
D a t a F low Analys is In S o f t w a r e R e l i a b i l i t y *

LLOYD D. FOSDICK

and

LEON J. OSTERWEIL

Department of Computer ~cience, University of Colorado, Boulder, Colorado 80809

The ways that the methods of data flow analysis can be applied to improve
software reliability are described. There is also a review of the basic terminology
from graph theory and from data flow analysis in global program optimization. The
notation of regular expressions is used to describe actions on data for sets of paths.
These expressions provide the basis of a classification scheme for data flow which
represents patterns of data flow along paths within subprograms and along paths
which cross subprogram boundaries. Fast algorithms, originally introduced for
global optimization, are described and it is shown how they can be used to implement
the classification scheme. It is then shown how these same algorithms can also be
used to detect the presence of data flow anomalies which are symptomatic of
programming errors. Finally, some characteristics of and experience with DAVE, a
data flow analysis system embodying some of these ideas, are described.

Keywords and Phrases: automatic documentation, automatic error detection, data
flow analysis, software reliability
CR Categories: 4.40, 5.24

INTRODUCTION

For some t ime we have believed tha t a
careful analysis of the use of data in a
program, such as tha t done in global opti-
mization, could be a powerful means for
detecting errors in software and otherwise
improving its quality. Our recent experience
[27, 28] with a system constructed for this
purpose confirms this belief. As so often
happens on such projects, our knowledge
and understanding of this approach were
deepened considerably by the experience
gained in constructing this system, although
the pressures of meeting various deadlines
made it impossible to incorporate all of our
developing ideas into the system. More-

* This work supported by NSF Grant DCR
754)9972.

over, during its construction advances
were made in global optimization algorithms
tha t are useful to us, which for the same
reasons could not be incorporated in the
system. Our purpose in writing this paper
is to draw these various ideas together and
present them for the instruction and stimu-
lation of others who are interested in the
problem of software reliability.

The phrase "da ta flow analysis" became
firmly established in the li terature of global
program optimization several years ago
through the work of Cocke and Allen [2, 3,
4, 5, 6]. Considerable at tent ion has also
been given to data flow b y Dennis and his
co-workers [9, 29] in a different context,
advanced computer architecture. Our own
interpretation of data flow analysis is simi-

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish, but
not for profit, all or part of this material is granted provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Surveys, Vol. 8, No. 3, September 1976

306 • Data Flow Analysis In Software

CONTENTS

INTRODUCTION
BASIC DEFINITIONS--GRAPHS
BASIC DEFINITIONS--PATH EXPRESSIONS TO

REPRESENT DATA FLOW
ALGORITHMS TO SOLVE T H E LIVE VARIABLE

PROBLEM AND T H E AVAILABILITY PROBLEM
SEGMENTATION OF DATA FLOW
DETECT IN G ANOMOLOUS PATH EXPRESSIONS
CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

T

lar to that found in the literature of global
program optimization, but our emphasis
and objectives are different. Specifically,
execution of a computer program normally
implies input of data, operations on it, and
output of the results of these operations in
a sequence determined by the program and
the data. We view this sequence of events
as a flow of data from input to output in
which input values contribute to inter-
mediate results, these in turn contribute to
other intermediate results, and so forth
until the final results, which presumably
are output, are obtained. It is the ordered
use of data implicit in this process that is
the central object of study in data flow
analysis.

Data flow analysis does not imply execu-
tion of the program being analyzed. In-
stead, the program is scanned in a syste-
matic way and information about the use of
variables is collected so that certain in-
ferences can be made about the effect of
these uses at other points of the program.
An example from the context of global opti-
mization will illustrate the point. This ex-
ample, known as the live variable problem,
determines whether the value of some
variable is to be used in a computation

Reliability

after some designated computation step.
If it is not to be used, space for that vari-
able may be reallocated or an unnecessary
assignment of a value can be deleted. To
make this determination it is necessary to
look in effect at all possible execution se-
quences starting at the designated execution
step to see if the variable under considera-
tion is ever used again in a computation.
This is a difficult problem in any practical
situation because of the complexity of exe-
cution sequences, the aliasing of variables,
the use of external procedures, and other
factors. Thus a brute force attack on this
problem is doomed to failure. Clever al-
gorithms have been developed for dealing
with this and related problems. They do
not require explicit consideration of all
execution sequences in the program in order
to draw correct conclusions about the use of
variables. Indeed, the effort expended in
scanning through the program to gather
information is remarkably small. We dis-
cuss some of these algorithms in detail,
because they can be adapted to deal with
our own set of problems in software re-
liability, and turn to these problems now.

Data flow in a program is expected to be
consistent in various ways. If the value of
a variable is needed at some computation
step, say the variable a in the step

'y ~--- a-t- 1,

then it is normally assumed that at an
earlier computation step a value was
assigned to a. If a value is assigned to a
variable in a computation step, for example
to ~, then it is normally assumed that
that value will be used in a later computa-
tion step. When the pattern of use of vari-
ables is abnormal, so that our expectations
of how variables are to be used in a compu-
tation are violated, we say there is an
anomaly in the data flow. Examples of data
flow anomalies are illustrated in the fol-
lowing FORTRAN constructions. The first
is

X = A
X = B

Computing Surveys, Vol. 8, No. 3, September 1976

I t is clear that the first assignment to X is
useless. Why is the statement there at all?
Perhaps the author of the program meant to
write

X = A
Y = B

Another data flow anomaly is represented by
the FORTRAN construction

SUBROUTINE SUB(X, Y, Z)
Z = Y + W

Here W is undefined at the point that a
value for it is required in the computation.
Did the author mean X instead of W, or
W instead of X, or was W to be in COM-
MON? We do not know the answers to
these questions, but we do know that there
is an anomaly in the data flow.

As these examples suggest, common
programming errors cause data flow anoma-
lies. Such errors include misspelling, con-
fusion of names, incorrect parameter usage
in external procedure invocations, omission
of statements, and similar errors. The
presence of a data flow anomaly does not
imply that execution of the program will
definitely produce incorrect results; it im-
plies only that execution may produce in-
correct results. I t may produce incorrect
results depending on the input data, the
operating system, or other environmental
factors. I t may always produce incorrect
results regardless of these factors, or it
may never produce incorrect results. The
point is that the presence of a data flow
anomaly is at least a cause for concern be-
cause it often is a symptom of an error.
Certainly software containing data flow
anomalies is less likely to be reliable than
software which does not contain them.

Our primary goal in using data flow analy-
sis is the detection of data flow anomalies.
The examples above hardly require very
sophisticated techniques for their detection.
However, it can easily be imagined how

L. D. Fosdick and L. J . Osterweil • 307

similar anomalies could be embedded in a
large body of code in such a way as to be
very obscure. The algorithms we will de-
scribe make it possible to expose the pres-
ence of data flow anomalies in large bodies of
code where the patterns of data flow are
almost arbitrarily complex. The analysis is
not limited to individual procedures, as is
often the case in global optimization, but
it extends across procedure boundaries to
include entire programs composed of many
procedures.

The search for data flow anomalies can be-
come expensive to the point of being totally
impractical unless careful attention is
given to the organization of the search. Our
experience shows that a practical approach
begins with an initial determination of
whether or not any data flow anomalies
are present, leaving aside the question of
their specific location. This determination of
the presence of data flow anomalies is the
main subject of our discussion. We will see
that fast and effective algorithms can be
constructed for making this determination
and that these algorithms identify the
variables involved in the data flow anomalies
and provide rough information about loca-
tion. Moreover, these algorithms use as
their basic constituents the same algorithms
that are employed in global optimization
and require the same information, so they
could be particularly efficient if included
within an optimizing compiler.

Localizing an anomaly consists in finding
a path in the program containing the
anomaly; this raises the question of whether
the path is executable. For example, con-
sider Figure 1 and observe that although
there is a path proceeding sequentially
through the boxes 1, 2, 3, 4, 5, this path
can never be followed in any execution of
the program. An anomaly on such a non-
executable path is of no interest. The de-
termination of whether or not a path is
executable is particularly difficult, but often
can be made with a technique known as
symbolic execution [8, 19, 22]. In symbolic
execution the value of a variable is repre-
sented as a symbolic expression in terms of
certain variables designated as inputs,

Computing Surveys, Vol. 8, No. 3, September 1976

308 • Data Flow Analysis In Software Reliability

/
C

FIOURE 1. The path in this segment of a flow
diagram represented by visiting the boxes in the
sequence 1, 2, 3, 4, 5 is not executable. Note that
Y >_ 0 upon leaving box 1 and this condition is
true upon entry to box 4, thus the exit labeled
T could not be taken.

rather than as a number. The symbolic
expression for a variable carries enough
information that if numerical values were
assigned to the inputs a numerical value
could be obtained for the variable. Symbolic
execution requires the systematic derivation
of these expressions. Symbolic execution is
very costly, and although we believe further
study will lead to more efficient imple-
mentations, it seems certain that this will
remain relatively expensive. Therefore a
practical approach to anomaly detection
should avoid symbolic execution until it is
really necessary. In particular, with pres-
ently known algorithms the least expensive
procedure appears to be: 1) determine
whether an anomaly is present, 2) find a
path containing this anomaly, and then
3) attempt to determine whether the path
is executable.

We show that the algorithms presented
here do provide information about the
presence of anomalies on executable paths.
While they do not identify the paths, the
fact that they can report the presence of an

anomaly on an executable path without
resorting to symbolic execution is of con-
siderable practical importance.

While an anomaly can be detected me-
chanically by the techniques we describe,
the detection of an underlying error re-
quires additional effort. The simple ex-
amples of data flow anomalies given earlier
make it clear that a knowledge of the in-
tent of the programmer is necessary to
identify the error. I t is unreasonable to
assume that the programmer will provide
in advance enough additional information
about intent that the errors too can be
mechanically detected. We visualize the
actual error detection as being done man-
ually by the programmer, provided with
information about the anomalies present
in his program. Obviously, many tools
could be provided to make the task easier,
but in the end it must be a human who
determines the meaning of an anomaly.
We like to think of a system which detects
data flow anomalies as a powerful, thorough,
tireless critic, which can inspect a program
and say to the programmer: "There is
something unusual about the way you
used the variable a in this statement. Per-
haps you should check it." The critic might
be even more specific and say, "Surely
there is something wrong here. You are
trying to use ~ in the evaluation of this
expression, but you have not given a value
to a ."

The data flow analysis required for de-
tection of anomalies also provides routine
but valuable information for the documenta-
tion of programs. For example, it provides
information about which variables receive
values as a result of a procedure invocation
and which variables must supply values to
a procedure. I t identifies the aliasing that
results from the multiple definition of
COMMON blocks in FORTRAN programs.
It identifies regions of the program where
some variables are not used at all. I t recog-
nizes the order in which procedures may
be invoked. This partial list illustrates that
the documentation information provided
by this mechanism can be useful, not only
to the person responsible for its construction,
but also to users and maintainers.

Computing Surveys, VoL 8, No 3, September 1976

We are ready now to enter into the de-
tails of this discussion. We begin with a
presentation of certain definitions from graph
theory. Graphs are an essential tool in data
flow analysis, used to represent the execu-
tion sequences in a program. We follow
this with a discussion of the expressions
we use to represent the actions performed
on data in a program. The notation in-
troduced here greatly simplifies the later
discussion of data flow analysis. Next, we
discuss the basic algorithmic tools required
for data flow analysis. Then we describe
both a technique for segmenting the data
flow analysis and the systematic applica-
tion of this technique to detect data flow
anomalies in a program. We conclude with a
discussion of the experience we have had with
a prototype system based on these ideas.

BASIC DEFINITIONS--GRAPHS

Formally a graph is represented by G (N , E)
where N is a set of nodes {nl, n2 , . . . , nk}
and E is a set of ordered pairs of nodes
called the edges, { (n~ , n ~) , (nj3 , n:4), "'" ,
(n~_~ , n~m)}, where the n~,s are not neces-
sarily distinct. For example, for the graph in
Figure 2,

N -- {0, 1, 2, 3,4},
E = { (0, 1), (0, 2), (2, 2), (2, 3), (4, 2),

(1, 4), (4, 1)}.

The number of nodes in the graph is repre-
sented by J N [and the number of edges
by]E]. For the graph in Figure 2, i N_ i1~ ,5
and I E] = 7. For any graph]E I _ , , I
since a particular ordered pair of nodes
may appear at most once in the set E.

o

FIGURE 2. Pictor ia l r epresen ta t ion of a d i rected
graph. The points , labeled here as 0, 1, 2, 3, 4,
are called nodes, and the l ines jo in ing them are
called edges.

L. D. Fosdick and L. J . Osterweil • 309

For the graphs that will be of interest to us
it is usually true that]E I is substantially
less than IN 12; in fact it is customary to
assume that I E I g k I N I where k is a
small integer constant.

For an edge, say (n,, nj) , we say that
the edge goes from n, to n~ ; n, is called a
predecessor of nj, and nj is called a successor
of n , . The number of predecessors of a
node is called the in-degree of the node,
and the number of successors of a node is
called the out-degree of the node. For the
graph shown in Figure 2, 0 is the predecessor
of 1 and 2, the out-degree of 0 is two; 0 is
not a successor of any node, it has the in-
degree zero. In this figure we also see tha t
4 is both a successor and a predecessor of
1, and 2 is a successor and predecessor of
itself. A node with no predecessors (i.e.,
in-degree = 0) is called an enry node, and
a node with no successors (i.e., out-degree
= 0) is called an exit node; in Figure 2,
0 is the only entry node and 3 is the only
exit node.

A path in G is a sequence of nodes nj 1 ,
n ~ , - . . , n~k such that every adjacent
pair (n~l, n~,+l) is in E. We say that this
path goes from nj~ to n~ k. In Figure 2,
0, 2, 3 is a path from 0 to 3; 1, 4, 1, is a
path from 1 to 1. There is an infinity of
paths from 1 to 1: 1, 4, 1; 1, 4, 1, 4, 1;
etc. The length of a path i~ the number of
nodes in the path, less one (equivalently,
the number of edges) ; thus the length of the
path 0, 1, 4, 1, 4, 2, 3 in Figure 2 is six.
If n ~ , n~2, . . . , n~k is a path p, then any
subsequence of the form n~,, nj,+~, . . . ,
n~,+~for 1 _~ i ~ k a n d 1 _~ m _~ k - i
is also a path, p'; we say that p contains the
path p'.

If p is a path from n, to n~ and i -- j ,
then p is a cycle. In Figure 2 the paths 1, 4, 1;
1, 4, 1, 4, 1, and 2, 2 are cycles. The path
0, 1, 4, 1, 4, 2, 3 contains a cycle. A path
which contains no cycles is acyclic, and a
graph in which all paths are acyclic is an
acyclic graph.

If every node of a connected graph has in-
degree one and thus has a unique prede-
cessor, except for one node which has in-
degree zero, the graph is a tree T (N , E) .
The graph in Figure 3 is a tree, and if the

Computing Surveys, VoL 8, No. 3, September 1976

310 • Data Flow Analysis In Software Reliability

0

FIGURe. 3. Pictorial representation of a tree
rooted at 0. Each node has a unique predecessor
except the root which has no predecessor.

edges (4, 1), (4, 2), and (2, 2) in Figure 2
are deleted, then the resulting graph is also
a tree. The unique entry node is called the
root of the tree and the exit nodes are called
the leafs. I t will be recognized that there is
exactly one path from the root to each node
.in a tree; thus we can speak of a partial order-
mg of the nodes in a tree. In particular, if
there is a path from n, to n~ in a tree, then
n, comes before nj in the tree; we say that
n, is an ancestor of n~ and n~ is a descendent
of n, . In Figure 3 every node except 0 is a
descendent of 0, and 0 is the ancestor of all
of these nodes. Similarly 1 is an ancestor of
the nodes 2, 3, 4, 5, 6; on the other hand, 7
is not an ancestor of these nodes. A tree
which has been derived from a directed
graph by the deletion of certain edges, but
of no nodes, is called a spanning tree of the
graph.

These elementary definitions are com-
monly accepted, but they are not universal.
Graph theory seems to be notorious for its
nonstandard terminology. Additional in-
formation on this subject can be found in
various texts such as Knuth [24], and Harary
[13].

The use of flowcharts as pictorial repre-
sentations of the flow of control in a com-
puter program dates back to at least 1947
in the work of Goldstine and yon Neumann
[11], and the advantage of the systematic
application of graph theory to computer
programming was pointed out in 1960 by
Karl) [21]. In recent years this approach has
been actively developed with numerous
articles appearing in the SIAM Journal on
Camputing, the Journal of the ACM, and

many conference proceedings, especially
those of the ACM Special Interest Group on
the Theory of Computing. We now introduce
some ideas and definitions drawn from this
literature pertinent to the subsequent dis-
cussion.

When a graph is used to represent the
flow of control from one statement to an-
other in a program, it is called a flow graph.
A flow graph must have a single entry node,
but may have more than one exit node, and
there must be a path from the entry node
to every node in the flow graph. Formally,
a flow graph is represented by GF(N, E, no),
where N and E are the node and edge sets,
respectively, and no, an element of N, is
the unique entry node.

Generally the nodes of a flow graph
represent statements of a program and the
edges represent control paths from one state-
ment to the next. In data flow analysis the
flow graph is used to guide a search over
the statements of a program to determine
certain relationships between the uses of
data in various statements. Thus before
data flow analysis can begin, a correspond-
ence between the statements of a program
and the nodes of a flow graph must be
established. Unfortunately, difficulties arise
in trying to establish this correspondence
because of the structure of the language
and the requirements of data flow analysis.

Statements in higher level languages can
consist of more than one part, and not all

x=x+l.O
IF(X LT Y) JfJ÷1
A=X*X

n i

n l+ l~

I
n i + 3 q

~ r l l + 2

FIGURE 4. Graph representation of a segment
of a FORTRAN program. Node n, represents
the s ta tement X -- X + 1.0, node n,+~ repre-
sents the first part of the IF s ta tement
I F (X . L T . Y) , node n,+z represents the second
part of the IF s ta tement J = J -{- 1, and node
n,+a represents the s ta tement A = X , X .

Computing SurveyB. Vol 8, No. 3, September 1976

L. D. Fosdick and L. J. Os~rweil • 311

parts may be executed when the statement
is executed. This is the case with the
FORTRAN logical IF, as in

IF(A .LE. 1.0)J = J -t- 1,

where execution of the statement does not
necessarily imply fetching a value of J
from storage and changing it. For the pur-
pose of data flow analysis it is desirable to
separate such statements into their con-
stituent parts and let each part be repre-
sented by a node in Gp as illustrated in
Figure 4 for this IF statement.

Statements which reference external pro-
cedures pose a far more serious problem.
Such statements actually represent se-
quences of statements. If a node in a flow
graph is used to represent an external pro-
cedure, then some ambiguities in the data
flow analysis arise because the control struc-
ture of the represented external procedure
is, so to speak, hidden. On the other hand,
if we permit this control structure to be
completely exposed by placing its flow graph
at the point of appearance of the referencing
statement, then we invite a combinatorial
explosion. Later we will discuss mechanisms
for propagating critical data flow informa-
tion across procedure boundaries in such a
way as to avoid a combinatorial explosion,
but at the price of losing some information.
An important construction used here is the
call graph.

C--~IAIN PROGRAM

CALL SUBA~ ..)

Y=X+FUNA()

END
SUBROUTINE SUBA(-)

Z=FUNB()+l 0

END
FUNCTION FUNA()

YIFUNB ()-I 0

END
FUNCTION FUNB()

END

FUNB~~ ~'~°FUNA

FIGURE 5. I l lu s t r a t ion of the call g raph for a
FORTRAN program. The nodes have been
labeled to ident i fy the program un i t repre-
sented.

FIGURE 6. I l lu s t r a t ion of a t r ans format ion which
replaces paths consis t ing of a single en t ry and a
single exit by a node. In the transformed graph
open circles have been used to ident i fy nodes
represent ing pa ths in the original graph.

Formally a call graph, which we represent
by Go(N, E, no) is identical to a flow
graph. However the nodes and edges have
a different interpretation: using FORTRAN
terminology, the nodes in a call graph repre-
sent program units (a main program and
subprograms); an edge (n~, n~) represents
the fact that execution of the program unit
n, will directly invoke execution of the pro-
gram unit n~. This is illustrated in Figure 5.
In data flow analysis the call graph is used
to guide the analysis from one program
unit to another in an appropriate order.

In data flow analysis, transformations are
sometimes applied to a flow graph to reduce
the number of nodes and edges, with nodes
in the resulting graph representing larger
segments of the program. One of these
transformations is illustrated in Figure 6.
Here all nodes along paths from a node with
a single exit to a node with a single entry
and containing only paths with this prop-
erty are collapsed into a single node. The
nodes in the transformed graph are called
basic blocks [4, 6, 31]. The important and
obvious fact about a basic block is that it
represents a set of statements which must
be executed sequentially; in particular if
any statement of the set is executed, then
every statement of the set is executed in the
prescribed sequence. Maximality is implicit

Computing Surveys, Vol. 8, No. 3, September 1976

312 • Data Flow Analysis In Software Reliability

in the definition of a basic block, i.e., no
additional nodes can be collapsed into the
node representing a basic block, and the
single entry, single exit condition is pre-
served. I t follows easily that in a flow
graph in which every node is a basic block,
either E = ~ (the empty set) or for every
(n , , n~)E E either the out-degree of n,
is greater than 1, or the in-degree of n~
is greater than 1, or both of these condi-
tions are satisfied.

Since there are no branches or cycles in a
basic block, the analysis of data flow in it
is particularly simple. In some situations
the reduction of a flow graph in which nodes
are statements to one in which the nodes
are basic blocks results in a significant re-
duction in the number of nodes. In such
cases there is a practical advantage in per-
forming the data flow analysis on the basic
blocks first, then reducing the flow graph to
one in which the nodes are the basic blocks
and continuing the data flow analysis on the
reduced graph. However, we have found
that the average reduction in the node
count for FORTRAN programs is about 0.56.
Thus for FORTRAN it is not clear that a
significant advantage can be obtained by
this initial preprocessing of basic blocks and
reduction of the graph. In global optimiza-
tion it is customary [4, 6, 31] to use basic
blocks, since an intermediate language,
close to assembly language, is used and the
reduction in node count is significant.

Knuth [24] is the standard reference for
data structures to represent graphs. Hop-
croft and Tarjan [17] describe a structure
that is particularly efficient for the search
algorithms described here and is illustrated
in Figure 7. In this structure there is an
ordered list of I N I elements, each represent-

FIOURE 7. Da ta structure for the graphin Figure
2. This is a linked successor list representation.
The numbered entries could be replaced by
pointers to a node table carrying ancillary in-
formation.

ing a node and pointing to a linked sublist
of successors of that node. The storage cost
for this structure is IN I + 2 1 E I words
if we assume that one word is used to store
an integer. In practice it is necessary to
associate information of variable length with
each node so we need to allow for a second
pointer with each of the nodes, bringing the
storage cost to 2 (IN I + I E I), so that if
I E I ~ k] N], the cost is less than or equal
to 2(1 + k) IN I.

BASIC DEFINITIONS--PATH EXPRESSIONS
TO REPRESENT DATA FLOW

When a statement in a program is executed,
the data, represented by the variables, can
be affected in several ways, which we dis-
tinguish by the terms reference, define, and
undefine. When execution of a statement
requires that the value of a variable, say
a, be obtained from memory we say that a
is referenced in the statement. When execu-
tion of a statement assigns a value to a
variable, say a, we say that a is defined in
the statement. In the FORTRAN statement

A = B + C

B and C are referenced and A is defined, and
in the FORTRAN statement

I = I + l

I is referenced and defined. In the statement
A(I) = B + 1.0

B and I are referenced and A(I) is defined.
The undefinition of variables is more com-
plex to describe, and we note here only a
few instances. In FORTRAN the DO index
becomes undefined when the DO is satisfied,
and local variables in a subprogram become
undefined when a R E T U R N is executed.
In ALGOL local variables in a block become
undefined on exit from the block.

We will want to associate nodes in a flow
graph with sets of variables which are
referenced, defined, and undefined when
the node is executed. 1 In doing this the un-
definition operation requires special ar-

t Here and elsewhere we speak of nodes as if they
were the objects they represent, thus avoiding
cumbersome phrasing such as - - " . . . when the
s ta tement represented by the node is executed."

Computing Surveys, Voi. 8, No 3, September 1976

tention. Frequently, undefinition of a
variable occurs not by virtue of executing a
particular statement, but by virtue of exe-
cuting a particular pair of statements in
sequence. Consider, for example, the fol-
lowing FORTRAN segment:

DO 10 K = 1, N
X = X + A(K)
Y = Y + A(K)**2

10 CONTINUE
WRITE---

The DO index K becomes undefined when
the WRITE statement is executed after
the CONTINUE statement, but it does not
become undefined when the statement
X = X + A(K) is executed after the CON-
TINUE statement. Thus it would be more
appropriate to associate the undefinition
with an edge in the flow graph rather than
with a node. However, for consistency we
prefer to associate undefinition with nodes,
therefore in the example above we would
introduce a new node in the flow graph on
the edge between nodes for the CONTINUE
and the WRITE and would associate with
this node the operation of undefinition of K.
Similar situations in other languages can
be handled in the same way. In the discus-
sion which follows we assume that the un-
definition of variables takes place at specific
nodes introduced for that purpose and that
at such nodes no other operation, reference
or definition, takes place. Thus, in particular
for a flow graph representation of a FORTRAN
subroutine, we would introduce a node which
would not correspond to any statement
but would represent the undefinition of all
local variables on entry to the subroutine.
Similarly, at the subroutine exit a node
representing undefinition of local variables
would be introduced.

Array elements pose a problem, too.
While it is obvious that the first element of
A is referenced in the FORTRAN statement

B = A(1) + 1.0

no particular conclusion can be drawn about
which element is referenced in the state-

L. D. Fosdick and L. J. Osterweil • 313

ment

B - A(K) + 1.0

without looking elsewhere. That may be
hopeless if the program includes

READ(5, 100)K
B = A(K) + 1.0

For this reason we adopt the convenient,
but unsatisfactory, practice of treating all
elements of an array as if they were a single
variable.

The abbreviations r, d, and u are used
here to stand for reference, define, and
undefine, respectively. To represent a se-
quence of such actions on a variable these
abbreviations are written in left-right order
corresponding to the order in which these
actions occur; for example, in the FORTRAN
statement

A = A + B ,

the sequence of actions on A is rd, while for
B the sequence is simply r. In the FORTRAN
program segment

A = B + C
B f f i A + D
A = A + I . 0
B = A + 2 . 0
GO TO 10

the sequence of actions on A is drrdr and on
B it is rdd. We call these sequences path
expressions. Habermann [12] has used this
same terminology in a different context.
The path expressions purp', pddp ~, pdup',
where p and p' stand for arbitrary sequences
of r's, d's, and u's, are called anomalous
because each is symptomatic of an error as
discussed earlier. Our goal is to determine
whether such path expressions are present in
a program.

The problem of searching for certain
patterns of data actions is common in the
field of global program optimization, a
subject which receives extensive treatment
in a recent book by Schaeffer [31]. Recent
articles by Allen and Cocke [6] and Hecht
and Ullman [16] discuss aspects of this
problem that have particular relevance to

Computing Surveys, Vol 8, No 3, September 1976

314 • Data Flow Analysis In Software Reliability

our discussion. We focus on two problems in
global optimization: the live variable prob-
lem and the availability problem. We will
show that algorithms used to solve these
problems can also be used for the efficient
detection of anomalous path expressions.

The live variable problem has already
been sketched in the introduction to this
paper. The availability problem arises when
one seeks to determine whether the value
of an expression, say a + /~, which may be
required for the execution of a selected state-
ment actually needs to be computed, or
may be obtained instead by fetching a pre-
viously generated and stored value for it.
Since our specific interest in these problems
arises in the context of software reliability
rather than global optimization, we prefer
to characterize and define these problems in
a general setting which we now develop.

Consider a flow graph Gr(N, E, no).
With this flow graph we associate a set
known as the token set, denoted by tok,
consisting of elements a,/~, .. • . With every
node, n ~ N, we associate three disjoint sets:
gen(n), kill(n), and nuU(n), subsets of
tok, with gen(n) u kill(n) u null(n) = tok.
This association is illustrated in Figure 8.
Informally, one may think of the tokens as
representing variables in a program, and
the sets gen(n), kill(n), and null(n) as
representing certain actions performed on
the tokens; for example, if the first action
performed on a at node n is a definition
then a E gen(n), if no action is performed
on a at node n then a E null(n), etc. The
specific association of these sets with ele-
ments of the program will depend on the
problem under consideration, as we illustrate
later. For the time being we simply assume

0

& 3 n 9en kzll null
0 ~,B

Z
3 B
4 a,~
5 a,n

I~ve aviil

FIOURE 8. Illustration of gen, kill and null sets
assigned to the nodes of a simple flow graph.
The derived live and avail sets are shown in the
last two columns.

that the sets gen(n), kill(n) and null(n)
are given.

For a path p and a token a we are in-
terested in the sequence of sets containing a
along the path. We traverse the path, and
as each node n is visitied we write down g
if a E gen(n), k if a E kill(n), and 1 if
a E null(n). The resulting sequence of gs,
ks, and ls is a path expression for a on p
which we denote by P(p; a). Here the alpha-
bet used is {g, k, 1} instead of {r, d, u}.
Referring to Figure 8, the path expression
f o r a o n p = 0 , 1 , 2 , 4 , 2 , 5 i s

P(0, 1, 2, 4, 2, 5; a) = lkgkgk,

and similarly,

P(0, 1, 2, 5; ~) -- lklk.

We use the notation of regular expressions
(e.g., [18, p. 39]) to represent sets of path
expressions. For example, the set of path
expressions for a on the set of all paths
leaving node 1 in Figure 8 is

P(1 --% a) -- g(kg)*k + lk,

where it is to be noted that the k associated
with node 1 is not included. Similarly, the
set of path expressions for a on the set of
all paths entering node 5 in Figure 8 is

P(-*5; a) = lkg(kg)* + lkl ,

where it is to be noted that the k associated
with node 5 is not included. These too are
called path expressions. We say a path ex-
pression is simple if it corresponds to a single
path. I t is evident that a simple path ex-
presszon will not contam the symbols or + .

Path expressions are concatenated in an
obvious way. Thus, referring again to
Figure 8,

P(1; a)P(1-*; a) = k(g(kg)*k + lk)

and

P(--*5;a)P(5;a) --- (lkg(kg)* + lkl)k.

Two path expressions representing identi-
cal sets of simple path expressions are
equivalent. Thus, using the last path ex-
pression above, it is easily seen that

(lkg(kg)*+ lk l)k ~ lkg(kg)*k + lklk.

Computing Surveys, Vol. 8, No. 3, September 1976

Furthermore, two path expressions differing
only by transformations of the form

lg --~ g, 1/c --* k, gl -* g, kl --+ k, 11 --* 1,
and 1% 1--~1

are equivalent. For example

1 + l*gk + kkl + 11=- -# + kk + 1.

The final step in this general development
is to introduce the sets live(n) and avail(n),
subsets of tok. For each a E tok and each
n E N of GF(N, E, no).

o~ E live(n) if and only if P(n-*; a)
~__ gP + pl,

and

a E avail(n) if and onlyif P(--~n; a) - pg,

where p and p~ stand for arbitrary path ex-
pressions. In words, a E live(n) if and only
if on some path from n the first "action" on
a, other than null, is g; and a E avail(n)
if and only if the last action on a, other than
null, on all paths entering n is g. These
definitions are illustrated in Figure 8, where
the live and avail sets are shown.

The live variable problem is: given G~,(N,
E, no), tok, and, for every n E N, kill(n),
gen(n), and null(n) determine live(n) for
every n E N. The availability problem is:
given G~,(N, E, no), tok, and for every
n E N, kill(n), gen(n), and null(n) deter-
mine avail(n) for every n E N. While one
might solve these two problems directly in
terms of the definitions, that is by deriving
the path expressions and determining if
they have the correct form, such an approach
would be hopelessly slow except in the most
trivial cases. Instead, these problems are
attacked by using search algorithms directly
on G~ which avoid explicit determination of
path expressions, but which do provide
enough information about the form of the
path expression to solve the live variable
problem and the availability problem. These
algorithms are discussed in the next section.

Before closing this section we show how
these tools are helpful with a simple ex-
ample. In this example the problem is to
detect the presence of path expressions
(now in terms of references, definitions,
and undefiuitions) of the form pddp'. As-

L. D. Fosdick and L. J. Osterweil • 315

sume that we can construct a flow graph
for the program in which the nodes are
statements or parts of statements, so that
the following rules of membership for tokens
representing variables can be trivially ap-
plied at every node:

1) a E kill(n) if a is referenced at n,
or undefined at n;

2) a E gen(n) if a is defined at n and
a ~ kill(n);

3) a E null(n) otherwise.

After these sets have been determined,
suppose the live variable problem is solved.
Now if a is defined at n and if a E live(n)
it follows easily that there is a path expres-
sion of the form pddp' in the flow graph.
The truth of this conclusion is seen from
the fact that a E live(n) implies P(n---*; a)

- gp + p' and since g stands for a definition

P(n---*; a) - d p + p',

hence

P(n; a)P(n--*; a) -- ddp + p".

Conversely, if at every node at which a is
defined a ~ live(n), then one may similarly
conclude there is no path expression of the
form pddp~; i.e., there are no data flow
anomalies of this type.

ALGORITHMS TO SOLVE THE LIVE VARIABLE
PROBLEM AND THE AVAILABILITY PROBLEM

In the last section the live variable problem
and the availability problem were defined
and a simple example was given to show
how a solution to the live variable problem
can be used to determine the presence or
absence of data flow anomalies. In this sec-
tion we describe particular algorithms for
solving the live variable problem and the
availability problem. Several such algo-
rithms have appeared in the literature [6,
16, 23, 31, 35]. The pair of algorithms we
have chosen for discussion do not have the
lowest asymptotic bound on execution time.
However, they are simpler and more widely
applicable than others and their speed is
competitive.

The algorithms involve a search over a
flow graph in which the nodes are visited

Computing Surveys, Vol. 8, No. 3, September 1976

316 • Data Flow Analysis In Software Reliability

in a specific order derived from a depth first
search. This search procedure is defined by
the following algorithm, where it is assumed
that a flow graph G~,(N, E, no) is given, and
a push down stack is available for storage.

Algorithm Depth First Search:
1. Push the entry node on a stack and

mark it (this is the first node visited,
nodes are marked to prevent visiting
them more than once).

2. While the stack is not empty do the
following:

2.1 While there is an unmarked edge
from the node at the top of the
stack, do the following:

2.1.1 Select an unmarked edge from
the node at the top of the stack
and mark it (edges are marked
to prevent selecting them more
than once) ;

2.1.2 If the node at the head of the
selected edge is unmarked,
then mark it and push it on the
stack (this is the next node
visited) ;

2.2 Pop the stack;
3. Stop.

In Figure 9 the nodes of the flow graph
are numbered in the order in which they are
first visited during the depth first search.
We follow the convention that the left-
most edge (as the graph is drawn) not yet
marked is the next edge selected in step
2.1.1; thus the numbering of the successor
nodes of a node increases from left to right
in the figure. The ordering of the nodes
implied by this numbering is called pre-
order [24]. The order in which the nodes
are popped from the stack during the depth
first search is called postorder [16, 24]. In

0

FIGURE 9. Numbering of the nodes of a graph in
the order in which they are first visi ted during
a depth first search. This numbering is called
preorder.

FIGURE 10. I l lustrat ion of postorder and r-post-
order numbering of the nodes of a graph. The
r-postorder numbers are in parentheses.

Figure 10 the nodes are numbered in post-
order. This numbering could be generated in
the following way. Introduce a counter in
the depth first search algorithm and initi-
alize it to 0 in step 1. In step 2.2, before
popping the stack, number the node at the
top of the stack with the counter value and
then increment the counter. If each post-
order node number, say k, is complemented
with respect to I N I, i.e., k' ¢- IN { - k,
then the new numbering represents an
ordering known as r-postorder [16]. This
numbering is shown in parentheses in Figure
10.

The depth first spanning tree [33] of a
flow graph is an important construction for
the analysis of data flow. This construction
can be obtained from the depth first search
algorithm in the following way. Add a set
E-which is initialized to empty in step 1.
In step 2.1.2 put the selected edge in E '
if the head of the selected edge is unmarked.
After execution of this modified de~.th first
search algorithm, the tree T(N, E) is the
depth first spanning tree of Gp(N, E, no),
the flow graph on which the search was
executed. The depth first spanning tree
of the flow graph in Figure 9 is shown in
Figure 11. The edges in the set E - E'
fall into three distinct groups:

1) forward edges with respect to T: e E
E - E', is in this group if this edge
goes from an ancestor to a descendant
of T;

2) back edges with respect to T: e E
E -- E', is in this group if this edge
goes from a descendant to an an-
cestor of T, or if this edge goes from a
node to itself;

3) cross edges with respect to T: e E

Computing Surveys, Vol. 8, No. 3, September 1976

L. D. Fosdick and L. J. Osterweil • 317

0

FIGURE 11. Depth first spanning tree of the flow
graph shown in Figure 9 Nodes are numbered
in preorder.

E - E', is in this group if this edge
goes between two nodes not related
by the ancestor-descendant relation-
ship.

These edges are shown in Figure 12 for the
flow graph in Figure 9 and for the tree shown
in Figure 11 derived from it. Tarjan [34]
has shown that it is possible to perform a
depth first search, number the nodes in
preorder, determine the number of descend-
ants for each node in the depth first span-
ning tree, and determine the backedges,
forward edges, and cross edges, all in
0(Ihr I + [E l) time.

This way of characterizing the edges in a
flow graph is particularly valuable for an
analysis of data flow patterns. It is to be
noted in particular that if the back edges are
deleted in Figure 12, then the resultant
graph is acyclic. This is true in general. The
cycles in a graph cause the major complica-
tion in the analysis of data flow. All of the
data flow analysis algorithms would have
0(l E [) execution times if cycles were ab-
sent, but with cycles present they have
execution times which generally grow faster
than linearly in I E I as I E I --* ~. By
focusing attention on back edges one can
more easily see how cycles add to the
complexity of a data flow analysis al-
gorithm.

Some data flow analysis algorithms re-
quire the flow graph to be reducible. This
property is characterized in the theorem
below, which follows from results of Heeht
and Ullman [15]:

THEOREM. GF is reducible if and only if
n, dominates n~ in GF for each back edge
(n~, n,), where j ¢ i, with respect to a
depth first spanning tree of GF.

The notion of dominance which is intro-
duced here is defined as follows. Given a
pair of nodes n, and n~ in Gr, n, dominates
n, if and only if every path from no to n~
contains n,. I t can be easily seen from this
theorem that the flow graph in Figure 9 is
not reducible. Notice that the ed~ge (5, 4)
is a back edge (cf. Fig. 12) with respect to
the spanning tree in Figure 11. On the
other hand, node 4 does not dominate node
5; notice the path 0, 7, 8, 5. If this back
edge is deleted, then the remaining graph is
reducible. The frequently mentioned para-
digm of a nonreducible flow graph is shown
in Figure 13.

Some experiments [6, 25] have led to the
general belief that flow graphs derived from
actual programs often are reducible. For
flow graphs with this property, particularly
fast algorithms have been developed [1, 23,
35] for the live variable problem and the
availability problem. Recently two al-
gorithms for solving these problems on any
flow graph were presented by Hecht and
Ullman [16]. While these algorithms are not
always as fast as the others, they are com-
petitive and they have the distinct advan-

FIGURE 12. Forward edges, back edges, and cross
edges marked by dashed lines and lettered f, b,
e, respectively. This grouping is with respect
to the tree shown in Figure 11.

FmURE 13. Paradigm of a nonredueible graph.

Computing Surveys, Vol. 8, No. 3, September 1976

318 • Data Flow Analysis In Software Reliability

tages of simplicity and generality (they are
not restricted to reducible flow graphs).
These algorithms are described below.

The following algorithm [16] determines
the live sets of a flow graph. This algorithm
assumes tha t the nodes have been numbered
0, 1, . . . , n in postorder and refers to the
nodes by the postorder number.
Here S(j) denotes the set of successors of
node j, and ~ /deno tes the empty set.

Algorithm LIVE:
for j ~-- 0 to n do live(j) ~ y~;
change ~-- t r u e ;
whi le change do

beg in
change ,,--- fa lse;
for j *-- 0 to n do
beg in

previous (-- live(j);
(*) live(j) ¢- O ((live(k)

N (tok - kill(k))) U gen(k));
k E S(j)

i f previous # live(j) t h e n
change +- t r u e ;

e n d
e n d

s t o p

We refer to the paper by Hecht and
Ullman [16] for a proof of correctness of
this algorithm. Its operation is illustrated in
Figure 14 where the live sets are indicated
before each execution of the step labeled
by (*). I t is easily verified that the total
number of times step (*) is executed in
this example is twelve: first the fo r loop is
executed six times, making one pass over
the six nodes, then since there was a change
to the live sets a second pass is made, during
which no change occurs to the live sets,
and this completes execution.

The correctness of the algorithm does not
depend on the order in which the nodes
are visited, but the execution time does. In
the simple example just considered it is
easily verified tha t if the nodes were visited
in the order 5, 4, 2, 3, 0, 1 then eighteen
executions of step (*) would be required;
note tha t in this case a is not put in the live
set of node 2 during the first pass. The
nodes are visited in postorder to ensure a
relatively rapid termination of the algo-
rithm. In particular, if the flow graph is
acyclic, then after the whi le loop is exe-
cuted once M1 live sets are correct; one

oA
node

4 >3
gen k111 n u l l

,5

9 (l,~

2 ~ B

3 L~

4 ,,[~

5 (~,B

l l ve sets before k th execution of step * in LIVE

nod•e k= 1 2 3 4 5 6 7

2 ~ ¢ ¢ ,~ ~ ~ ~ f u r t h e r

3 ¢ $ ~, !, $ ¢ ¢ changes

4 @ $ ¢ $ @ ~,8 a,(~

5 ¢ i $ } ¢ $ $

FIGURE 14. Illustration of the steps in the creation of the live sets by algorithm LIVE for a simple
flow graph. Nodes are numbered]n postorder. The correct live sets are obtained after five execu-
tions of step *, however seven more executions are required before no change to the sets is recog-
nized which then terminates execution.

Comput ing Surveys, Vol 8, No 3, September 1976

more execution of the while loop is required
to establish that there are no further
changes to the live sets. Thus for an acyclic
flow graph the step (*) is executed 2 IN I
times. If there is one back edge, then the
effect of a gen can be propagated to a lower
numbered (in postorder) node, and it is not
too difficult to see that upon completion
of the second (at most) execution of the
while loop all live sets will be correct. Thus
for a flow graph with one back edge the
step (*) is executed 3 1 N I times at most.
Hecht and Ullman [16] have shown that if
r is the number of times the step (*) is
executed, then

~< (2 + d) l N t ,

where d is the largest number of back-
edges in any acyclic path in the graph. For a
reducible flow graph it has been shown [15]
that the back edges are unique, but if the
flow graph is not reducible then the back
edges will depend on the depth first spanning
tree. The d appearing above refers to the
back edges with respect to the spanning tree
generated to establish the postorder num-
bering of the nodes.

We now present an algorithm [16] to de-

I

'4

L. D. Fosdick and L. J. Osterweil • 319

termine the avail sets of a flow graph. This
algorithm assumes that the nodes have been
numbered 0, 1, . . . , n in r-postorder and
refers to the nodes by the r-postorder num-
ber. Here P (j) denotes the" se$ ~qf prede-
cessors of node j, and ~/denotes the empty
set.

Algorithm AVAIL:
avail (0) <-- $2~;
f o r j *-- 1 to n do avail(j) (--- tok;
change <---- t rue;
while change do
b e g i n

change <---- false
for j ~-- 1 to n do
begin

previous <-- avail(j);
avail(j) <--- N ((avail(k)

N (tok -- kill(k))) U gen(k));
k C P(j)

i f previous ~ avail(j) t hen
change <-- t rue

end
e n d
s top

We refer again to the paper by Hecht and
Ullman [16] for a proof of correctness of this

node 9en k111 nu l l

l a,t~

2 a,~

3 a B

4 ~,~

S a,(~

aval l sets before k th executlon of step + ~n AVAIL

nod•e k-- I 2 3 4 ~ 6 7

1 ~,B B B B B ~ B

2 a,B a,B @ @ ¢ ¢ ¢

3 a,B a,B ~,B ¢ ¢ ¢

4 ~,B e,B a,B a,B ~ ~

no

further

changes

FIGURE 15. I l lustrat ion of the steps in the creation of the avail sets by algori thm AVAIL for a simple
flow graph. Nodes arc numbered m r-postorder . The correct avail sets are obtained after five ex-
ecutions of step *, however seven more executions are required before no change to the sets is
recognized which then terminates execution.

Computing Surveys, Vol. 8, No. 3, September 1976

320 • Data Flow Analysis In Software Reliability

algorithm. Its operation is illustrated in
Figure 15 where the avail sets are indicated
before each execution of the step labeled by
(*). Here, as with the example for LIVE
it is easy to verify that step (*) is executed
twelve times. With the exception of the
entry node, which is treated separately, it
does not matter in what order the remaining
nodes are visited in the while loop so far
as correctness is concerned, but it does
matter for the execution time. Again, the
back edges are a critical factor. With r and
d as defined before, Hecht and Ullman [16]
show that

r ~ (2 + d) (t N I -- 1).

Empirical evidence obtained by Knuth
[25] leads Hecht and Ullman [16] to the
conclusion that in practice one can expect
d ~< 6 and on the average d ~ 2.75 for
FORTRAN programs. However, it is to be
noted that there are pathological situations,
as shown in Figure 16, for which the execu-
tion time is much larger than these numbers
indicate.

SEGMENTATION OF DATA FLOW

Normally a program consists of a main
program and a number of subprograms or
external procedures. This segmentation of

nl

n t
FIGURE 16. P a t h o l o g i c a l s i t u a t i o n in w h i c h t h e

e x e c u t i o n t i m e for t h e a v a i l a b i l i t y a l g o r i t h m is
u n u s u a l l y long . He re d = 1 N -- 13, r = (I N] -- 1) 3
a s s u m i n g a s g e n (n ,) a n d a ~ k i l l (n~) a n d is
n o t in a n y o t h e r gen or]:ill sets.

the program is a natural basis for the seg-
mentation of the data flow analysis. Here
we describe how this is done in such a
way as to permit detection of data flow
anomalies on paths which cross procedure
boundaries. We will see that the system for
doing this naturally includes the detection of
data flow anomalies on paths which do not
cross procedure boundaries. In this section
we describe the identification and repre-
sentation of the data flow, and in the next
section we describe the detection of anoma-
lous data flow.

We make several assumptions at the out-
set. The first concerns aliasing, the use of
different names to represent the same
datum. In crossing a procedure boundary
the name of a datum typically changes from
the so-called actual name used in the in-
voking procedure to the so-called dummy
name used in the invoked procedure. I t is
assumed here that the aliases for a datum
are known and that a single token identifier
is used to represent them. Thus, in particu-
lar, in our notation for representing actions
on a token a along some path p we use
P(p; c~) even when p crosses a procedure
boundary and the datum represented by
is known by different names in the two
procedures. The second assumption we make
is that the procedures under consideration
have a single entry and a single exit. We
could permit multiple entries and multiple
exits, but it would complicate the discussion
without adding anything really important to
it. While we will discuss the segments as if
they were procedures, it will be obvious that
the discussion applies equally well to any
single-entry, single-exit segment of a pro-
gram. Our most restrictive assumption is
that the call graph for the program is acyclic.
This excludes recursion. We will discuss this
restriction later.

Let us consider a flow graph GF(N, E, no)
in which some node invokes an external
procedure, as illustrated in Figure 17. In
order to analyze the data flow in Gp(N, E, no)
it is necessary to know certain facts about
the data flow in the invoked procedure. In
particular we need to know enough about
the data flow in the invoked procedure to be
able to detect anomalous patterns in the

Computing Surveys, Vol. 8, No 3, September 1976

G F (N, E, n o)

)
G~ (N'. E: no')

I

FIGURE 17. At node n in GF(N, E, no) an external
procedure is invoked. The flow graph of the
invoked procedure is represented by Gr' (N', E',
no').

flow across the procedure boundaries. Re-
ferring to GF in Figure 17 and considering a
single token a, it becomes evident that we
need to recognize three cases to detect
anomalous patterns of the form purp' on
paths crossing the procedure boundary:

P(--~n; ~) ~ pu + p', a)
P(n; a) ~ rp -~ p';

b) P (n ; a) ~ pu + p',
P(n--% a) ~ rp + p';

t c) P(--~n;a) -= pu + p ,
P(n; a) -~ 1 "t- p ,
P(n--*; c~) ~ rp -k p.

Thus all we need to know about the data
flow in the invoked procedure is whether
P(n; ~) has one of the following three
forms: rp W p', pu Jr p', 1 W p'. The last
form represents the situation in which there
is at least one path through the invoked
procedure on which no reference, no defini-
tion, and no undefinition of a takes place.
I t is evident that a particular P(n; a)
could have more than one of these forms,
e.g., ru W 1 has all three forms. Similar
consideration of the problem of detecting
anomalous path expressions of the form
pddp' and pdup' leads to the conclusion that
the following additional forms for P(n; a)
need to be recognized: dp ~ p', pd + p,
up ~ p'.

We now wish to extend these ideas to

L. D. Fosdick and L. J . Osterweil • 321

permit recognition of situations where an
anomalous path expression exists on all
paths entering or leaving a node. This recog-
nition is important because it permits us to
conclude something about the presence or
absence of anomalous path expressions on
executable paths. Figure 1 makes it clear
tha t some paths in a flow graph may not be
executable, and it is evident that anomalous
path expressions on them are not important.
Only anomalous path expressions on execut-
able paths are important as indicators of a
possible error. Unfortunately, the recogni-
tion of executable paths is difficult 2, but if
we make the reasonable assumption that
every node is on some executable path, then
if all paths through a node are known to be
anomalous we may draw the very useful
conclusion that there is an anomalous ex-
pression on an executable path. Certain
additional forms for path expressions need
to be. distinguished to achieve this. We ob-
serve, for example, tha t if

P(---m; a) -- pu and P(n; a) -- rp',

then on every path in Gr of the form no, • • • ,
n, . . • there is an anomalous path expression
purp'. Thus it would be desirable to be able
to distinguish the form rp. Notice also that if

P(--*n;a) - p u , P (n ; a) - -rp ' + 1,
P(n---% a) - rp,

then the same conclusion can be drawn, so
it is also desirable to distinguish the form
rp -4- 1. Similar considerations show the need
for recognizing the forms pu, pu + 1, 1 and
similar considerations for anomalous ex-
pressions of the form pddp', and pdup' lead
to corresponding forms involving d and u.

Collecting these results leads to the seven
forms for path expressions shown in Figure
18. Corresponding sets A~(n), B ~ (n) , . . . ,
I (n) which are subsets of the token set are
defined as follows:

a E A~(n) if P (n ; a) - xp;
a EBb(n) if P (n ; a) = xp ~- 1;

a E I (n) if P (n ; a) = l (n) .

= Indeed th is problem is not solvable in general, for
if we could solve i t we could solve the ha l t ing
problem [18].

Computing Surveys, Vol. 8, No. 3, September 1976

322 • Data Flow Analysis In Software Reliability

label path expression

A xp
x

B x xp+l

C X xp+p '

D x px

E x px+l

F px+p '
x

I l

FIOUI~B 18. Seven forms for path expression in
single-entry, single-exit flow graphs and labels
used to identify them. The parameter x stands
for r, d, or u.

These sets are called path sets. Although this
classification scheme was developed for
situations in which n represents a procedure
invocation as illustrated in Figure 17, it
will be recognized that it applies when n is a
simple node representing, say, an assignment
statement• For example if n represents
a ~-- a + # and tok ffi {a, #, ~}, then

a E Ar(n) , a E C,(n) fl E A~(n),
E C,(n) a E Dd(n), a E Fd(n)
E I (n) .

In such simple cases membership in the sets
can be determined by rather obvious rules.
On the other hand, when the node represents
a procedure invocation, determination of
membership in the path sets requires an
analysis of the data flow in the procedure.
I t is this problem to which we now direct
our attention.

Suppose the path sets for node n' are to
be determined. We assume that n' repre-
sents the invocation of an external procedure
with flow graph Gr and that the path sets
for the nodes of Gr have been determined
already. (Our focus of attention now shifts
to the invoked procedure and to avoid an
excess of primes we have switched the role
of primed and unprimed quantities shown in
Fig. 17.) We also assume that no data ac-
tions take place at the entry node and exit
node of Gr ; thus

I(no) = tok and I(n~xit) -- tok.

This assumption is not restrictive since we

can augment Gr by attaching a new entry
node and new exit node with these prop-
erties without affecting the data flow pat-
terns. The algorithms for determining the
path sets are presented informally below.
They are presented in alphabetic order;
however, as will become apparent, a differ-
ent order is required for their execution.
A satisfactory execution order is A, (n ') ,
C~(n'), B~(n'), D~(r[), F~(n'), E , (~) ,
I (n ') .
Algorithm Determine A x(n')

1) for all n such that n E N - {n.xit} do
null(n) (--- I (n) U B~(n) ;
kill(n) ~-- A~(n) ;
gen(n) ~ tok

-- (kill(n) U null(n)) ;
2) null(n~it) (---- f2~;

kill(noxit) ~ ;~;
gen(ne,,it) ¢--- tok;

3) execute LIVE on Gp ;
4) A,(n ') ~ tok - live(no) ;

{comment--the null sets are not
explicitly needed but are included
here for clarity}.

Algorithm Determine B~(n')
1) for all n such that n E N do

null(n) ~-- I (n) U B, (n) ;
kill(n) (---- Ax(n) ;
gen(n) *--- tok

- (kiU(n) U null(n)) ;
2) execute LIVE on Gr ;
3) B~(n') ~ (tok - live(no))

[7 (tok - ' a , (n ')) fl C,(n') .
• . !

Algorithm Determine C,(n)
1) for all n such that n E N do

gen(n) ~ C~(n) ;
kill(n) ~ (Av(n) U A , (n)) ;

{comment--x, y, z is any per-
mutation of r, d, ul

null(n) ,,-- tok
- (gen(n) U kill(n))"

2) execute LIVE on Gr ;
3) C~(n') ~ live(no).

Algorithm Determine D,(n')
1) for all n such that n E N do

gen(n) ~-- D,(n) ;
kill(n) (---(F,(n) U F,(n)) ;

{comment--x, y, z is any per-
mutation of r, d, u}

null(n) (-- tok

Computing Surveys, Vol. 8, No. 3, September 1976

- (gen(n) U kil l(n)) ;
2) execute AVAIL on Gr ;
3) D~(n') ~-- avail(nox,t).

Algorithm Determine E,(n')
1) for all n such that n E N - {no} do

gen(n) ~-- D~(n) ;
kill(n) (-- Fv(n) U F,(n) ;

{comment--x, y, z is any per-
mutation of r, d, u}

null(n) (-- tok
- (gen(n) U kill(n)) ;

2) gen(no) (-- $ok;
kill(no) ~- ~ ;
null(no) ¢--- 25;

3) execute AVAIL;
4) E~(n') ~-- avail(n~xi,)

N (tok - D,(n ')) N F,(n ') .

Algorithm Determine F,(n')
1) for all n such that n E N - {no} do

gen(n) (--- D~(n) U D,(n);
{comment--x, y, z is any per-

mutation of r, d, u}
kill(n) (--- F,(n) ;
null(n) (-- tok

-- (kill(n) U gen(n)) ;
2) gen(no) *--- tok;

kill(no) *--- ~ ;
null(no) *-- 25;

3) execute AVAIL;
4) F,(n') ~-- tok - avail(ned,t)

Algorithm Determine I (n')
1) I (n ') ~ N I (n) .

h E N

Since LIVE and AVAIL terminate, it is
obvious that these algorithms terminate.
Proofs of correctness for some of these al-
gorithms are presented below.

Proof Determination of A~(n') is correct
Let a E tok. By step 4 of the algorithm
a E A~(n') if and only if a ~ live(no).
Take the "if" part first:

~ live(no) ~ P(no-*; a) # gp + p'
P(n0--~; a) =--- kp or

P(no-*; a) --= kp + 1,

or P(no--% a) ------ 1. The last two alterna-
tives are ruled out because by step 2 of the
algorithm gen(n~,,t) = tok. Consequently,
because of the construction of the k,ll
sets in step 1, a ~ live(no) ~ P(n0-*; a)

L. D. Fosdick and L. J. Osterweil • 323

=-- xp. We observe P(n'; a) ffi P(no; a)
P(no-~; a) = P(no - , ; a) , the last equal-
ity following from the fact that no data
action takes place at no. Thus a E
live(no) =~ P(n'; a) == xp; i.e., a E
A~(n'). Now consider the "only if" part.

a E live(no) ~ P(no--*; a) ------ gp + p'
Consequently, because of the construction
of the gen sets P (no~; a) -- yp + p'
where y # x. (Note that a E gen(n)
implies, by step 1, P(n; a) - x p ,
P(n; (~) - xp + 1, P(n; a) - 1).Con-
sequently, a E live(no) ~ P(n'; a)
-- yp + p' # xp; i.e., a ~ A~(n ') .~

Proof Determination of B , (n ') is correct
Let a E tok. By step 3 of the algorithm
o~ E B,(n ') if and only if a E live(no) and

A ~ ~ x(n) and o~ E C,(n') Take the "if"
part first: a ~ live(no) ~ P(no-o; a) = kp,
orP(no--*; ~) = kp + 1, orP(no-o; a) = 1.
The first and last alternatives are ex-
cluded by the conditions a ~ A , (n ') and

t
ot E C,(n). This leaves only,P(no--*; a)
= kp + 1 and using a E k i l l (n)
P (n ; a) = xpgivesP(no---*;a) -- xp + 1.
Finally

P(n'; a) = P(no; ~)P(no--*; ~)
-~ P (no---* ; a)

P(n'; a) -~ xp + 1;

i.e., a E B,(n ') . Now consider the "only
if" part.

a E live(no) ~ P(no---~; a) = gp + p'.

From step 1 it is seen that

a E gen(n) ~ P (n ; a) - y p + p ' , y # x .

Hence a E live(no) ~ P(no-*; a) --
yp + p', y # x, and from this it is
easily concluded that a ~ B,(n ') . It is
immediately evident that a E A~(n')
a E Bx(n') and that a ~ C~(n') ~ a E

t
B , (n).[]

Proof Determination of D~(n') is correct
Let a E tok. By step 3 of the algorithm

a E D~(n') if and only if a E avail(nex,O.

Take the "if" part first.

a E avail(ne,~it) ~ P(-~nex,t; a) - pg.

Computing Surveys, VoL 8, No. 3, September 1976

324 • Data Flow Analysis In Software Reliability

Hence

P(n ' ; a) -- P(-'-~nexlt; ~)P(nex,t; a) -- pg.

Now using the fact that a E gen(n)
P(n; a) ffi px we conclude that

a E avail(nexit) ~ P(n ' ; a) - px; i.e.,
a E Dx(n') .

Now take the "only if" part.

a ~ avail(ne.it) ~ P(--~ne, it; a) -- pk T p'
or P(-~ne~,t; a) --- 1.

Since a E kill(n) implies P(n; a)
!

py ~ p , y ~ x, it easily follows that
a ~ avail(n~z,t) ~ P(n ' ; a) ~ px; i.e.,

?

a ~ Dx(n) . ~

The last item to be discussed in this sec-
tion is the initiation and progressive de-
termination of the path sets for a program.
Consider the call graph shown in Figure 5.
Since the subprogram FUNB invokes no
other subprogram, the algorithms just
presented are unnecessary in the determina-
tion of the path sets for the nodes of the
flow graph representing FUNB. In this flow
graph each node will represent a simple
statement or part of a statement having no
underlying structure, so the path set de-
termination can be made by inspection.
Once this is done the path sets for the nodes
of the flow graph representing SUBA can be
determined, since the path sets are known
for the only subprogram it invokes. The
same remarks apply to the flow graph repre-
senting FUNA. Finally, after these path
sets are determined it is possible to deter-
mine the path sets for the nodes of the flow
graph representing MAIN. Thus by working
backwards through an acyclic call graph it
is possible to apply the algorithms just
described. We call this backward order the
leafs-up subprogram processing order. We
have restricted our attention to acyclic call
graphs because this procedure breaks down
if a cycle is present in the call graph. One
way to solve this problem if cycles are
present might be to carry out an iterative
procedure, as suggested by Rosen [30], in
which successive corrections are made to
some initial assignment of path sets but we
have not pursued this idea.

DETECTING ANOMALOUS PATH EXPRESSIONS

I t will be recalled that we have defined an
anomalous path expression to have one of the

! f ?
forms: purp, pddp, or pdup. Let us assume
now that the path sets have been determined
for every node of a flow graph G~,(N, E, no).
I t should be evident that if (n, n') E E
and a E Fu(n) and a E Cr(n'), then there
is a path expression of the form purp':
a E Fu(n) , a E Cr(n') =* P(nn ' ; a) -
purp' -[- pip. Note, however, that the un-
definition and reference do not necessarily
occur on nodes n and n' respectively. In-
deed, these data actions may not even occur
on nodes of this flow graph: they might
occur on nodes of other flow graphs repre-
senting invoked procedures. We only know
that on some path which includes the edge
(n, n') there is an anomalous path ex-
pression. Also this anomalous path expres-
sion may not be on an executable path, but
if a E D~(n) and a E Ar(n ') , then we may
reasonabl~" conclude that the path expres-
sion purp occurs on an executable path.
In this case our assumptions imply that on
every path which includes the edge (n, n')
there must be an anomalous path expression:

E Du(n) , a E Ar(n') ~ P(nn ' ; a) ----
purp'. We assume at least one of these paths
is executable. In this section these ideas are
expanded to include the detection of
anomalous path expressions on paths which
go through a selected flow graph.

Assume that the path sets have been
constructed for a flow graph Gp, and we
wish to determine whether

P(n; a)P(n---*; a) =- pxyp' "~ pH

o r

P(n; a)P(n---~; a) -- pxyp'

for each n E N and each a E tok. For anom-
aly detection we are interested in those
cases whenx = u , y - r o r x = d , y = d,
or x = d, y = u, but there is no need to fix
the values of x and y now. A similar, but not
equivalent, pair of problems is to determine
whether

P(-*n; a)P(n; a) ~- pxyp' -~- p"

o r

Compu t ing Surveys , Vol 8, No 3, September 1976

L. D. Fosdick and L. J . Osterweil • 325

P(---~n; a)P(n ; a) - pxyp'

for each n E N and each a C tok. The dis-
cussion of the last section should make it
apparent that the first pair of problems can
be attacked with the algorithm LIVE and
the second pair of problems can be attacked
with the algorithm AVAIL. Indeed, the
algorithms presented in the last section have,
in effect, solved these problems.

Consider the algorithm to determine
A~(n') . After execution of step 3, suppose
we construct the sets

A~(n--~) = tok - live(n)

for all n E N. Note that in step 4 we did this
for the entry node only. It is evident that
a E Ax(n--~) implies P(n---~; a) = xp,
and conversely. Hence if a E Dr(n) and
a E A~(n---~) we know that

P(n; a)P(n---% a) ~-- pyxp'

and so if y = u and x = r, an anomalous
path expression of the form purp' is known
to be present.

Now, using the idea and notation sug-
gested in the last paragraph assume that
we augment the last step in the algorithm
for A~(n') , C~(n'), D~(n'), and F~(n')
described in the last section to construct the
sets A~(n--~), C~(n---~), D~(----~n), F~(---*n).
Using them we construct the set intersec-
tions: F~(n) Iq C~(n--~), D~(n) rl A~(n.-o),
F~(---*n) f'l C~(n), and D~(---~n) Iq Ay(n) .
Then it is seen that:

a E Fx(n) fl C~(n---*)
¢:* P(n; a)P(n---*; a) - pxyp' q- p";

a E D~(n) Iq Ay(n---*)
¢=* P(n; a)P(n--*; a) - pxyp';

,~ E F~(--,n) N C~(n)
¢=* P(--m; a) P (n ; a) -- pxyp' q- p";

a E D~(--m) fl A~(n)
¢=* P(---m; a)P(n ; a) - pxyp'.

The proofs of these assertions, which we
omit, are essentially the same as those given
in the previous section, Segmentation of
Data Flow, for the determination of the sets
A~(n') ,

It will be recognized that the segmenta-
tion scheme described in the previous sec-
tion permits exposure only of the first and

last data actions on paths entering or leav-
ing a flow graph. Therefore, if we are to
detect the presence of all anomalous path
expressions in an entire program by the
method just described, we must apply it
systematically to the flow graphs for each
of the subprograms in the entire program.
In practice this would be done in the order
dictated by the call graph, as already dis-
cussed in connection with constructing the
path sets. Indeed, these two processes would
be done together while working through the
subprograms. To illustrate, consider the call
graph shown in Figure 5. The steps per-
formed would be as follows:

1) For FUNB determine the sets
Ax(n') . . . I (n ') , Ax(n--~),
Cx(n-*), D~(-,n), F~(--m);

2) For FUNB construct the sets
F~(n) N Cy(n--~), . . . , D~(---m)
N A y (n) and report anomalies;

3) Repeat steps 1 and 2 for SUBA;
4) Repeat steps 1 and 2 for FUNA;
5) Repeat steps 1 and 2 for MAIN.

The time required to do the detection of
anomalous path expressions is essentially
controlled by the time required to execute
LIVE and AVAIL. Step 1 of the example
described above requires nine executions of
LIVE (A~, B~, C~ for x -- r, d, u), and
nine executions of AVAIL (D~, E~, F~ for
x = r, d, u), plus a small additional amount
of time proportional to the number of nodes
in the flow graph. We are assuming that the
set operations can be done in unit time so
there is no dependence on the number of
tokens. In practice this assumption has only
limited validity. Step 2 of the example
described above requires a time proportional
to the number of nodes (in particular
4(I N] - 2) where the - 2 term arises be-
cause we can ignore the entry and exit
nodes). Therefore, if a call graph has I N. I
nodes and I~1 is the average number of
nodes in each flow graph represented by a
node of the call graph, the time • to detect
all anomalous path expressions may be ex-
pressed as

r -- IN, 1(9r,.,w + 9rAvAIL + k I h7 I),

where rL~v~ and rxvxm are execution times

Computing Surveys, Vol. 8, No. 3. September 1976

326 • Data Flow Analysis In Software Reliability

for LIVE and AVAIL. If we use the results
given in the section Algorithms to Solve the
Live Variable Problem and the Availability
Problem for the execution times for LIVE
and AVAIL, we see that in practical situ-
ations we can expect to detect the presence
of all anomalous path expressions in a
program in a time which is proportional to
the total number of flow graph nodes. While
the constants of proportionality might be
large and there would be a substantial over-
head to create the required data structures,
the important point is that a combinatorially
explosive dependence on IN I has been
avoided.

The principal reason why a combinatorial
explosion has been avoided is that we have
not looked explicitly at all paths. The loss
of information resulting from this does not
prevent us from detecting the presence of
anomalous path expressions, but it greatly
restricts our knowledge about specific paths
on which the anomalous path expression
occurs. Thus if a E Fu(n)N Cr(n--,), we
know that on some path starting at n we
will find an expression of the form purp', but
we do not know which path and we do not
know which nodes on the path contain the
actions u and r on a. This problem can be
attacked directly by performing a search
over paths starting at node n. This search
can be made quite efficient if we deal with
one token at a time. The idea is to use a
depth first search but to restrict it so that
we avoid visiting any node n' such that
a ~ C~(n'--*). While this strategy does not
preclude backtracking, it tends to reduce it
and generally restricts the number of nodes
visited in the search. It seems certain that
more efficient schemes for localizing the
anomalous path expression can be con-
structed.

The information gathered for the detection
of anomalous path expressions is valuable
for other purposes. For example, it deter-
mines which arguments need initialization
before execution of a procedure--thus it
could be used to supply this information as
a form of automatic documentation. Al-
ternatively, this information can be used to
verify assertions by the programmer con-
cerning arguments needing initialization.

Similarly, it is possible to determine the
arguments which are assigned values by a
procedure, i.e., the output arguments. How-
ever, unlike the case for initialization where
the set Cr(n t) identifies the arguments re-
quiring initialization, none of the path sets is
sufficient for this purpose. Notice in par-
ticular that Fd(n) is not satisfactory be-
cause P(n'; a) - pdr obviously implies
that a is an output for the procedure repre-
sented by n' yet a ~ Fd(n'). However, it is
not difficult to construct an algorithm for
this purpose. Indeed, we only need to
modify one step in the algorithm for
Fx(n'); in particular, replace gen(n) (--
Dr(n) (J D~(n) by gen(n) (---- Du(n).

Then after step 4, a E Fd(n') implies a
is an output for the procedure represented
by n'. I t will be recognized that this ex-
cludes tokens for which P(n'; ~) =- pdr*u.
This is reasonable, since the definition is
destroyed by the subsequent undefinition,
and no value is actually returned to the
invoking procedure. Thus we have a mecha-
nism for providing automatic documentation
about procedure outputs, or for verifying
assertions about which procedure arguments
are output arguments.

CONCLUSION

As noted in an earlier section of this paper,
we have implemented a FORTRAN program
analysis system which embodies many of the
ideas presented here. This system, called
DAVE, [27, 28] separates program variables
into classes that are somewhat similar to
those shown in Figure 18. DAVE also detects
all data flow anomalies of type purp' and
most of the data flow anomalies of types
pddp' and pdup'. DAVE carries out this
analysis by performing a flow graph search
for each variable in a given unit, and analyz-
ing subprograms in a leafs-up order, which
assures that no subprogram invocation will
be considered until the invoked subprogram
has been completely analyzed. An improved
version of DAvE would continue to analyze
the subprograms of a program in leafs-up
order, but would use the highly efficient,
parallel algorithms described here to either
detect or disprove the presence of data flow

Computing Surveys. VoL 8, No 3, September 1976

anomalies. The variable-by-variable depth
first search currently used in DAv~ exclu-
sively, would be used only to generate a
specific anomaly bearing path, once the
more efficient algorithms had shown that an
anomaly was present. Such a system would
have considerably improved efficiency char-
acteristics and, perhaps more important,
could be readily incorporated into many
existing compilers which already do live
variable and availability analysis in order to
perform global optimization.

The apparent ease with which our anomaly
detection scheme could be efficiently in-
tegrated into existing optimizing compilers
is a highly attractive feature and a strong
argument for taking this approach. Other
methods for carrying out anomaly detection
can be constructed, but most that we have
studied lack efficiency and compatibility
with existing compilation systems. One such
method, which is quite interesting for its
strong intuitive appeal, involves symbolic
execution of the program. Symbolic execu-
tion, a powerful technique which has
recently found applications in debugging,
program verification, and validation [8, 19,
22], involves determining the value of each
program variable at every node of a flow
graph as a symbolic formula whose only
unknowns are the program's input values.
These formulas of course depend upon the
path taken to a given node. A notation simi-
lar to regular expression notation could be
used to represent the set of symbolic ex-
pressions for a variable at a node, cor-
responding to the set of paths to the node.
If these expressions were to be stored at
their respective nodes, a flow graph search-
ing procedure could be constructed which
would be capable of detecting all the anoma-
lies described here by careful examination of
the way the expressions evolved along paths
traversed by a single flow graph search.
Moreover, because the symbolic execution
carried along far more information than
does our proposed system, even more
powerful diagnostic results are possible.

The relative weaknesses of such a method
are its lack of efficiency and the difficulty of
incorporating it into existing compiling
systems. Although it seems reasonable to

L. D. Fosdick and L. J . Osterweil • 327

suppose that sophisticated representation
schemes could be used to reduce the very
large time and space requirements of the
symbolic execution system, it also seems
clear to us that even such reduced require-
ments would necessarily greatly exceed
those of our proposed system. We have
finally concluded that symbolic execution
systems currently seem more attractive" as
stand alone diagnostic systems where their
greater level of detail can be used to carry
out more extensive program analysis, but at
greater cost. We believe, moreover, that our
proposed data flow analysis scheme can and
should be integrated into compilers in order
to provide highly useful error diagnosis at
small additional cost. The diagnostic output
of a system such as ours would then be useful
input to a symbolic execution system.

Much has been learned from our exper-
iences with the current version of DAVE.
Believing that similar systems should be
used in state-of-the-art compilers, we now
summarize these experiences in order to
place in better perspective the problems and
benefits to be expected.

Certain programming practices and con-
structs which are present in FORTRAN and
common to a number of other languages
cause difficulties for data flow analysis
systems such as DAVE. The handling of
arrays, as mentioned earlier, is one such
example. Problems arise when different ele-
ments of the same array are used in in-
herently different ways and hence have
different patterns of reference, definition,
and undefinition. Static data flow analysis
systems such as DAVE are incapable of
evaluating subscript expressions and hence
cannot determine which array element is
being referenced by a given subscript ex-
pression. Thus, as stated earlier, in DAVE
and in many other program analysis systems
arrays are treated as though they were
simple variables. This avoids the problem of
being unable to evaluate subscript expres-
sions, but often causes a weakening or
blurring of analytic results. As an example,
consider the program shown in Figure 19.
Suppose n t is the node of GMAIN(N, E, no),
the flow graph of the main program, which
invokes SQUARE. Denote by R(. , 1) and

Computing Surveys, Vol, 8, No, 3, September 1976

328 • Data Flow Analysis In Software Reliability

DIMENSION R(lO0,2)

READ(5,10)(R(I,]),I:I,]O0)

10 FORMAT(FIO.2)

CALL SQUARE(R)

WRITE(6,20)(R(I,2),I=I,IO0)

20 FORMAT(IX,FIO.2)

STOP

END

SUBROUTINE SQUARE(R)

DIMENSION R(IO0,2)

DO I0 I=I , I00

I0 R(I , I)=R(I ,2)**2

RETURN

END

FIGURE 19. A program in which failure to dis-
t inguish between the differing pa t t e rn s of
reference, definit ion and undef ini t ion of differ-
en t array elements prevents the detection of
d a t a flow anomalies .

R(. , 2) arbitrary elements of column 1
and column 2 respectively of array R. Now
clearly R(. , 1) E Ad(n') and R(. , 2) E
A,(n'). In addition, it is clear that R(. , 1) E
Dd(--*n ~) and R(-, 2) E Du(-*n'). Hence
P(-m'; R(., 1))P(n'; R(., 1)) -- pddp',
and P(-~n'; R(., 2))P(n'; R(., 2)) ---

!

purp, and we see there are two data flow
anomalies present. DAVE, however, treats
R as a simple variable and determines that
R E Ad(n'), R E Dd(n'), R E Dd(---~n')

, I
andR E A,(n--*). Thus P(---*n ;R)P(n';R)
- pdrp' and P(n'; R)P(n'---~; R) - - p d r p ,

and no data flow anomalies will be detected.
This loss of anomaly detection power is
worrisome, and it is seemingly avoided only
when programmers call functionally distinct
subarrays by separate names.

There are also certain difficulties involved
in determining the leafs-up subprogram
processing order referred to earlier. This
order is important, because it ensures that
each subprogram will be analyzed exactly
once, yet that data flow anomalies across
subprogram boundaries will be detected.
If subprogram names are passed as argu-

ments, this order may become difficult to
determine. This difficulty can arise because
the name used in a subprogram invocation
may not be the name of a subprogram, but
rather can be a variable which has received
the subprogram name, perhaps through a
long chain of subprogram invocations. All
such chains must be explored in order to
expose all subprogram invocations and then
determine the leafs-up order. Recent work
by Kallal and Osterweil [20] indicates that
the AVAIL algorithm can be used to effi-
ciently expose all such invocations.

Recursive subprograms pose another ob-
stacle to determining leafs-up order. Al-
though recursion is not allowed in FORTRAN,
it is a capability of many other languages.
Moreover, it is possible to write two
FORTRAN subprograms such that each may
invoke the other, but such that no program
execution will force a recursive calling se-
quence. Such a program would be legal in
FORTRAN, but would not appear to have
sufficient leaf subprograms (i.e., those that
invoke no others) to allow construction of
the complete leafs-up order. This problem
is not adequately handled by DAVE, how-
ever no FORTRAN programs with this con-
struction have been encountered. In any case
current work indicates that recursive pro-
grams can be analyzed using the methods
described here.

Finally it should be observed that sub-
program invocations involving the passing
of a single variable as an argument more
than once may be incorrectly analyzed.
This occurs because DAVE assumes that all
subprogram parameters represent different
variables as it analyzes subprograms in
leafs-up order.

Despite these limitations, the DAvE sys-
tem has proven to be a useful diagnostic
tool. We have used DAVE to analyze a
number of operational programs and it
has often found errors or stylistic short-
comings. Among the most common of these
have been: variables having path ex-
pressions equivalent to purp' (referencing
uninitialized variables), and pdup' (failing
to use a computed value) occurring simul-
taneously, usually due to a misspelling;
subprogram parameters having path ex-

Computing Surveys, Vol. 8, No 3, September 1976

pressions equivalent to 1, caused by naming
unused parameters in parameter lists; and
C O M M O N variables ha,ving pa th expres-
sions equivalent to purp or pdup' usually
due to omitting C O M M O N declarations
from higher level program units.

The cost of using DAv~. has proven to be
relatively high, par t ly due to the fact tha t
it is a pro to type built for flexibility, and not
speed, and par t ly due to the failure to use
the more efficient algorithms described here.
We have observed the execution speed of
the system to average between 0.3 and 0.5
seconds per source s ta tement on the CDC
6400 computer for programs whose size
ranged from several dozen to several thou-
sand statements. The total cost per state-
ment has averaged between 7 and 9 cents
per s ta tement for these test programs using
the Universi ty of Colorado Comput ing
Center charge algorithm. I t is, of course,
anticipated tha t these costs would decline
sharply if a production version of DAvE
were to be implemented.

Based on these experiences and observa-
tions, we believe tha t systems like DAvE
can serve the impor tant purpose of auto-
matically performing a thorough initial scan
for the presence of certain types of errors.
I t seems tha t the most useful characteristics
of such systems are tha t 1) they require no
human intervention or guidance and 2) they
are capable of scanning all paths for possible
da ta flow anomalies. A human tester need
not be concerned with designing test cases
for this system, yet can be assured by the
system tha t no anomalies are present. In
case an anomaly is present, the system will
so advise the tester and further testing or
debugging would be necessary. Clearly such
a system is capable of detecting only a
limited class of errors. Hence further testing
would always be necessary. Through the
use of a system such as DAVE, however, the
thrust of this testing can be more sharply
focussed. I t seems tha t these systems could
be most profitably employed in the early
phases of a testing regimen (e.g., as par t of a
compiler) and used to guide and direct later
testing efforts involving more powerful
systems tha t employ such techniques as
symbolic execution. Towards this end, fur-

L. D. Fosdick and L. J . Osterweil • 329

ther work should be done to widen the
class of errors detectable by means such as
those described in this paper.

ACKNOWLEDGMENTS
We want to close with a grateful recognition of
the stimulating and valuable discussions we have
had on this subject with our colleagues and
students--especially Jim Boyle, Lori Clarke, Hal
Gabow, Shachindra Maheshwari, Carol Miesse,
and Paul Zeiger--and the helpful comments of the
referees. Finally, we gratefully acknowledge the
financial assistance provided by the National
Science Foundation in this work.

REFERENCES

[1] A~o, A. V.; ANn ULLMAN, J. D. "Node
listings for reducible flow graphs," in Proc.
of the 7th Annual ACM Symposium on Theory
of Computing, 1975, ACM, New York, 1975,
pp. 177-185.

[2] ALLEN, F .E . "Program optimization," in
Annual Review in Automatic Programming,
Pergamon Press, New York, 1969, pp. 239-
307.

[3] ALLEN, F.E. "A basis for program optimi-
z ation," in Proc. IFIP Congress 1971, North-
Holland Publ. Co., Amsterdam, The Nether-
lands, 1972, pp. 385-390.

[4] ALLEN, F. E.; AND COCKE, J. Graph-
theoretzc constructs for program control flow
analyszs, IBM Research Report RC3923, T. J.
Watson Research Center, Yorktown Heights,
New York, 1972.

[5] ALLEN, F. E. "Interprocedural data flow
analysis," in Proc. IFIP Congress 1974,
North Holland Publ. Co., Amsterdam, The
Netherlands, 1974, pp. 398-402.

[6] ALLEN, F. E.; AND COCKE, J. "A program
Comm

[7] BALZEa, R. M. "EXDAMS: Extendable
debugging and monitoring system," in
Proc. AFIPS 1969 Spring Jr. Computer
Conf., Vol. 34, AFIPS Press, Montvale,
N.J., 1969, pp. 567-580.

[8] CLARKE, L. A system to generate test data
and symbolically execute programs, Dept. of
Computer Science Technical Report $Cu-
CS-060-75, Univ. of Colorado, Boulder,
1975.

[9] DENNIS, J .B. "First version of a data flow
procedure language," in Lecture notes ~n
computer science 19, G. Goos and J. Hart-
manis (Eds.), Springer-Verlag, New York,
1974, pp. 241-271.

[10] FAmLE~C, R.E. "An experimental program
testing facility," in Proc. First National
Conf. on Software Engineering, 1975, IEEE
$75CH0992-8C, IEEE, New York, 1975,
pp. 47-55.

[11] GOLDSTINE, H. H . ; AND VON NEUMANN, J .
Planning and coding problems for an elec-
tronic computing instrument," in John yon
Neumann, collected works, A. H. Taub (Ed.),

Computing Surveys, V~I. 8, No. 3, September 1976

330 • Data Flow Ana ly s i s I n Software Reliabil i ty

Pergamon Press, London, England, 1963,
pp. 80-235.

[12] HABERMANN, A.N. Path expressions, Dept.
of Computer Science Technical Report,
Carnegie-Mellon Univ., Pittsburgh, Pa.,
1975.

[13] HARARY, F. Graph theory, Addison-Wesley
Publ. Co., Reading, Mass., 1969.

[14] HECHT, M. S.; AND ULLMAN, J. D. "Flow
graph reducibility," SIAM J. Computing
1, (1972), 188-202.

[15] HECHT, M. S.; ANn ULLMAN, J . D . "Char-
acterizations of reducible flow graphs,"
J. ACM 21, 3 (July 1974), 367-375.

[16] HECHT, M. S.; AND ULLMAN, J. D. "A
simple algorithm for global data flow analysis
problems," SIAM J. Computing 4 (Dec.
1975), 519-532.

[17] HOPCROFT, J.; AND TARJAN, R. E. "Effi-
cient algorithms for graph manipulation,"
Comm. ACM 16 (June 1973), 372-378.

[18] HOPCROFT, J. E.; AND ULLMAN, J . D . For-
mal languages and their relation to automata,
Addison Wesley Publ. Co., Reading, Mass.,
1969.

[19] HOWDEN, W . E . "Automatic case analysis
of programs," in Proc. Computer Science and
Statistics: 8th Annual Symposium on the
Interface, 1975, pp. 347-352.

[29] KALLAL, V.; AND OSTERWEIL, L. J. Con-
structing flowgraphs for assembly language
programs, Dept. of Computer Science Tech-
nical Report Univ. of Colorado, Boulder,
(to appear 1976).

[21] KARP, R.M. "A note on the application of
graph theory to digital computer program-
ming," Information and Control 3 (1960),
179-190.

[22] KINo, J. C. "A new approach to program
testing," in Proc. Internatl. Conf. on Re-
liable Software, 1975, IEEE ~75CH0940-
7CSR, IEEE, New York, 1975, pp. 228-233.

[23] KENNEDY, K.W. "Node listings applied to
data flow analysis," in Proc. of 2nd ACM
Symposium on Pmncipals of Programming
Languages, 1975, ACM, New York, 1975,
pp. 10-21.

[24] KNU~H,D. E. The art of computer program-
ming, Vol. I fundamental algorithms, (2d
Ed.), Addison Wesley Publ. Co., Reading,
Mass., 1973.

[25] KNUTH, D. E. An empirical study of
FORTRAN programs, Software--Practice
and Experience 1, 2 (1971), 105-134.

[26] MILLER, E. F., JR. RXVP, FORTRAN
automated verificatwn system, Program Vali-
dation Project, General Research Corp.,
Santa Barbara, Calif., 1974, pp. 4.

[27] OSTERWEIL, L. J.; AND FOSDICK, L D.
"DAVE--a FORTRAN program analysis
system," in Proc. Computer Science and
Statistics: 8th Annual Symposium on the
Interface, 1975, pp. 329-335.

[28] OSTERWEIL, L. J.; AND FOSDICK, L. D..
"DAVE--a validation, error detection and
documentation system for FORTRAN pro-
grams," Software--Practice and Experience
(to appear 1976).

[29] RODRIGUEZ, J. D. A graph model for parallel
computatwn, Report MAC-TR-64, Project
MAC, MIT, Cambridge, Mass., 1969.

[30] ROSEN, B. Data flow analysis for recurszve
P L / I programs, IBM Research Report
RC5211, T. J. Watson Research Center,
Yorktown Heights, New York, 1975.

[31] SCHAEFFER, M. A mathematzcal theory of
global program optimization, Prentice-Hall
Inc., Englewood Cliffs, N. J., 1973.

[32] STUCKI, L. G. "Automatic generation of
self-metric software," in Proc. IEEE Sym-
posium on Computer Software Reliabdity,
1973, IEEE $73CH0741-9CSR, IEEE, New
York, 1973, pp. 94-100.

[33] TARJAN, R. E. "Depth-first search and
linear graph algorithms," SIAM J. Comput-
ing (Sept. 1972), 146-160.

[34] TARJAN, R. E. "Testing flow graph re-
ducibility," J. Computer and System Sciences
9, 3 (Dec. 1974), 355-365.

[35] ULLMAN, J. D. "Fast algorithms for the
ehmination of common subexpressions,"
Acta Informatiea 2 (1973), 191-213.

Computing Surveys, Vol. 8, No. 3, September 1976

