mstantlatmn of the
empowerment that constructs such as the choice step proSa@me step, we only need to demonstrate that this property
vide. The model needed to represent the execution semanholds for one representative bidder. _

tics shows, however, that the behavior of the choice step is AS Shown in Table 1 under the property “No Late Bids
far from straightforward. This suggests that users may well Accepted”, FLAVERS returned inconclusive results for this
be attracted to its use, but that reasoning about processes ud2roperty. Using FLAVERS, we were able to compute an ex-
ing the choice step is likely to be costly. Our expectation is ecution trace of a violating path. Upon examination of this

that human users will greatly benefit from automated aids in Path. it was easy to identify the problem with the process.
reasoning about such processes. The “Submit Bid” step can be posted before the auction is

closed, and started after the auction is closed. There is noth-
ing preventing a bid submitted in this fashion from reaching
and being considered by the “Update Best Bid” step. We can

To evaluate our approach to analyzing properties of process.CorreCt this by adding an *AuctionNotClosed" pre-requisite

definitions, we used FLAVERS to check several properties in the .Update Best_ Bid” step, as shown as part of Flggre
of the Open-Cry Auction. All experiments were run on 8. This property with the corrected process was verified

a Pentium Il 400 Mhz PC with 384 MB of memory, run- S7ClSVely. The detals for his are in the row "o Late
ning RedHat Linux 5.1 with kernel version 2.0.34. The ids Acceptegl’. The reason that the checking this property

FLAVERS state propagation algorithm has been written in ‘FOS/L‘\)E%QS‘*T that1)r|1 t?e cthecktlntg of the orltgmal version 1s .tthjt
C and compiled with gcc 2.7.2.3. Currently, we cannot auto- IS able 1o slop state propagation as soon as It de-

matically build models directly from Little-JIL process def- termme; a property is violated. Howev.er, W'th conclus!ve

initions. The purpose of this experiment was to investigate resultsj it has to perf_orm state propagation until all possible

the feasibility of performing analyses on processes. So, for executions are considered.

now, we used a combination of manual and automated tech-

niques to generate annotated CFGs, the input FLAVERS ex-6-2 Possible Race Condition

pects. These CFGs were used to construct the TFG. Wheny; j5 hossible to use FLAVERS to analyze process defini-

constructing a TFG, FLAVERS abstracts away parts of the yjong tg see if there is the potential for race conditions. In

model that are irrelevant to the property being checked, S0 o e tg jllustrate this, our Open-Cry Auction model needs

the size of the TFG changes depending on the property béy, pe annotated with some parameter information. The pro-

ing evaluated. cess shown in Figure 9 is still not a complete depiction of
the process, but has enough parameter information shown to

6.1 No Late Bids Accepted enable us to check the property.

To verify that no late bids can be accepted, it is necessary. In Little-JIL, parameter passing is done with a copy-

to verify that on no executions of the process can “Update m/cqpy—out mechanls_m. For the mos_,t part, th's prevents
Best Bid” be started and completed for a bid after “Close multiple steps from using the same variable, which helps re-

Auction” is completed. For this sequence of events, we want duce the likelihood of race conditions. In our process, how-

6 Experimental Results

’/¢ best: BidReference

may not end up being the highest bid in the auction.

Thus, we want to ensure that no access to variable “best”
occurs between the time a bid is determined to be better than
“best” and the time that “best” is updated to be this new high-
S est bid. FLAVERS was unable to determine conclusively

Close Auction Accept Bids From Bidder
v

Open-Cry Auction
\ A

= x|2 that this property holds if no protections on access to “best”
Lbest BidReforonde N L are specified. But, when we incorporated a model the behav-
J—— ior of a lock on variable “best” using a feasibility constraint,
Accept One Bid Accept Bids From Bidder . .
v B i we were able to verify the property conclusively. The com-
 AuctionClosed putation times for both of these checks are shown in Table
BidNotHigh
< BidNoiBeter 1
bes\\ <! DeadlineExpired
Odeadine: Duration=1 e We have proven conclusively that if the auctioneer agent

Vbest: BidReferende

Submit Bid BidisHigher Update Best Bid Accept One Bid
AuctionNotClosed -y A
{

locks the variable “best”, then this undesirable race condi-
tion can be avoided. We have not, however, verified that this
process definition does not have a race condition on variable
“best”. Doing this analysis would require performing analy-
sis on the implementation of the auctioneer agent. Especially
for an ecommerce application, it cannot be expected that the
ever, there is a parameter “best” of type BidReference. This analyst will always have access to the implementations of all
makes “best” a pointer to a bid, meaning even with copy- the agents that will be coordinated by a process definition. If
in/copy-out semantics several steps can be accessing the bithe implementation of the auctioneer were available, then it
pointed to by “best” at the same time. This is necessary sowould be relatively simple to use verification to prove that
the auctioneer, during “Update Best Bid”, is able to examine the auctioneer performs the proper locking and unlocking
the current high bid at all times. This, however, could also of the variable “best”. Alternatively, we can use feasibility
lead to a race condition. constraints, as we did in this example, to represent the rel-
To determine if there is the potential for a race condition evant behavior of the missing components. First we would
in the process, we first need to determine which steps canneed to show that the process, along with these feasibility
use the variable “best”. This is necessary since “best” is constraints is consistent with the specified properties. When
passed into many steps, but only used by a small subset othe missing agents become available for analysis, we would
them. This identification cannot be done directly from the then need to show that they indeed satisfied the feasibility
process definition, since it requires knowledge of the agents’ constraints that we used to model their behavior. This al-
behaviors. In this Open-Cry auction we assume that the only lows us to decompose the analysis process, providing the

Figure 9: Revised Open-Cry Auction Process

step that uses the variable “best” is “Update Best Bid". We
can then determine if it is possible for a race condition to
exist by checking a property to see if two “Update Best Bid”

potential for analyzing large systems that may be distributed
among various sites and companies, and written in different
languages.

steps can be started at the same time.
In the Open-Cry Auction, FLAVERS returns inconclu-

It is important to acknowledge, however, that key com-
ponents of real world processes may not be available for in-
sive for this property. By examining the trace provided by spection and analysis. In such cases, verifications of prop-
FLAVERS, it is clear that two “Update Best Bid” steps for erties such as the one we have been discussing can still be
two different bidders can be started at the same time. Sincecompleted and lead to definitive results, but only if credible
we know now that a race condition can exist, we can take assurances about their behavior can be provided. Itis not un-
steps to ensure that a failure does not occur from any errorreasonable to envision a future in which participants in pro-
in using the variable “best”. cesses such as auctions may not wish to provide their com-
ponentry, but may be willing to have key properties (such as
the one we have been considering) established and certified

)) by disinterested third parties.
Suppose there were no protections on the variable “best” to

prevent it from being used multiple times simultaneously.
Assume that an auctioneer agent is in charge of the “Update
Best Bid” step. Then if the auctioneer agent were consid-
ering two bids at the same time, it could compare both bids
to “best” in any order, but never to each other. As a result,
the bid pointed to by “best” at the end of these steps would
depend on the order of comparison, and the value of “best”

6.3 No Race Condition

7 Related Work

This work expands on the types of analyses that have been
explored for process definition systems. For example, the
IDEFO system uses simple forms of analysis to demonstrate
certain sorts of well-formedness properties in its diagram-
matic definitions [16]. IDEFO is essentially a dataflow rep-

resentation of a process. As such the analyses performedf intuition, while an advantage, can cause problems by mis-
check for consistent specification of operand inputs and out- leading people into incorrect understandings because subtle,
puts and appropriate nesting. The ProcessWeaver systenyet important, details have been overlooked. The incorrect
incorporates stronger semantic features, and uses them foprocess shown in Figure 3 was examined by several people
more powerful and diverse sorts of consistency checking who were knowledgeable about both auctions and Little-JIL.
[7]. In particular, its greater attention to the specification Yet ittook several days before anyone realized that there was
of operand flows enables ProcessWeaver to perform limiteda defect in the process.
sorts of type checking. In Statemate process definers can de- We were pleased that the FLAVERS finite state verifi-
velop up to three separate process representations [8]. Statesation system was able to detect this defect, and to verify
mate performs well-formedness checks on each of the three pther properties. But this verification was not without prob-
but in addition it carries out limited forms of cross-diagram lems. Little-JIL uses recursion instead of an explicit looping
consistency checks. construct. Finite state verifiers, such as FLAVERS, how-
Perhaps the most ambitious static analysis is carried outever, require that recursive constructs be converted to finite
in the FunsoftNets system [2]. This system uses a Petri Net-representations. In doing this, care must be taken to ensure
like model to define processes. The system incorporates anathe consideration of event sequences that only happen after
lyzers that evaluate well-formedness and detect such defectsleep recursion occurs. The exception handling mechanism
as deadlocks and traps in the underlying Petri Net. In ad- of Little-JIL poses still other problems. For example, in a
dition, such process specific defects as unprocessable objegbarallel step, more than one substep may generate an excep-
types (which are analogous to dead variable definitions) aretion. If this happens, then the exception handlers can execute
also detected. concurrently, and the behavior of the process after the han-
We are not aware of any other process definition system dlers finish is dependent on the types of handlers that were
that has been used as the basis for finite state verification ofexecuted. Other features of the language may present chal-
properties, as described here. However, there is a rich litera-lenges. For example, some of the popular features of Little-
ture describing the application of finite state verification to a JIL, such as the choice step, required sizeable flow graphs
wide range of software. Perhaps the work that comes closesfor their representation, which could lead to increased exe-
to this, is the work on applying verification techniques to ar- cution times for FLAVERS' verification. In addition, Little-
chitecture description languages (ADL) [1, 18]. ADLs tend JIL is a factored language, with the resource manager being
to focus on a high level description of system to system com- a separate component. Certain analyses might require that
munication and on the mechanism for that communication, the control flow of the process and the resource model both
for example, remote method invocation or event based notifi- be represented. This means that we need to determine a way
cation. From one perspective, process languages are similato represent the resource model for FLAVERS. Feasibility
in that they also provide a high-level language for describ- automata may provide a mechanism for doing this, but pos-
ing systems of systems. Unlike ADLs, process languagessibly at the expense of additional complexity and an increase
also focus on the interactions of humans with systems. Thisin the time needed for analysis.
mix of humans and systems necessitates more complex con- In this work, representation problems were dealt with by
trol flow constructs, including exception handling and reac- a human, who used ad hoc techniques to translate the Little-
tive control. As a result, dealing with the models of process JIL definition of the auction process into a suitable input for
definitions can be more difficult than the models of ADLs. FLAVERS. Certainly it is desirable for this translation to
Besides FLAVERS, there are several other finite state be done automatically. But the language issues just enu-
verification techniques that could be used to verify proper- merated will certainly complicate this automation. For all
ties of processes, such as INCA [4], which uses integer nec-of these reasons we believe that the constructs in Little-JIL
essary conditions, SMV [14], which uses symbolic model (and by implication other advanced process definition lan-
checking, and SPIN [9], which uses reachability analysis. guages) need to be reconsidered in the light of the problems
We do not believe that any of these would be better able to that they may pose for static verification.
handle the complex control flow in process definitions but Our success in applying FLAVERS to reason about pro-
this hypothesis deserves further investigation. cess definitions suggests that other verification tools and ap-
proaches should also be tried. We plan to investigate the
use of other static analysis techniques, for example INCA
[4], SMV [14], and SPIN [9], to see how they can handle
The Open-Cry Auction examp|e shows how important itisto the complexities of analyzing process definitions written in
apply validation techniques, such as finite state verification, languages such as Little-JIL. Continuation of this research
to process definitions. Process definitions are often written line should lead to better understandings of which verifica-
at a high level, which allows users to quickly obtain an in- tion techniques might be most effective in analyzing which
tuitive understanding of the process. This rapid conveyanceProcess languages.

8 Conclusions

10

9 Acknowledgements

The authors would like to thank Aaron Cass, Sandy Wise,
and Hyungwon Lee for their help in developing the example
Little-JIL process. Aaron and Sandy were particularly help-
ful in clarifying the semantics of Little-JIL and assuring the [10]
accuracy of the FLAVERS model of the auction process.

This research was partially supported by the Defense
Advanced Research Projects Agency and the Air Force
Research Laboratory/IFTD under agreement F30602-97-2-
0032, and by the National Science Foundation under Grant
CCR9708184. The views, findings, and conclusions pre- [11]
sented here are those of the authors and should not be inter-
preted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency, the Air Force Research
Laboratory/IFTD, or the U.S. Government. [12]

References

[1] R. Allen, D. Garlan, and J. Ivers. Formal modeling and [13]
analysis of the HLA component integration standard.
In Proc. of the Sixth Int. Symp. on the Foundations of

. . 14
Software Engineeringpages 70-79, 1998. [14]

[2] A.Brockersand V. Gruhn. Computer-aided verification
of software process model properties. Rroc. of the
5th Int. Conf. on Advanced Information Systems Engi-
neering pages 521-546, 1993.

[15]

16
[3] A. G. Cass, H. Lee, B. S. Lerner, and L. J. Osterweil. [16]

Formally defining coordination process to support con-
tract negotiations. TR 99-39, University of Mas-

sachusetts, Department of Computer Science, 1999. [17]

[4] J. C. Corbett and G. S. Avrunin. Using integer pro-
gramming to verify general safety and liveness proper-
ties. Formal Methods in System Desigh97-123, Jan.

1995. [18]

[5] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. Fnoc.
of the ACM SIGSOFT '94 Symp. on the Foundations of

Software Engineeringpages 62—-75, Dec. 1994.
[19]

R. Engelbrecht-Wiggans. Auctions and bidding mod-
els: A survey. Management Scienc@6(2):119-142,
Feb. 1980.

[6]

20
[7] C. Fernstom. PROCESS WEAVER: Adding process 120]

support to UNIX. InSecond Int. Conf. on the Software
Processpages 12-26, 1993.

[8] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtul-Trauring, and
M. Trakhtenbrot. STATEMATE: A working environ-

ment for the development of complex reactive systems.

[21]

11

IEEE Trans. on Software Engineerints(4):403-414,
Apr. 1990.

[9] G.J.Holzmann. The model checker SPINEE Trans.

on Software Engineerin@3(5):279-295, May 1997.

D. Jensen, Y. Dong, B. S. Lerner, E. K. McCall, L. J.
Osterweil, S. M. Sutton Jr., and A. Wise. Coordinating
agent activities in knowledge discovery processes. In
Proc. of Work Activities Coordination and Collabora-
tion Conf, pages 137-146, 1999.

R. Kadia. Issues encountered in building a flexible
software development environment: Lessons from the
Arcadia project. InFifth ACM SIGSOFT Symp. on
Software Development Environmentsiges 169-180,
1992.

M. Kumar and S. |. Feldman. Business negotiations on
the internet. TR, IBM Institute for Advanced Com-
merce, March 1998.

M. Kumar and S. I. Feldman. Internet auctions. TR,
IBM Institute for Advanced Commerce, Nov 1998.

K. L. McMillan. Symbolic Model Checking: An Ap-
proach to the State Explosion Problerkluwer Aca-
demic Publishers, 1993.

P. Milgrom. Auctions and bidding: A primedournal
of Economic Perspective3(3):3—-22, Summer 1989.

National Institute of Standards and Technologp-
tegration Definition For Function Modeling (IDEFQ)
1993. Federal Information Processing Standards 183.

G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent
Java programs. IRroc. of the Int. Conf. Software En-
gineering pages 399-410, 1999.

G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Applying static analysis to software archi-
tectures. IrProc. of Fifth ACM SIGSOFT Symp. on the
Foundations of Software Engineering/Sixth European
Software Engineering Conpages 77-93, 1997.

L. Osterweil. Software processes are software too. In
Proc. of the Int. Conf. on Software Engineerimpgges
2-13,1987.

T. Sandholm and V. Lesser. Issues in automated negoti-
ation and electronic commerce: Extending the contract
net framework. IrFirst Int. Conf. on Multi-Agent Sys-
tems 1995.

A. Wise. Little-JIL 1.0 language report. TR 98-24,
University of Massachusetts, Department of Computer
Science, 1998.

