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INTRODUCTION 

For some t ime we have believed tha t  a 
careful analysis of the use of data  in a 
program, such as tha t  done in global opti- 
mization, could be a powerful means for 
detecting errors in software and otherwise 
improving its quality. Our recent experience 
[27, 28] with a system constructed for this 
purpose confirms this belief. As so often 
happens on such projects, our knowledge 
and understanding of this approach were 
deepened considerably by  the experience 
gained in constructing this system, although 
the pressures of meeting various deadlines 
made it impossible to incorporate all of our 
developing ideas into the system. More- 
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over, during its construction advances 
were made in global optimization algorithms 
tha t  are useful to us, which for the same 
reasons could not  be incorporated in the 
system. Our purpose in writing this paper  
is to draw these various ideas together and 
present them for the instruction and stimu- 
lation of others who are interested in the 
problem of software reliability. 

The phrase "da ta  flow analysis" became 
firmly established in the li terature of global 
program optimization several years ago 
through the work of Cocke and Allen [2, 3, 
4, 5, 6]. Considerable at tent ion has also 
been given to data flow b y  Dennis and his 
co-workers [9, 29] in a different context, 
advanced computer  architecture. Our own 
interpretation of data  flow analysis is simi- 
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lar to that found in the literature of global 
program optimization, but our emphasis 
and objectives are different. Specifically, 
execution of a computer program normally 
implies input of data, operations on it, and 
output of the results of these operations in 
a sequence determined by the program and 
the data. We view this sequence of events 
as a flow of data from input to output in 
which input values contribute to inter- 
mediate results, these in turn contribute to 
other intermediate results, and so forth 
until the final results, which presumably 
are output, are obtained. It  is the ordered 
use of data implicit in this process that is 
the central object of study in data flow 
analysis. 

Data flow analysis does not imply execu- 
tion of the program being analyzed. In- 
stead, the program is scanned in a syste- 
matic way and information about the use of 
variables is collected so that certain in- 
ferences can be made about the effect of 
these uses at other points of the program. 
An example from the context of global opti- 
mization will illustrate the point. This ex- 
ample, known as the live variable problem, 
determines whether the value of some 
variable is to be used in a computation 

Reliability 

after some designated computation step. 
If it is not to be used, space for that vari- 
able may be reallocated or an unnecessary 
assignment of a value can be deleted. To 
make this determination it is necessary to 
look in effect at all possible execution se- 
quences starting at the designated execution 
step to see if the variable under considera- 
tion is ever used again in a computation. 
This is a difficult problem in any practical 
situation because of the complexity of exe- 
cution sequences, the aliasing of variables, 
the use of external procedures, and other 
factors. Thus a brute force attack on this 
problem is doomed to failure. Clever al- 
gorithms have been developed for dealing 
with this and related problems. They do 
not require explicit consideration of all 
execution sequences in the program in order 
to draw correct conclusions about the use of 
variables. Indeed, the effort expended in 
scanning through the program to gather 
information is remarkably small. We dis- 
cuss some of these algorithms in detail, 
because they can be adapted to deal with 
our own set of problems in software re- 
liability, and turn to these problems now. 

Data flow in a program is expected to be 
consistent in various ways. If the value of 
a variable is needed at some computation 
step, say the variable a in the step 

'y ~--- a-t- 1, 

then it is normally assumed that at an 
earlier computation step a value was 
assigned to a. If a value is assigned to a 
variable in a computation step, for example 
to ~, then it is normally assumed that 
that value will be used in a later computa- 
tion step. When the pattern of use of vari- 
ables is abnormal, so that our expectations 
of how variables are to be used in a compu- 
tation are violated, we say there is an 
anomaly in the data flow. Examples of data 
flow anomalies are illustrated in the fol- 
lowing FORTRAN constructions. The first 
is 

X = A  
X = B  
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I t  is clear that the first assignment to X is 
useless. Why is the statement there at all? 
Perhaps the author of the program meant to 
write 

X = A  
Y = B  

Another data flow anomaly is represented by 
the FORTRAN construction 

SUBROUTINE SUB(X, Y, Z) 
Z = Y + W  

Here W is undefined at the point that a 
value for it is required in the computation. 
Did the author mean X instead of W, or 
W instead of X, or was W to be in COM- 
MON? We do not know the answers to 
these questions, but we do know that there 
is an anomaly in the data flow. 

As these examples suggest, common 
programming errors cause data flow anoma- 
lies. Such errors include misspelling, con- 
fusion of names, incorrect parameter usage 
in external procedure invocations, omission 
of statements, and similar errors. The 
presence of a data flow anomaly does not 
imply that execution of the program will 
definitely produce incorrect results; it im- 
plies only that execution may produce in- 
correct results. I t  may produce incorrect 
results depending on the input data, the 
operating system, or other environmental 
factors. I t  may always produce incorrect 
results regardless of these factors, or it 
may never produce incorrect results. The 
point is that the presence of a data flow 
anomaly is at least a cause for concern be- 
cause it often is a symptom of an error. 
Certainly software containing data flow 
anomalies is less likely to be reliable than 
software which does not contain them. 

Our primary goal in using data flow analy- 
sis is the detection of data flow anomalies. 
The examples above hardly require very 
sophisticated techniques for their detection. 
However, it can easily be imagined how 
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similar anomalies could be embedded in a 
large body of code in such a way as to be 
very obscure. The algorithms we will de- 
scribe make it possible to expose the pres- 
ence of data flow anomalies in large bodies of 
code where the patterns of data flow are 
almost arbitrarily complex. The analysis is 
not limited to individual procedures, as is 
often the case in global optimization, but 
it extends across procedure boundaries to 
include entire programs composed of many 
procedures. 

The search for data flow anomalies can be- 
come expensive to the point of being totally 
impractical unless careful attention is 
given to the organization of the search. Our 
experience shows that a practical approach 
begins with an initial determination of 
whether or not any data flow anomalies 
are present, leaving aside the question of 
their specific location. This determination of 
the presence of data flow anomalies is the 
main subject of our discussion. We will see 
that fast and effective algorithms can be 
constructed for making this determination 
and that these algorithms identify the 
variables involved in the data flow anomalies 
and provide rough information about loca- 
tion. Moreover, these algorithms use as 
their basic constituents the same algorithms 
that are employed in global optimization 
and require the same information, so they 
could be particularly efficient if included 
within an optimizing compiler. 

Localizing an anomaly consists in finding 
a path in the program containing the 
anomaly; this raises the question of whether 
the path is executable. For example, con- 
sider Figure 1 and observe that although 
there is a path proceeding sequentially 
through the boxes 1, 2, 3, 4, 5, this path 
can never be followed in any execution of 
the program. An anomaly on such a non- 
executable path is of no interest. The de- 
termination of whether or not a path is 
executable is particularly difficult, but often 
can be made with a technique known as 
symbolic execution [8, 19, 22]. In symbolic 
execution the value of a variable is repre- 
sented as a symbolic expression in terms of 
certain variables designated as inputs, 
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FIOURE 1. The path in this segment of a flow 
diagram represented by visiting the boxes in the 
sequence 1, 2, 3, 4, 5 is not executable. Note that 
Y >_ 0 upon leaving box 1 and this condition is 
true upon entry to box 4, thus the exit labeled 
T could not be taken. 

rather than as a number. The symbolic 
expression for a variable carries enough 
information that if numerical values were 
assigned to the inputs a numerical value 
could be obtained for the variable. Symbolic 
execution requires the systematic derivation 
of these expressions. Symbolic execution is 
very costly, and although we believe further 
study will lead to more efficient imple- 
mentations, it seems certain that this will 
remain relatively expensive. Therefore a 
practical approach to anomaly detection 
should avoid symbolic execution until it is 
really necessary. In particular, with pres- 
ently known algorithms the least expensive 
procedure appears to be: 1) determine 
whether an anomaly is present, 2) find a 
path containing this anomaly, and then 
3) attempt to determine whether the path 
is executable. 

We show that the algorithms presented 
here do provide information about the 
presence of anomalies on executable paths. 
While they do not identify the paths, the 
fact that they can report the presence of an 

anomaly on an executable path without 
resorting to symbolic execution is of con- 
siderable practical importance. 

While an anomaly can be detected me- 
chanically by the techniques we describe, 
the detection of an underlying error re- 
quires additional effort. The simple ex- 
amples of data flow anomalies given earlier 
make it clear that a knowledge of the in- 
tent of the programmer is necessary to 
identify the error. I t  is unreasonable to 
assume that the programmer will provide 
in advance enough additional information 
about intent that the errors too can be 
mechanically detected. We visualize the 
actual error detection as being done man- 
ually by the programmer, provided with 
information about the anomalies present 
in his program. Obviously, many tools 
could be provided to make the task easier, 
but in the end it must be a human who 
determines the meaning of an anomaly. 
We like to think of a system which detects 
data flow anomalies as a powerful, thorough, 
tireless critic, which can inspect a program 
and say to the programmer: "There is 
something unusual about the way you 
used the variable a in this statement. Per- 
haps you should check it." The critic might 
be even more specific and say, "Surely 
there is something wrong here. You are 
trying to use ~ in the evaluation of this 
expression, but you have not given a value 
to a ."  

The data flow analysis required for de- 
tection of anomalies also provides routine 
but valuable information for the documenta- 
tion of programs. For example, it provides 
information about which variables receive 
values as a result of a procedure invocation 
and which variables must supply values to 
a procedure. I t  identifies the aliasing that 
results from the multiple definition of 
COMMON blocks in FORTRAN programs. 
It  identifies regions of the program where 
some variables are not used at all. I t  recog- 
nizes the order in which procedures may 
be invoked. This partial list illustrates that 
the documentation information provided 
by this mechanism can be useful, not only 
to the person responsible for its construction, 
but also to users and maintainers. 
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We are ready now to enter into the de- 
tails of this discussion. We begin with a 
presentation of certain definitions from graph 
theory. Graphs are an essential tool in data 
flow analysis, used to represent the execu- 
tion sequences in a program. We follow 
this with a discussion of the expressions 
we use to represent the actions performed 
on data in a program. The notation in- 
troduced here greatly simplifies the later 
discussion of data flow analysis. Next, we 
discuss the basic algorithmic tools required 
for data flow analysis. Then we describe 
both a technique for segmenting the data 
flow analysis and the systematic applica- 
tion of this technique to detect data flow 
anomalies in a program. We conclude with a 
discussion of the experience we have had with 
a prototype system based on these ideas. 

BASIC DEFINITIONS--GRAPHS 

Formally a graph is represented by G ( N ,  E )  
where N is a set of nodes {nl, n2 , . . .  , nk} 
and E is a set of ordered pairs of nodes 
called the edges, { (n~  , n ~ ) ,  (nj3 , n:4), "'" , 
(n~_~ , n~m)}, where the n~,s are not neces- 
sarily distinct. For example, for the graph in 
Figure 2, 

N -- {0, 1, 2, 3,4}, 
E = { (0, 1), (0, 2), (2, 2), (2, 3), (4, 2), 

(1, 4), (4, 1)}. 

The number of nodes in the graph is repre- 
sented by J N [  and the number of edges 
by ]E ]. For the graph in Figure 2, i N_ i1~ ,5 
and I E ] = 7. For any graph ]E I _ , ,  I 
since a particular ordered pair of nodes 
may appear at most once in the set E. 

o 

FIGURE 2. Pictor ia l  r epresen ta t ion  of a d i rected 
graph.  The  points ,  labeled here as 0, 1, 2, 3, 4, 
are called nodes,  and  the l ines jo in ing them are 
called edges. 

L. D. Fosdick and L. J .  Osterweil • 309 

For the graphs that  will be of interest to us 
it is usually true that  ]E  I is substantially 
less than IN 12; in fact it is customary to 
assume that  I E I  g k I N I  where k is a 
small integer constant. 

For an edge, say (n,, nj) ,  we say that  
the edge goes from n, to n~ ; n, is called a 
predecessor of nj, and nj is called a successor 
of n , .  The number of predecessors of a 
node is called the in-degree of the node, 
and the number of successors of a node is 
called the out-degree of the node. For the 
graph shown in Figure 2, 0 is the predecessor 
of 1 and 2, the out-degree of 0 is two; 0 is 
not a successor of any node, it has the in- 
degree zero. In this figure we also see tha t  
4 is both a successor and a predecessor of 
1, and 2 is a successor and predecessor of 
itself. A node with no predecessors (i.e., 
in-degree = 0) is called an enry node, and 
a node with no successors (i.e., out-degree 
= 0) is called an exit node; in Figure 2, 
0 is the only entry node and 3 is the only 
exit node. 

A path in G is a sequence of nodes nj 1 , 
n ~ , - . . ,  n~k such that  every adjacent 
pair (n~l, n~,+l) is in E. We say that  this 
path goes from nj~ to n~ k. In Figure 2, 
0, 2, 3 is a path from 0 to 3; 1, 4, 1, is a 
path from 1 to 1. There is an infinity of 
paths from 1 to 1: 1, 4, 1; 1, 4, 1, 4, 1; 
etc. The length of a path i~ the number of 
nodes in the path, less one (equivalently, 
the number of edges) ; thus the length of the 
path 0, 1, 4, 1, 4, 2, 3 in Figure 2 is six. 
If n ~ ,  n~2, . . .  , n~k is a path p, then any 
subsequence of the form n~,, nj,+~, . . . ,  
n~,+~for 1 _~ i ~ k a n d  1 _~ m _~ k - i 
is also a path, p'; we say that  p contains the 
path p'. 

If p is a path from n, to n~ and i -- j ,  
then p is a cycle. In Figure 2 the paths 1, 4, 1; 
1, 4, 1, 4, 1, and 2, 2 are cycles. The path 
0, 1, 4, 1, 4, 2, 3 contains a cycle. A path 
which contains no cycles is acyclic, and a 
graph in which all paths are acyclic is an 
acyclic graph. 

If  every node of a connected graph has in- 
degree one and thus has a unique prede- 
cessor, except for one node which has in- 
degree zero, the graph is a tree T ( N ,  E ) .  
The graph in Figure 3 is a tree, and if the 
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FIGURe. 3. Pictorial representation of a tree 
rooted at  0. Each node has a unique predecessor 
except the root which has no predecessor.  

edges (4, 1), (4, 2), and (2, 2) in Figure 2 
are deleted, then the resulting graph is also 
a tree. The unique entry node is called the 
root of the tree and the exit nodes are called 
the leafs. I t  will be recognized that there is 
exactly one path from the root to each node 
.in a tree; thus we can speak of a partial order- 
mg of the nodes in a tree. In particular, if 
there is a path from n, to n~ in a tree, then 
n, comes before nj in the tree; we say that 
n, is an ancestor of n~ and n~ is a descendent 
of n, .  In Figure 3 every node except 0 is a 
descendent of 0, and 0 is the ancestor of all 
of these nodes. Similarly 1 is an ancestor of 
the nodes 2, 3, 4, 5, 6; on the other hand, 7 
is not an ancestor of these nodes. A tree 
which has been derived from a directed 
graph by the deletion of certain edges, but 
of no nodes, is called a spanning tree of the 
graph. 

These elementary definitions are com- 
monly accepted, but they are not universal. 
Graph theory seems to be notorious for its 
nonstandard terminology. Additional in- 
formation on this subject can be found in 
various texts such as Knuth [24], and Harary 
[13]. 

The use of flowcharts as pictorial repre- 
sentations of the flow of control in a com- 
puter program dates back to at least 1947 
in the work of Goldstine and yon Neumann 
[11], and the advantage of the systematic 
application of graph theory to computer 
programming was pointed out in 1960 by 
Karl) [21]. In recent years this approach has 
been actively developed with numerous 
articles appearing in the SIAM Journal on 
Camputing, the Journal of the ACM, and 

many conference proceedings, especially 
those of the ACM Special Interest Group on 
the Theory of Computing. We now introduce 
some ideas and definitions drawn from this 
literature pertinent to the subsequent dis- 
cussion. 

When a graph is used to represent the 
flow of control from one statement to an- 
other in a program, it is called a flow graph. 
A flow graph must have a single entry node, 
but may have more than one exit node, and 
there must be a path from the entry node 
to every node in the flow graph. Formally, 
a flow graph is represented by GF(N, E, no), 
where N and E are the node and edge sets, 
respectively, and no, an element of N, is 
the unique entry node. 

Generally the nodes of a flow graph 
represent statements of a program and the 
edges represent control paths from one state- 
ment to the next. In data flow analysis the 
flow graph is used to guide a search over 
the statements of a program to determine 
certain relationships between the uses of 
data in various statements. Thus before 
data flow analysis can begin, a correspond- 
ence between the statements of a program 
and the nodes of a flow graph must be 
established. Unfortunately, difficulties arise 
in trying to establish this correspondence 
because of the structure of the language 
and the requirements of data flow analysis. 

Statements in higher level languages can 
consist of more than one part, and not all 

x=x+l.O 
IF(X LT Y) JfJ÷1 
A=X*X 

n i 

n l+ l~  

I 
n i + 3  q 

~ r l l +  2 

FIGURE 4. Graph representation of a segment  
of a FORTRAN program. Node  n, represents 
the s ta tement  X -- X + 1.0, node n,+~ repre- 
sents  the first part  of the IF s ta tement  
I F ( X . L T . Y ) ,  node n,+z represents the second 
part of the IF s ta tement  J = J -{- 1, and node 
n,+a represents the s ta tement  A = X , X .  
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parts may be executed when the statement 
is executed. This is the case with the 
FORTRAN logical IF, as in 

IF(A .LE. 1.0)J = J -t- 1, 

where execution of the statement does not 
necessarily imply fetching a value of J 
from storage and changing it. For the pur- 
pose of data flow analysis it is desirable to 
separate such statements into their con- 
stituent parts and let each part be repre- 
sented by a node in Gp as illustrated in 
Figure 4 for this IF statement. 

Statements which reference external pro- 
cedures pose a far more serious problem. 
Such statements actually represent se- 
quences of statements. If a node in a flow 
graph is used to represent an external pro- 
cedure, then some ambiguities in the data 
flow analysis arise because the control struc- 
ture of the represented external procedure 
is, so to speak, hidden. On the other hand, 
if we permit this control structure to be 
completely exposed by placing its flow graph 
at the point of appearance of the referencing 
statement, then we invite a combinatorial 
explosion. Later we will discuss mechanisms 
for propagating critical data flow informa- 
tion across procedure boundaries in such a 
way as to avoid a combinatorial explosion, 
but at the price of losing some information. 
An important construction used here is the 
call graph. 

C--~IAIN PROGRAM 

CALL SUBA~ ..) 

Y=X+FUNA( ) 

END 
SUBROUTINE SUBA( - ) 

Z=FUNB( )+l 0 

END 
FUNCTION FUNA( ) 

YIFUNB ( )-I 0 

END 
FUNCTION FUNB( ) 

END 

FUNB~~ ~'~°FUNA 

FIGURE 5. I l lu s t r a t ion  of the  call g raph  for a 
FORTRAN program.  The nodes have been 
labeled to ident i fy  the program un i t  repre- 
sented.  

FIGURE 6. I l lu s t r a t ion  of a t r ans format ion  which 
replaces paths consis t ing of a single en t ry  and  a 
single exit  by  a node. In  the transformed graph 
open circles have been used to  ident i fy  nodes 
represent ing pa ths  in the  original  graph. 

Formally a call graph, which we represent 
by Go(N, E, no) is identical to a flow 
graph. However the nodes and edges have 
a different interpretation: using FORTRAN 
terminology, the nodes in a call graph repre- 
sent program units (a main program and 
subprograms); an edge (n~, n~) represents 
the fact that execution of the program unit 
n, will directly invoke execution of the pro- 
gram unit n~. This is illustrated in Figure 5. 
In data flow analysis the call graph is used 
to guide the analysis from one program 
unit to another in an appropriate order. 

In data flow analysis, transformations are 
sometimes applied to a flow graph to reduce 
the number of nodes and edges, with nodes 
in the resulting graph representing larger 
segments of the program. One of these 
transformations is illustrated in Figure 6. 
Here all nodes along paths from a node with 
a single exit to a node with a single entry 
and containing only paths with this prop- 
erty are collapsed into a single node. The 
nodes in the transformed graph are called 
basic blocks [4, 6, 31]. The important and 
obvious fact about a basic block is that it 
represents a set of statements which must 
be executed sequentially; in particular if 
any statement of the set is executed, then 
every statement of the set is executed in the 
prescribed sequence. Maximality is implicit 

Computing Surveys, Vol. 8, No. 3, September 1976 



312 • Data Flow Analysis In Software Reliability 

in the definition of a basic block, i.e., no 
additional nodes can be collapsed into the 
node representing a basic block, and the 
single entry, single exit condition is pre- 
served. I t  follows easily that  in a flow 
graph in which every node is a basic block, 
either E = ~ (the empty set) or for every 
(n , ,  n~)E E either the out-degree of n, 
is greater than 1, or the in-degree of n~ 
is greater than 1, or both of these condi- 
tions are satisfied. 

Since there are no branches or cycles in a 
basic block, the analysis of data flow in it 
is particularly simple. In some situations 
the reduction of a flow graph in which nodes 
are statements to one in which the nodes 
are basic blocks results in a significant re- 
duction in the number of nodes. In such 
cases there is a practical advantage in per- 
forming the data  flow analysis on the basic 
blocks first, then reducing the flow graph to 
one in which the nodes are the basic blocks 
and continuing the data flow analysis on the 
reduced graph. However, we have found 
that  the average reduction in the node 
count for FORTRAN programs is about 0.56. 
Thus for FORTRAN it is not clear that  a 
significant advantage can be obtained by 
this initial preprocessing of basic blocks and 
reduction of the graph. In global optimiza- 
tion it is customary [4, 6, 31] to use basic 
blocks, since an intermediate language, 
close to assembly language, is used and the 
reduction in node count is significant. 

Knuth  [24] is the standard reference for 
data structures to represent graphs. Hop- 
croft and Tarjan [17] describe a structure 
that  is particularly efficient for the search 
algorithms described here and is illustrated 
in Figure 7. In this structure there is an 
ordered list of I N I elements, each represent- 

FIOURE 7. Da ta  structure for the graphin  Figure 
2. This is a linked successor list representation. 
The numbered entries could be replaced by 
pointers to a node table carrying ancillary in- 
formation. 

ing a node and pointing to a linked sublist 
of successors of that  node. The storage cost 
for this structure is IN I + 2 1 E I words 
if we assume that  one word is used to store 
an integer. In practice it is necessary to 
associate information of variable length with 
each node so we need to allow for a second 
pointer with each of the nodes, bringing the 
storage cost to 2 ( IN I + I E I), so that  if 
I E I ~ k ] N  ], the cost is less than or equal 
to 2(1 + k) IN I. 

BASIC DEFINITIONS--PATH EXPRESSIONS 
TO REPRESENT DATA FLOW 

When a statement in a program is executed, 
the data, represented by the variables, can 
be affected in several ways, which we dis- 
tinguish by the terms reference, define, and 
undefine. When execution of a statement 
requires that  the value of a variable, say 
a, be obtained from memory we say that  a 
is referenced in the statement. When execu- 
tion of a statement assigns a value to a 
variable, say a, we say that  a is defined in 
the statement. In the FORTRAN statement 

A = B + C  

B and C are referenced and A is defined, and 
in the FORTRAN statement 

I = I + l  

I is referenced and defined. In the statement 
A(I )  = B +  1.0 

B and I are referenced and A(I)  is defined. 
The undefinition of variables is more com- 
plex to describe, and we note here only a 
few instances. In FORTRAN the DO index 
becomes undefined when the DO is satisfied, 
and local variables in a subprogram become 
undefined when a R E T U R N  is executed. 
In ALGOL local variables in a block become 
undefined on exit from the block. 

We will want to associate nodes in a flow 
graph with sets of variables which are 
referenced, defined, and undefined when 
the node is executed. 1 In doing this the un- 
definition operation requires special ar- 

t Here and elsewhere we speak of nodes as if they 
were the objects they represent, thus avoiding 
cumbersome phrasing such as - -  " . . .  when the 
s ta tement  represented by the node is executed."  
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tention. Frequently, undefinition of a 
variable occurs not by virtue of executing a 
particular statement, but by virtue of exe- 
cuting a particular pair of statements in 
sequence. Consider, for example, the fol- 
lowing FORTRAN segment: 

DO 10 K = 1, N 
X = X + A(K) 
Y = Y + A(K)**2 

10 CONTINUE 
WRITE--- 

The DO index K becomes undefined when 
the WRITE statement is executed after 
the CONTINUE statement, but it does not 
become undefined when the statement 
X = X + A(K) is executed after the CON- 
TINUE statement. Thus it would be more 
appropriate to associate the undefinition 
with an edge in the flow graph rather than 
with a node. However, for consistency we 
prefer to associate undefinition with nodes, 
therefore in the example above we would 
introduce a new node in the flow graph on 
the edge between nodes for the CONTINUE 
and the WRITE and would associate with 
this node the operation of undefinition of K. 
Similar situations in other languages can 
be handled in the same way. In the discus- 
sion which follows we assume that the un- 
definition of variables takes place at specific 
nodes introduced for that purpose and that 
at such nodes no other operation, reference 
or definition, takes place. Thus, in particular 
for a flow graph representation of a FORTRAN 
subroutine, we would introduce a node which 
would not correspond to any statement 
but would represent the undefinition of all 
local variables on entry to the subroutine. 
Similarly, at the subroutine exit a node 
representing undefinition of local variables 
would be introduced. 

Array elements pose a problem, too. 
While it is obvious that the first element of 
A is referenced in the FORTRAN statement 

B = A(1) + 1.0 

no particular conclusion can be drawn about 
which element is referenced in the state- 
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ment 

B -  A(K) + 1.0 

without looking elsewhere. That  may be 
hopeless if the program includes 

READ(5, 100)K 
B = A(K) + 1.0 

For this reason we adopt the convenient, 
but unsatisfactory, practice of treating all 
elements of an array as if they were a single 
variable. 

The abbreviations r, d, and u are used 
here to stand for reference, define, and 
undefine, respectively. To represent a se- 
quence of such actions on a variable these 
abbreviations are written in left-right order 
corresponding to the order in which these 
actions occur; for example, in the FORTRAN 
statement 

A = A + B ,  

the sequence of actions on A is rd, while for 
B the sequence is simply r. In the FORTRAN 
program segment 

A = B + C  
B f f i A + D  
A = A + I . 0  
B =  A + 2 . 0  
GO TO 10 

the sequence of actions on A is drrdr and on 
B it is rdd. We call these sequences path 
expressions. Habermann [12] has used this 
same terminology in a different context. 
The path expressions purp', pddp ~, pdup', 
where p and p' stand for arbitrary sequences 
of r's, d's, and u's, are called anomalous 
because each is symptomatic of an error as 
discussed earlier. Our goal is to determine 
whether such path expressions are present in 
a program. 

The problem of searching for certain 
patterns of data actions is common in the 
field of global program optimization, a 
subject which receives extensive treatment 
in a recent book by Schaeffer [31]. Recent 
articles by Allen and Cocke [6] and Hecht 
and Ullman [16] discuss aspects of this 
problem that have particular relevance to 
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our discussion. We focus on two problems in 
global optimization: the live variable prob- 
lem and the availability problem. We will 
show that algorithms used to solve these 
problems can also be used for the efficient 
detection of anomalous path expressions. 

The live variable problem has already 
been sketched in the introduction to this 
paper. The availability problem arises when 
one seeks to determine whether the value 
of an expression, say a + /~, which may be 
required for the execution of a selected state- 
ment actually needs to be computed, or 
may be obtained instead by fetching a pre- 
viously generated and stored value for it. 
Since our specific interest in these problems 
arises in the context of software reliability 
rather than global optimization, we prefer 
to characterize and define these problems in 
a general setting which we now develop. 

Consider a flow graph Gr(N, E, no). 
With this flow graph we associate a set 
known as the token set, denoted by tok, 
consisting of elements a,/~, .. • . With every 
node, n ~ N, we associate three disjoint sets: 
gen(n), kill(n), and nuU(n), subsets of 
tok, with gen(n) u kill(n) u null(n) = tok. 
This association is illustrated in Figure 8. 
Informally, one may think of the tokens as 
representing variables in a program, and 
the sets gen(n), kill(n), and null(n) as 
representing certain actions performed on 
the tokens; for example, if the first action 
performed on a at node n is a definition 
then a E gen(n), if no action is performed 
on a at node n then a E null(n), etc. The 
specific association of these sets with ele- 
ments of the program will depend on the 
problem under consideration, as we illustrate 
later. For the time being we simply assume 

0 

& 3  n 9en kzll null 
0 ~,B 

Z 
3 B 
4 a,~ 
5 a,n 

I~ve aviil 

FIOURE 8. Illustration of gen, kill and null sets 
assigned to the nodes of a simple flow graph. 
The derived live and avail sets are shown in the 
last two columns. 

that the sets gen(n), kill(n) and null(n) 
are given. 

For a path p and a token a we are in- 
terested in the sequence of sets containing a 
along the path. We traverse the path, and 
as each node n is visitied we write down g 
if a E gen(n), k if a E kill(n), and 1 if 
a E null(n). The resulting sequence of gs, 
ks, and ls is a path expression for a on p 
which we denote by P(p; a). Here the alpha- 
bet used is {g, k, 1} instead of {r, d, u}. 
Referring to Figure 8, the path expression 
f o r a o n p  = 0 , 1 , 2 , 4 , 2 , 5 i s  

P(0, 1, 2, 4, 2, 5; a) = lkgkgk, 

and similarly, 

P(0, 1, 2, 5; ~) -- lklk.  

We use the notation of regular expressions 
(e.g., [18, p. 39]) to represent sets of path 
expressions. For example, the set of path 
expressions for a on the set of all paths 
leaving node 1 in Figure 8 is 

P(1 --% a) -- g(kg)*k + lk, 

where it is to be noted that the k associated 
with node 1 is not included. Similarly, the 
set of path expressions for a on the set of 
all paths entering node 5 in Figure 8 is 

P(-*5; a) = lkg(kg)* + lkl ,  

where it is to be noted that the k associated 
with node 5 is not included. These too are 
called path expressions. We say a path ex- 
pression is simple if it corresponds to a single 
path. I t  is evident that a simple path ex- 
presszon will not contam the symbols or + .  

Path expressions are concatenated in an 
obvious way. Thus, referring again to 
Figure 8, 

P(1; a)P(1-*;  a) = k(g(kg)*k + lk) 

and 

P(--*5;a)P(5;a)  --- (lkg(kg)* + lkl)k.  

Two path expressions representing identi- 
cal sets of simple path expressions are 
equivalent. Thus, using the last path ex- 
pression above, it is easily seen that  

( lkg(kg)*+ lk l )k  ~ lkg(kg)*k + lklk. 
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Furthermore, two path expressions differing 
only by transformations of the form 

lg --~ g, 1/c --* k, gl -* g, kl --+ k, 11 --* 1, 
and 1% 1--~1 

are equivalent. For example 

1 +  l*gk + kkl + 11=- -#  + kk + 1. 

The final step in this general development 
is to introduce the sets live(n) and avail(n), 
subsets of tok. For each a E tok and each 
n E N of GF(N, E, no). 

o~ E live(n) if and only if P(n-*; a) 
~__ gP + pl, 

and 

a E avail(n) if and onlyif P(--~n; a) - pg, 

where p and p~ stand for arbitrary path ex- 
pressions. In words, a E live(n) if and only 
if on some path from n the first "action" on 
a, other than null, is g; and a E avail(n) 
if and only if the last action on a, other than 
null, on all paths entering n is g. These 
definitions are illustrated in Figure 8, where 
the live and avail sets are shown. 

The live variable problem is: given G~,(N, 
E, no), tok, and, for every n E N, kill(n), 
gen(n), and null(n) determine live(n) for 
every n E N. The availability problem is: 
given G~,(N, E, no), tok, and for every 
n E N, kill(n), gen(n), and null(n) deter- 
mine avail(n) for every n E N. While one 
might solve these two problems directly in 
terms of the definitions, that is by deriving 
the path expressions and determining if 
they have the correct form, such an approach 
would be hopelessly slow except in the most 
trivial cases. Instead, these problems are 
attacked by using search algorithms directly 
on G~ which avoid explicit determination of 
path expressions, but which do provide 
enough information about the form of the 
path expression to solve the live variable 
problem and the availability problem. These 
algorithms are discussed in the next section. 

Before closing this section we show how 
these tools are helpful with a simple ex- 
ample. In this example the problem is to 
detect the presence of path expressions 
(now in terms of references, definitions, 
and undefiuitions) of the form pddp'. As- 
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sume that we can construct a flow graph 
for the program in which the nodes are 
statements or parts of statements, so that 
the following rules of membership for tokens 
representing variables can be trivially ap- 
plied at every node: 

1) a E kill(n) if a is referenced at n, 
or undefined at n; 

2) a E gen(n) if a is defined at n and 
a ~ kill(n); 

3) a E null(n) otherwise. 

After these sets have been determined, 
suppose the live variable problem is solved. 
Now if a is defined at n and if a E live(n) 
it follows easily that there is a path expres- 
sion of the form pddp' in the flow graph. 
The truth of this conclusion is seen from 
the fact that a E live(n) implies P(n---*; a) 

- gp + p' and since g stands for a definition 

P(n---*; a) - d p  + p', 

hence 

P(n; a)P(n--*; a) -- ddp + p". 

Conversely, if at every node at which a is 
defined a ~ live(n), then one may similarly 
conclude there is no path expression of the 
form pddp~; i.e., there are no data flow 
anomalies of this type. 

ALGORITHMS TO SOLVE THE LIVE VARIABLE 
PROBLEM AND THE AVAILABILITY PROBLEM 

In the last section the live variable problem 
and the availability problem were defined 
and a simple example was given to show 
how a solution to the live variable problem 
can be used to determine the presence or 
absence of data flow anomalies. In this sec- 
tion we describe particular algorithms for 
solving the live variable problem and the 
availability problem. Several such algo- 
rithms have appeared in the literature [6, 
16, 23, 31, 35]. The pair of algorithms we 
have chosen for discussion do not have the 
lowest asymptotic bound on execution time. 
However, they are simpler and more widely 
applicable than others and their speed is 
competitive. 

The algorithms involve a search over a 
flow graph in which the nodes are visited 
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in a specific order derived from a depth first 
search. This search procedure is defined by 
the following algorithm, where it is assumed 
that a flow graph G~,(N, E, no) is given, and 
a push down stack is available for storage. 

Algorithm Depth First Search: 
1. Push the entry node on a stack and 

mark it (this is the first node visited, 
nodes are marked to prevent visiting 
them more than once). 

2. While the stack is not empty do the 
following: 

2.1 While there is an unmarked edge 
from the node at the top of the 
stack, do the following: 

2.1.1 Select an unmarked edge from 
the node at the top of the stack 
and mark it (edges are marked 
to prevent selecting them more 
than once) ; 

2.1.2 If the node at the head of the 
selected edge is unmarked, 
then mark it and push it on the 
stack (this is the next node 
visited) ; 

2.2 Pop the stack; 
3. Stop. 

In Figure 9 the nodes of the flow graph 
are numbered in the order in which they are 
first visited during the depth first search. 
We follow the convention that the left- 
most edge (as the graph is drawn) not yet 
marked is the next edge selected in step 
2.1.1; thus the numbering of the successor 
nodes of a node increases from left to right 
in the figure. The ordering of the nodes 
implied by this numbering is called pre- 
order [24]. The order in which the nodes 
are popped from the stack during the depth 
first search is called postorder [16, 24]. In 

0 

FIGURE 9. Numbering of the nodes of a graph in 
the order in which they are first visi ted during 
a depth first search. This  numbering is called 
preorder. 

FIGURE 10. I l lustrat ion of postorder and r-post- 
order numbering of the nodes of a graph. The 
r-postorder numbers are in parentheses. 

Figure 10 the nodes are numbered in post- 
order. This numbering could be generated in 
the following way. Introduce a counter in 
the depth first search algorithm and initi- 
alize it to 0 in step 1. In step 2.2, before 
popping the stack, number the node at the 
top of the stack with the counter value and 
then increment the counter. If each post- 
order node number, say k, is complemented 
with respect to I N I, i.e., k' ¢- IN { - k, 
then the new numbering represents an 
ordering known as r-postorder [16]. This 
numbering is shown in parentheses in Figure 
10. 

The depth first spanning tree [33] of a 
flow graph is an important construction for 
the analysis of data flow. This construction 
can be obtained from the depth first search 
algorithm in the following way. Add a set 
E-which is initialized to empty in step 1. 
In step 2.1.2 put the selected edge in E '  
if the head of the selected edge is unmarked. 
After execution of this modified de~.th first 
search algorithm, the tree T(N, E ) is the 
depth first spanning tree of Gp(N, E, no), 
the flow graph on which the search was 
executed. The depth first spanning tree 
of the flow graph in Figure 9 is shown in 
Figure 11. The edges in the set E - E'  
fall into three distinct groups: 

1) forward edges with respect to T: e E 
E - E', is in this group if this edge 
goes from an ancestor to a descendant 
of T; 

2) back edges with respect to T: e E 
E -- E', is in this group if this edge 
goes from a descendant to an an- 
cestor of T, or if this edge goes from a 
node to itself; 

3) cross edges with respect to T: e E 
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0 

FIGURE 11. Depth  first spanning tree of the flow 
graph shown in Figure 9 Nodes are numbered 
in preorder. 

E - E', is in this group if this edge 
goes between two nodes not related 
by the ancestor-descendant relation- 
ship. 

These edges are shown in Figure 12 for the 
flow graph in Figure 9 and for the tree shown 
in Figure 11 derived from it. Tarjan [34] 
has shown that it is possible to perform a 
depth first search, number the nodes in 
preorder, determine the number of descend- 
ants for each node in the depth first span- 
ning tree, and determine the backedges, 
forward edges, and cross edges, all in 
0(Ihr I + [E l) time. 

This way of characterizing the edges in a 
flow graph is particularly valuable for an 
analysis of data flow patterns. It  is to be 
noted in particular that if the back edges are 
deleted in Figure 12, then the resultant 
graph is acyclic. This is true in general. The 
cycles in a graph cause the major complica- 
tion in the analysis of data flow. All of the 
data flow analysis algorithms would have 
0(l E [) execution times if cycles were ab- 
sent, but with cycles present they have 
execution times which generally grow faster 
than linearly in I E I  as I E I  --* ~.  By 
focusing attention on back edges one can 
more easily see how cycles add to the 
complexity of a data flow analysis al- 
gorithm. 

Some data flow analysis algorithms re- 
quire the flow graph to be reducible. This 
property is characterized in the theorem 
below, which follows from results of Heeht 
and Ullman [15]: 

THEOREM. GF is reducible if and only if 
n, dominates n~ in GF for each back edge 
(n~, n,), where j ¢ i, with respect to a 
depth first spanning tree of GF. 

The notion of dominance which is intro- 
duced here is defined as follows. Given a 
pair of nodes n, and n~ in Gr,  n, dominates 
n, if and only if every path from no to n~ 
contains n,.  I t  can be easily seen from this 
theorem that the flow graph in Figure 9 is 
not reducible. Notice that the ed~ge (5, 4) 
is a back edge (cf. Fig. 12) with respect to 
the spanning tree in Figure 11. On the 
other hand, node 4 does not dominate node 
5; notice the path 0, 7, 8, 5. If this back 
edge is deleted, then the remaining graph is 
reducible. The frequently mentioned para- 
digm of a nonreducible flow graph is shown 
in Figure 13. 

Some experiments [6, 25] have led to the 
general belief that flow graphs derived from 
actual programs often are reducible. For 
flow graphs with this property, particularly 
fast algorithms have been developed [1, 23, 
35] for the live variable problem and the 
availability problem. Recently two al- 
gorithms for solving these problems on any 
flow graph were presented by Hecht and 
Ullman [16]. While these algorithms are not 
always as fast as the others, they are com- 
petitive and they have the distinct advan- 

FIGURE 12. Forward edges, back edges, and cross 
edges marked by dashed lines and lettered f, b, 
e, respectively. This grouping is with respect 
to the tree shown in Figure 11. 

FmURE 13. Paradigm of a nonredueible graph. 
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tages of simplicity and generality ( they are 
not  restricted to reducible flow graphs). 
These algorithms are described below. 

The following algorithm [16] determines 
the live sets of a flow graph. This algorithm 
assumes tha t  the nodes have been numbered 
0, 1, . . .  , n in postorder and refers to the 
nodes by  the postorder number. 
Here S( j )  denotes the set of successors of 
node j,  and ~ /deno tes  the empty set. 

Algorithm LIVE:  
for  j ~-- 0 to  n do  live(j) ~ y~; 
change ~-- t r u e ;  
whi le  change do 

beg in  
change ,,--- fa lse;  
for j *-- 0 to  n do  
beg in  

previous (-- live(j); 
(*) live(j) ¢-  O ((live(k) 

N (tok - kill(k))) U gen(k)); 
k E S(j) 

i f  previous # live(j) t h e n  
change +- t r u e ;  

e n d  
e n d  

s t o p  

We refer to the paper by  Hecht  and 
Ullman [16] for a proof of correctness of 
this algorithm. Its operation is illustrated in 
Figure 14 where the live sets are indicated 
before each execution of the step labeled 
by  (*). I t  is easily verified that  the total  
number  of times step (*) is executed in 
this example is twelve: first the fo r  loop is 
executed six times, making one pass over 
the six nodes, then since there was a change 
to the live sets a second pass is made, during 
which no change occurs to the live sets, 
and this completes execution. 

The correctness of the algorithm does not  
depend on the order in which the nodes 
are visited, but  the execution time does. In 
the simple example just considered it is 
easily verified tha t  if the nodes were visited 
in the order 5, 4, 2, 3, 0, 1 then eighteen 
executions of step (*) would be required; 
note tha t  in this case a is not put  in the live 
set of node 2 during the first pass. The 
nodes are visited in postorder to ensure a 
relatively rapid termination of the algo- 
rithm. In particular, if the flow graph is 
acyclic, then after the whi le  loop is exe- 
cuted once M1 live sets are correct; one 

oA 
node 

4 >3 
gen k111 n u l l  

,5 

9 (l,~ 

2 ~ B 

3 L~ 

4 ,,[~ 

5 (~,B 

l l ve  sets before k th execution of  step * in  LIVE 

nod•e k= 1 2 3 4 5 6 7 

2 ~ ¢ ¢ ,~ ~ ~ ~ f u r t h e r  

3 ¢ $ ~, !, $ ¢ ¢ changes 

4 @ $ ¢ $ @ ~,8 a,(~ 

5 ¢ i $ } ¢ $ $ 

FIGURE 14. Illustration of the steps in the creation of the live sets by algorithm LIVE for a simple 
flow graph. Nodes are numbered ]n postorder. The correct live sets are obtained after five execu- 
tions of step *, however seven more executions are required before no change to the sets is recog- 
nized which then terminates execution. 
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more execution of the while loop is required 
to establish that there are no further 
changes to the live sets. Thus for an acyclic 
flow graph the step (*) is executed 2 IN I 
times. If there is one back edge, then the 
effect of a gen can be propagated to a lower 
numbered (in postorder) node, and it is not 
too difficult to see that upon completion 
of the second (at most) execution of the 
while loop all live sets will be correct. Thus 
for a flow graph with one back edge the 
step (*) is executed 3 1 N I  times at most. 
Hecht and Ullman [16] have shown that if 
r is the number of times the step (*) is 
executed, then 

~< (2 + d ) l N t ,  

where d is the largest number of back- 
edges in any acyclic path in the graph. For a 
reducible flow graph it has been shown [15] 
that the back edges are unique, but if the 
flow graph is not reducible then the back 
edges will depend on the depth first spanning 
tree. The d appearing above refers to the 
back edges with respect to the spanning tree 
generated to establish the postorder num- 
bering of the nodes. 

We now present an algorithm [16] to de- 

I 

'4 
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termine the avail sets of a flow graph. This 
algorithm assumes that the nodes have been 
numbered 0, 1, . . . ,  n in r-postorder and 
refers to the nodes by the r-postorder num- 
ber. Here P ( j )  denotes the" se$ ~qf prede- 
cessors of node j, and ~/denotes the empty 
set. 

Algorithm AVAIL: 
avail (0) <-- $2~; 
f o r j  *-- 1 to n do avail(j) (--- tok; 
change <---- t rue;  
while change do  
b e g i n  

change <---- false 
for  j ~-- 1 to n do  
begin 

previous <-- avail(j); 
avail(j) <--- N ((avail(k) 

N (tok -- kill(k))) U gen(k)); 
k C P( j )  

i f  previous ~ avail(j) t hen  
change <-- t rue  

end 
e n d  
s top 

We refer again to the paper by Hecht and 
Ullman [16] for a proof of correctness of this 

node 9en k111 nu l l  

l a,t~ 

2 a,~ 

3 a B 

4 ~,~ 

S a,(~ 

aval l  sets before k th executlon of step + ~n AVAIL 

nod•e k-- I 2 3 4 ~ 6 7 

1 ~,B B B B B ~ B 

2 a,B a,B @ @ ¢ ¢ ¢ 

3 a,B a,B ~,B ¢ ¢ ¢ 

4 ~,B e,B a,B a,B ~ ~ 

no  

further 

changes 

FIGURE 15. I l lustrat ion of the steps in the creation of the avail sets by algori thm AVAIL for a simple 
flow graph. Nodes arc numbered m r-postorder .  The correct avail sets are obtained after  five ex- 
ecutions of step *, however seven more executions are required before no change to the sets is 
recognized which then terminates  execution. 
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algorithm. Its operation is illustrated in 
Figure 15 where the avail sets are indicated 
before each execution of the step labeled by 
(*). Here, as with the example for LIVE 
it is easy to verify that step (*) is executed 
twelve times. With the exception of the 
entry node, which is treated separately, it 
does not matter in what order the remaining 
nodes are visited in the while loop so far 
as correctness is concerned, but it does 
matter for the execution time. Again, the 
back edges are a critical factor. With r and 
d as defined before, Hecht and Ullman [16] 
show that 

r ~ ( 2 + d ) ( t N  I -- 1). 

Empirical evidence obtained by Knuth 
[25] leads Hecht and Ullman [16] to the 
conclusion that in practice one can expect 
d ~< 6 and on the average d ~ 2.75 for 
FORTRAN programs. However, it is to be 
noted that there are pathological situations, 
as shown in Figure 16, for which the execu- 
tion time is much larger than these numbers 
indicate. 

SEGMENTATION OF DATA FLOW 

Normally a program consists of a main 
program and a number of subprograms or 
external procedures. This segmentation of 

nl 

n t 
FIGURE 16. P a t h o l o g i c a l  s i t u a t i o n  in  w h i c h  t h e  

e x e c u t i o n  t i m e  for  t h e  a v a i l a b i l i t y  a l g o r i t h m  is 
u n u s u a l l y  long .  He re  d = 1 N --  13, r = (I N ] --  1) 3 
a s s u m i n g  a s g e n ( n , )  a n d  a ~ k i l l (n~)  a n d  is  
n o t  in  a n y  o t h e r  gen or  ]:ill sets.  

the program is a natural basis for the seg- 
mentation of the data flow analysis. Here 
we describe how this is done in such a 
way as to permit detection of data flow 
anomalies on paths which cross procedure 
boundaries. We will see that the system for 
doing this naturally includes the detection of 
data flow anomalies on paths which do not 
cross procedure boundaries. In this section 
we describe the identification and repre- 
sentation of the data flow, and in the next 
section we describe the detection of anoma- 
lous data flow. 

We make several assumptions at the out- 
set. The first concerns aliasing, the use of 
different names to represent the same 
datum. In crossing a procedure boundary 
the name of a datum typically changes from 
the so-called actual name used in the in- 
voking procedure to the so-called dummy 
name used in the invoked procedure. I t  is 
assumed here that the aliases for a datum 
are known and that a single token identifier 
is used to represent them. Thus, in particu- 
lar, in our notation for representing actions 
on a token a along some path p we use 
P(p; c~) even when p crosses a procedure 
boundary and the datum represented by 
is known by different names in the two 
procedures. The second assumption we make 
is that the procedures under consideration 
have a single entry and a single exit. We 
could permit multiple entries and multiple 
exits, but it would complicate the discussion 
without adding anything really important to 
it. While we will discuss the segments as if 
they were procedures, it will be obvious that 
the discussion applies equally well to any 
single-entry, single-exit segment of a pro- 
gram. Our most restrictive assumption is 
that the call graph for the program is acyclic. 
This excludes recursion. We will discuss this 
restriction later. 

Let us consider a flow graph GF(N, E, no) 
in which some node invokes an external 
procedure, as illustrated in Figure 17. In 
order to analyze the data flow in Gp(N, E, no) 
it is necessary to know certain facts about 
the data flow in the invoked procedure. In 
particular we need to know enough about 
the data flow in the invoked procedure to be 
able to detect anomalous patterns in the 
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FIGURE 17. At node n in GF(N, E, no) an external 
procedure is invoked. The flow graph of the 
invoked procedure is represented by Gr' (N', E', 
no'). 

flow across the procedure boundaries. Re- 
ferring to GF in Figure 17 and considering a 
single token a, it  becomes evident that  we 
need to recognize three cases to detect 
anomalous patterns of the form purp' on 
paths crossing the procedure boundary: 

P(--~n; ~) ~ pu + p', a) 
P(n; a) ~ rp -~ p'; 

b) P ( n ; a )  ~ pu + p', 
P(n--% a) ~ rp + p'; 

t c) P(--~n;a) -= pu + p ,  
P(n;  a) -~ 1 "t- p ,  
P(n--*; c~) ~ rp -k p.  

Thus all we need to know about the data 
flow in the invoked procedure is whether 
P(n; ~) has one of the following three 
forms: rp W p', pu Jr p', 1 W p'. The last 
form represents the situation in which there 
is at  least one path through the invoked 
procedure on which no reference, no defini- 
tion, and no undefinition of a takes place. 
I t  is evident that  a particular P(n; a) 
could have more than one of these forms, 
e.g., ru W 1 has all three forms. Similar 
consideration of the problem of detecting 
anomalous path expressions of the form 
pddp' and pdup' leads to the conclusion that  
the following additional forms for P(n;  a) 
need to be recognized: dp ~ p', pd + p,  
up ~ p'. 

We now wish to extend these ideas to 
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permit recognition of situations where an 
anomalous path expression exists on all 
paths entering or leaving a node. This recog- 
nition is important because it permits us to 
conclude something about the presence or 
absence of anomalous path expressions on 
executable paths. Figure 1 makes it clear 
tha t  some paths in a flow graph may  not  be 
executable, and it is evident that  anomalous 
path expressions on them are not important.  
Only anomalous path expressions on execut- 
able paths are important as indicators of a 
possible error. Unfortunately, the recogni- 
tion of executable paths is difficult 2, but if 
we make the reasonable assumption that  
every node is on some executable path, then 
if all paths through a node are known to be 
anomalous we may draw the very useful 
conclusion that  there is an anomalous ex- 
pression on an executable path. Certain 
additional forms for path expressions need 
to be. distinguished to achieve this. We ob- 
serve, for example, tha t  if 

P(---m; a) -- pu and P(n;  a) -- rp', 

then on every path in Gr of the form no, • • • , 
n, . .  • there is an anomalous path expression 
purp'. Thus it would be desirable to be able 
to distinguish the form rp. Notice also that  if 

P(--*n;a) - p u ,  P ( n ; a )  - -rp '  + 1, 
P(n---% a) - rp,  

then the same conclusion can be drawn, so 
it is also desirable to distinguish the form 
rp -4- 1. Similar considerations show the need 
for recognizing the forms pu, pu + 1, 1 and 
similar considerations for anomalous ex- 
pressions of the form pddp', and pdup' lead 
to corresponding forms involving d and u. 

Collecting these results leads to the seven 
forms for path expressions shown in Figure 
18. Corresponding sets A~(n), B ~ ( n ) , . . . ,  
I (n )  which are subsets of the token set are 
defined as follows: 

a E A~(n) if P ( n ; a )  - xp; 
a EBb(n)  if P ( n ; a )  = xp ~- 1; 

a E I (n)  if P ( n ; a )  = l (n ) .  

= Indeed th is  problem is not  solvable in general,  for 
if we could solve i t  we could solve the  ha l t ing  
problem [18]. 
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label path expression 

A xp 
x 

B x xp+l 

C X xp+p ' 

D x px 

E x px+l 

F px+p ' 
x 

I l 

FIOUI~B 18. Seven forms for path expression in 
single-entry, single-exit flow graphs and labels 
used to identify them. The parameter x stands 
for r, d, or u. 

These sets are called path sets. Although this 
classification scheme was developed for 
situations in which n represents a procedure 
invocation as illustrated in Figure 17, it 
will be recognized that it applies when n is a 
simple node representing, say, an assignment 
statement• For example if n represents 
a ~-- a + # and tok ffi {a, #, ~}, then 

a E Ar(n) ,  a E C,(n) fl E A~(n), 
E C,(n) a E  Dd(n), a E  Fd(n) 
E I (n ) .  

In such simple cases membership in the sets 
can be determined by rather obvious rules. 
On the other hand, when the node represents 
a procedure invocation, determination of 
membership in the path sets requires an 
analysis of the data flow in the procedure. 
I t  is this problem to which we now direct 
our attention. 

Suppose the path sets for node n' are to 
be determined. We assume that n' repre- 
sents the invocation of an external procedure 
with flow graph Gr and that the path sets 
for the nodes of Gr have been determined 
already. (Our focus of attention now shifts 
to the invoked procedure and to avoid an 
excess of primes we have switched the role 
of primed and unprimed quantities shown in 
Fig. 17.) We also assume that no data ac- 
tions take place at the entry node and exit 
node of Gr ; thus 

I(no) = tok and I(n~xit) -- tok. 

This assumption is not restrictive since we 

can augment Gr by attaching a new entry 
node and new exit node with these prop- 
erties without affecting the data flow pat- 
terns. The algorithms for determining the 
path sets are presented informally below. 
They are presented in alphabetic order; 
however, as will become apparent, a differ- 
ent order is required for their execution. 
A satisfactory execution order is A, (n ' ) ,  
C~(n'), B~(n'), D~(r[), F~(n'), E , ( ~ ) ,  
I (n ' ) .  
Algorithm Determine A x( n') 

1) for all n such that n E N - {n.xit} do  
null(n) (--- I (n)  U B~(n) ; 
kill(n) ~-- A~(n) ; 
gen(n) ~ tok 

-- (kill(n) U null(n)) ; 
2) null(n~it) (---- f2~; 

kill(noxit) ~ ;~; 
gen( ne,,it) ¢--- tok; 

3) execute LIVE on Gp ; 
4) A,(n ' )  ~ tok - live(no) ; 

{comment--the null sets are not 
explicitly needed but are included 
here for clarity}. 

Algorithm Determine B~( n') 
1) for all n such that n E N do 

null(n) ~-- I (n)  U B, (n)  ; 
kill(n) (---- Ax(n) ; 
gen(n) *--- tok 

- (kiU(n) U null(n) ) ; 
2) execute LIVE on Gr ; 
3) B~(n') ~ (tok - live(no)) 

[7 (tok - ' a , ( n ' )  ) fl C,(n') .  
• . ! 

Algorithm Determine C,( n ) 
1) for all n such that n E N do 

gen(n) ~ C~(n) ; 
kill(n) ~ (Av(n) U A , (n ) )  ; 

{comment--x, y, z is any per- 
mutation of r, d, ul 

null(n) ,,-- tok 
- (gen(n) U kill(n))" 

2) execute LIVE on Gr ; 
3) C~(n') ~ live(no). 

Algorithm Determine D,( n') 
1) for all n such that n E N do 

gen(n) ~-- D,(n)  ; 
kill(n) (---(F,(n) U F,(n)) ;  

{comment--x, y, z is any per- 
mutation of r, d, u} 

null(n) (-- tok 
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- (gen(n) U kil l(n)) ; 
2) execute AVAIL on Gr ; 
3) D~(n') ~-- avail(nox,t). 

Algorithm Determine E,(  n') 
1) for all n such that n E N - {no} do 

gen(n) ~-- D~(n) ; 
kill(n) (-- Fv(n) U F,(n) ; 

{comment--x, y, z is any per- 
mutation of r, d, u} 

null(n) (-- tok 
- (gen(n) U kill(n) ) ; 

2) gen(no) (-- $ok; 
kill(no) ~- ~ ;  
null(no) ¢--- 25; 

3) execute AVAIL; 
4) E~(n') ~-- avail(n~xi,) 

N (tok - D,(n ' ) )  N F,(n ' ) .  

Algorithm Determine F,( n') 
1) for all n such that n E N - {no} do 

gen(n) (--- D~(n) U D,(n);  
{comment--x, y, z is any per- 

mutation of r, d, u} 
kill(n) (--- F,(n) ; 
null(n) (-- tok 

-- (kill(n) U gen(n) ) ; 
2) gen(no) *--- tok; 

kill(no) *--- ~ ;  
null(no) *-- 25; 

3) execute AVAIL; 
4) F,( n') ~-- tok - avail(ned,t) 

Algorithm Determine I ( n') 
1) I (n ' )  ~ N I (n ) .  

h E N  

Since LIVE and AVAIL terminate, it is 
obvious that these algorithms terminate. 
Proofs of correctness for some of these al- 
gorithms are presented below. 

Proof Determination of A~(n') is correct 
Let a E tok. By step 4 of the algorithm 
a E A~(n') if and only if a ~ live(no). 
Take the "if" part first: 

~ live(no) ~ P(no-*; a) # gp + p' 
P(n0--~; a) =--- kp or 

P(no-*; a) --= kp + 1, 

or P(no--% a) ------ 1. The last two alterna- 
tives are ruled out because by step 2 of the 
algorithm gen(n~,,t) = tok. Consequently, 
because of the construction of the k,ll 
sets in step 1, a ~ live(no) ~ P(n0-*; a) 
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=-- xp. We observe P(n';  a) ffi P(no; a) 
P(no-~; a) = P(no - , ;  a ) ,  the last equal- 
ity following from the fact that no data 
action takes place at no. Thus a E 
live(no) =~ P(n';  a) == xp; i.e., a E 
A~(n').  Now consider the "only if" part. 

a E live(no) ~ P(no--*; a) ------ gp + p' 
Consequently, because of the construction 
of the gen sets P (no~;  a) -- yp + p' 
where y # x. (Note that a E gen(n) 
implies, by step 1, P(n;  a) - x p ,  
P(n;  (~) - xp + 1, P(n;  a) - 1).Con- 
sequently, a E live(no) ~ P(n';  a) 
-- yp + p' # xp; i.e., a ~ A~(n ' ) .~  

Proof Determination of B , (n ' )  is correct 
Let a E tok. By step 3 of the algorithm 
o~ E B,(n ' )  if and only if a E live(no) and 

A ~ ~ x(n ) and o~ E C,(n') Take the "if" 
part first: a ~ live(no) ~ P(no-o; a) = kp, 
orP(no--*; ~) = kp + 1, orP(no-o; a) = 1. 
The first and last alternatives are ex- 
cluded by the conditions a ~ A , (n ' )  and 

t 
ot E C,(n ). This leaves only,P(no--*; a) 
= kp + 1 and using a E k i l l ( n )  
P ( n ; a )  = xpgivesP(no---*;a) -- xp + 1. 
Finally 

P(n';  a) = P(no; ~)P(no--*; ~) 
-~ P ( no---* ; a) 

P(n';  a) -~ xp + 1; 

i.e., a E B,(n ' ) .  Now consider the "only 
if" part. 

a E live(no) ~ P(no---~; a) = gp + p'. 

From step 1 it is seen that 

a E gen(n) ~ P ( n ; a )  - y p + p ' ,  y # x .  

Hence a E live(no) ~ P(no-*; a) -- 
yp + p', y # x, and from this it is 
easily concluded that a ~ B,(n ' ) .  It  is 
immediately evident that a E A~(n') 
a E Bx(n') and that a ~ C~(n') ~ a E 

t 
B , ( n  ).[] 

Proof Determination of D~(n') is correct 
Let a E tok. By step 3 of the algorithm 

a E D~(n') if and only if a E avail(nex,O. 

Take the "if" part first. 

a E avail(ne,~it) ~ P(-~nex,t; a) - pg. 
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Hence 

P(n ' ;  a) -- P(-'-~nexlt; ~)P(nex,t; a) -- pg. 

Now using the fact that a E gen(n) 
P(n;  a) ffi px we conclude that 

a E avail(nexit) ~ P(n ' ;  a) - px; i.e., 
a E Dx(n') .  

Now take the "only if" part. 

a ~ avail(ne.it) ~ P(--~ne, it; a) -- pk T p' 
or P(-~ne~,t; a) --- 1. 

Since a E kill(n) implies P(n;  a) 
! 

py ~ p ,  y ~ x, it easily follows that 
a ~ avail(n~z,t) ~ P(n ' ;  a) ~ px; i.e., 

? 

a ~ Dx(n ) . ~  

The last item to be discussed in this sec- 
tion is the initiation and progressive de- 
termination of the path sets for a program. 
Consider the call graph shown in Figure 5. 
Since the subprogram FUNB invokes no 
other subprogram, the algorithms just 
presented are unnecessary in the determina- 
tion of the path sets for the nodes of the 
flow graph representing FUNB. In this flow 
graph each node will represent a simple 
statement or part of a statement having no 
underlying structure, so the path set de- 
termination can be made by inspection. 
Once this is done the path sets for the nodes 
of the flow graph representing SUBA can be 
determined, since the path sets are known 
for the only subprogram it invokes. The 
same remarks apply to the flow graph repre- 
senting FUNA. Finally, after these path 
sets are determined it is possible to deter- 
mine the path sets for the nodes of the flow 
graph representing MAIN. Thus by working 
backwards through an acyclic call graph it 
is possible to apply the algorithms just 
described. We call this backward order the 
leafs-up subprogram processing order. We 
have restricted our attention to acyclic call 
graphs because this procedure breaks down 
if a cycle is present in the call graph. One 
way to solve this problem if cycles are 
present might be to carry out an iterative 
procedure, as suggested by Rosen [30], in 
which successive corrections are made to 
some initial assignment of path sets but we 
have not pursued this idea. 

DETECTING ANOMALOUS PATH EXPRESSIONS 

I t  will be recalled that we have defined an 
anomalous path expression to have one of the 

! f ? 
forms: purp, pddp, or pdup. Let us assume 
now that the path sets have been determined 
for every node of a flow graph G~,(N, E, no). 
I t  should be evident that if (n, n') E E 
and a E Fu(n) and a E Cr(n'),  then there 
is a path expression of the form purp': 
a E Fu(n) ,  a E Cr(n') =* P(nn ' ;  a) - 
purp' -[- pip. Note, however, that the un- 
definition and reference do not necessarily 
occur on nodes n and n' respectively. In- 
deed, these data actions may not even occur 
on nodes of this flow graph: they might 
occur on nodes of other flow graphs repre- 
senting invoked procedures. We only know 
that on some path which includes the edge 
(n, n') there is an anomalous path ex- 
pression. Also this anomalous path expres- 
sion may not be on an executable path, but 
if a E D~(n) and a E Ar(n ' ) ,  then we may 
reasonabl~" conclude that the path expres- 
sion purp occurs on an executable path. 
In this case our assumptions imply that on 
every path which includes the edge (n, n') 
there must be an anomalous path expression: 

E Du(n) ,  a E Ar(n')  ~ P(nn ' ;  a) ---- 
purp'. We assume at least one of these paths 
is executable. In this section these ideas are 
expanded to include the detection of 
anomalous path expressions on paths which 
go through a selected flow graph. 

Assume that the path sets have been 
constructed for a flow graph Gp, and we 
wish to determine whether 

P(n;  a)P(n---*; a) =- pxyp' "~ pH 

o r  

P(n;  a)P(n---~; a) -- pxyp' 

for each n E N and each a E tok. For anom- 
aly detection we are interested in those 
cases whenx = u , y  - r o r x  = d , y  = d, 
or x = d, y = u, but there is no need to fix 
the values of x and y now. A similar, but not 
equivalent, pair of problems is to determine 
whether 

P(-*n;  a)P(n;  a) ~- pxyp' -~- p" 

o r  
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P(---~n; a)P(n ;  a) - pxyp' 

for each n E N and each a C tok. The dis- 
cussion of the last section should make it 
apparent that the first pair of problems can 
be attacked with the algorithm LIVE and 
the second pair of problems can be attacked 
with the algorithm AVAIL. Indeed, the 
algorithms presented in the last section have, 
in effect, solved these problems. 

Consider the algorithm to determine 
A~(n') .  After execution of step 3, suppose 
we construct the sets 

A~(n--~) = tok - live(n) 

for all n E N. Note that in step 4 we did this 
for the entry node only. It  is evident that 
a E Ax(n--~) implies P(n---~; a) = xp, 
and conversely. Hence if a E Dr(n) and 
a E A~(n---~) we know that 

P(n;  a)P(n---% a) ~-- pyxp' 

and so if y = u and x = r, an anomalous 
path expression of the form purp' is known 
to be present. 

Now, using the idea and notation sug- 
gested in the last paragraph assume that 
we augment the last step in the algorithm 
for A~(n') ,  C~(n'), D~(n'),  and F~(n') 
described in the last section to construct the 
sets A~(n--~), C~(n---~), D~(----~n), F~(---*n). 
Using them we construct the set intersec- 
tions: F~(n) Iq C~(n--~), D~(n) rl A~(n.-o), 
F~(---*n) f'l C~(n), and D~(---~n) Iq Ay(n) .  
Then it is seen that: 

a E Fx(n) fl C~(n---*) 
¢:* P(n;  a)P(n---*; a) - pxyp' q- p"; 

a E D~(n) Iq Ay(n---*) 
¢=* P(n;  a)P(n--*; a) - pxyp'; 

,~ E F~(--,n) N C~(n) 
¢=* P(--m; a ) P ( n ;  a) -- pxyp' q- p"; 

a E D~(--m) fl A~(n) 
¢=* P(---m; a)P(n ;  a) - pxyp'. 

The proofs of these assertions, which we 
omit, are essentially the same as those given 
in the previous section, Segmentation of 
Data Flow, for the determination of the sets 
A~(n') ,  . . . .  

It  will be recognized that the segmenta- 
tion scheme described in the previous sec- 
tion permits exposure only of the first and 

last data actions on paths entering or leav- 
ing a flow graph. Therefore, if we are to 
detect the presence of all anomalous path 
expressions in an entire program by the 
method just described, we must apply it 
systematically to the flow graphs for each 
of the subprograms in the entire program. 
In practice this would be done in the order 
dictated by the call graph, as already dis- 
cussed in connection with constructing the 
path sets. Indeed, these two processes would 
be done together while working through the 
subprograms. To illustrate, consider the call 
graph shown in Figure 5. The steps per- 
formed would be as follows: 

1) For FUNB determine the sets 
Ax(n')  . . .  I ( n ' ) ,  Ax(n--~), 
Cx(n-*), D~(-,n), F~(--m); 

2) For FUNB construct the sets 
F~(n) N Cy(n--~), . . .  , D~(---m) 
N A y ( n )  and report anomalies; 

3) Repeat steps 1 and 2 for SUBA; 
4) Repeat steps 1 and 2 for FUNA; 
5) Repeat steps 1 and 2 for MAIN. 

The time required to do the detection of 
anomalous path expressions is essentially 
controlled by the time required to execute 
LIVE and AVAIL. Step 1 of the example 
described above requires nine executions of 
LIVE (A~, B~, C~ for x -- r, d, u), and 
nine executions of AVAIL (D~, E~, F~ for 
x = r, d, u), plus a small additional amount 
of time proportional to the number of nodes 
in the flow graph. We are assuming that the 
set operations can be done in unit time so 
there is no dependence on the number of 
tokens. In practice this assumption has only 
limited validity. Step 2 of the example 
described above requires a time proportional 
to the number of nodes (in particular 
4( I N ] - 2) where the - 2  term arises be- 
cause we can ignore the entry and exit 
nodes). Therefore, if a call graph has I N. I 
nodes and I~1  is the average number of 
nodes in each flow graph represented by a 
node of the call graph, the time • to detect 
all anomalous path expressions may be ex- 
pressed as 

r -- IN, 1(9r,.,w + 9rAvAIL + k I h7 I), 

where rL~v~ and rxvxm are execution times 
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for LIVE and AVAIL. If we use the results 
given in the section Algorithms to Solve the 
Live Variable Problem and the Availability 
Problem for the execution times for LIVE 
and AVAIL, we see that in practical situ- 
ations we can expect to detect the presence 
of all anomalous path expressions in a 
program in a time which is proportional to 
the total number of flow graph nodes. While 
the constants of proportionality might be 
large and there would be a substantial over- 
head to create the required data structures, 
the important point is that a combinatorially 
explosive dependence on IN I has been 
avoided. 

The principal reason why a combinatorial 
explosion has been avoided is that we have 
not looked explicitly at all paths. The loss 
of information resulting from this does not 
prevent us from detecting the presence of 
anomalous path expressions, but it greatly 
restricts our knowledge about specific paths 
on which the anomalous path expression 
occurs. Thus if a E Fu(n)N Cr(n--,), we 
know that on some path starting at n we 
will find an expression of the form purp', but 
we do not know which path and we do not 
know which nodes on the path contain the 
actions u and r on a. This problem can be 
attacked directly by performing a search 
over paths starting at node n. This search 
can be made quite efficient if we deal with 
one token at a time. The idea is to use a 
depth first search but to restrict it so that 
we avoid visiting any node n' such that 
a ~ C~(n'--*). While this strategy does not 
preclude backtracking, it tends to reduce it 
and generally restricts the number of nodes 
visited in the search. It  seems certain that 
more efficient schemes for localizing the 
anomalous path expression can be con- 
structed. 

The information gathered for the detection 
of anomalous path expressions is valuable 
for other purposes. For example, it deter- 
mines which arguments need initialization 
before execution of a procedure--thus it 
could be used to supply this information as 
a form of automatic documentation. Al- 
ternatively, this information can be used to 
verify assertions by the programmer con- 
cerning arguments needing initialization. 

Similarly, it is possible to determine the 
arguments which are assigned values by a 
procedure, i.e., the output arguments. How- 
ever, unlike the case for initialization where 
the set Cr(n t) identifies the arguments re- 
quiring initialization, none of the path sets is 
sufficient for this  purpose. Notice in par- 
ticular that Fd(n ) is not satisfactory be- 
cause P(n'; a) - pdr obviously implies 
that a is an output for the procedure repre- 
sented by n' yet a ~ Fd(n'). However, it is 
not difficult to construct an algorithm for 
this purpose. Indeed, we only need to 
modify one step in the algorithm for 
Fx(n'); in particular, replace gen(n) (-- 
Dr(n) (J D~(n) by gen(n) (---- Du(n). 

Then after step 4, a E Fd(n') implies a 
is an output for the procedure represented 
by n'. I t  will be recognized that this ex- 
cludes tokens for which P(n'; ~) =- pdr*u. 
This is reasonable, since the definition is 
destroyed by the subsequent undefinition, 
and no value is actually returned to the 
invoking procedure. Thus we have a mecha- 
nism for providing automatic documentation 
about procedure outputs, or for verifying 
assertions about which procedure arguments 
are output arguments. 

CONCLUSION 

As noted in an earlier section of this paper, 
we have implemented a FORTRAN program 
analysis system which embodies many of the 
ideas presented here. This system, called 
DAVE, [27, 28] separates program variables 
into classes that are somewhat similar to 
those shown in Figure 18. DAVE also detects 
all data flow anomalies of type purp' and 
most of the data flow anomalies of types 
pddp' and pdup'. DAVE carries out this 
analysis by performing a flow graph search 
for each variable in a given unit, and analyz- 
ing subprograms in a leafs-up order, which 
assures that no subprogram invocation will 
be considered until the invoked subprogram 
has been completely analyzed. An improved 
version of DAvE would continue to analyze 
the subprograms of a program in leafs-up 
order, but would use the highly efficient, 
parallel algorithms described here to either 
detect or disprove the presence of data flow 
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anomalies. The variable-by-variable depth 
first search currently used in DAv~ exclu- 
sively, would be used only to generate a 
specific anomaly bearing path, once the 
more efficient algorithms had shown that an 
anomaly was present. Such a system would 
have considerably improved efficiency char- 
acteristics and, perhaps more important, 
could be readily incorporated into many 
existing compilers which already do live 
variable and availability analysis in order to 
perform global optimization. 

The apparent ease with which our anomaly 
detection scheme could be efficiently in- 
tegrated into existing optimizing compilers 
is a highly attractive feature and a strong 
argument for taking this approach. Other 
methods for carrying out anomaly detection 
can be constructed, but most that we have 
studied lack efficiency and compatibility 
with existing compilation systems. One such 
method, which is quite interesting for its 
strong intuitive appeal, involves symbolic 
execution of the program. Symbolic execu- 
tion, a powerful technique which has 
recently found applications in debugging, 
program verification, and validation [8, 19, 
22], involves determining the value of each 
program variable at every node of a flow 
graph as a symbolic formula whose only 
unknowns are the program's input values. 
These formulas of course depend upon the 
path taken to a given node. A notation simi- 
lar to regular expression notation could be 
used to represent the set of symbolic ex- 
pressions for a variable at a node, cor- 
responding to the set of paths to the node. 
If these expressions were to be stored at 
their respective nodes, a flow graph search- 
ing procedure could be constructed which 
would be capable of detecting all the anoma- 
lies described here by careful examination of 
the way the expressions evolved along paths 
traversed by a single flow graph search. 
Moreover, because the symbolic execution 
carried along far more information than 
does our proposed system, even more 
powerful diagnostic results are possible. 

The relative weaknesses of such a method 
are its lack of efficiency and the difficulty of 
incorporating it into existing compiling 
systems. Although it seems reasonable to 
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suppose that sophisticated representation 
schemes could be used to reduce the very 
large time and space requirements of the 
symbolic execution system, it also seems 
clear to us that even such reduced require- 
ments would necessarily greatly exceed 
those of our proposed system. We have 
finally concluded that symbolic execution 
systems currently seem more attractive" as 
stand alone diagnostic systems where their 
greater level of detail can be used to carry 
out more extensive program analysis, but at 
greater cost. We believe, moreover, that our 
proposed data flow analysis scheme can and 
should be integrated into compilers in order 
to provide highly useful error diagnosis at 
small additional cost. The diagnostic output 
of a system such as ours would then be useful 
input to a symbolic execution system. 

Much has been learned from our exper- 
iences with the current version of DAVE. 
Believing that similar systems should be 
used in state-of-the-art compilers, we now 
summarize these experiences in order to 
place in better perspective the problems and 
benefits to be expected. 

Certain programming practices and con- 
structs which are present in FORTRAN and 
common to a number of other languages 
cause difficulties for data flow analysis 
systems such as DAVE. The handling of 
arrays, as mentioned earlier, is one such 
example. Problems arise when different ele- 
ments of the same array are used in in- 
herently different ways and hence have 
different patterns of reference, definition, 
and undefinition. Static data flow analysis 
systems such as DAVE are incapable of 
evaluating subscript expressions and hence 
cannot determine which array element is 
being referenced by a given subscript ex- 
pression. Thus, as stated earlier, in DAVE 
and in many other program analysis systems 
arrays are treated as though they were 
simple variables. This avoids the problem of 
being unable to evaluate subscript expres- 
sions, but often causes a weakening or 
blurring of analytic results. As an example, 
consider the program shown in Figure 19. 
Suppose n t is the node of GMAIN(N, E, no), 
the flow graph of the main program, which 
invokes SQUARE. Denote by R( . ,  1) and 
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DIMENSION R(lO0,2) 

READ(5,10)(R(I,]),I:I,]O0) 

10 FORMAT(FIO.2) 

CALL SQUARE(R) 

WRITE(6,20)(R(I,2),I=I,IO0) 

20 FORMAT(IX,FIO.2) 

STOP 

END 

SUBROUTINE SQUARE(R) 

DIMENSION R(IO0,2) 

DO I0 I=I , I00 

I0 R(I , I )=R(I ,2)**2 

RETURN 

END 

FIGURE 19. A program in which failure to dis- 
t inguish  between the  differing pa t t e rn s  of 
reference, definit ion and  undef ini t ion of differ- 
en t  array elements prevents the detection of 
d a t a  flow anomalies .  

R(. ,  2) arbitrary elements of column 1 
and column 2 respectively of array R. Now 
clearly R( . ,  1) E Ad(n') and R( . ,  2) E 
A,(n'). In addition, it is clear that R( . ,  1) E 
Dd(--*n ~) and R(-,  2) E Du(-*n'). Hence 
P(-m';  R(.,  1))P(n'; R(.,  1)) -- pddp', 
and P(-~n'; R(.,  2))P(n'; R(.,  2)) --- 

! 

purp, and we see there are two data flow 
anomalies present. DAVE, however, treats 
R as a simple variable and determines that 
R E Ad(n'), R E Dd(n'), R E Dd(---~n') 

, I 
andR E A,(n--*). Thus P(---*n ;R)P(n';R) 
- pdrp' and P(n'; R)P(n'---~; R) - -  p d r p ,  

and no data flow anomalies will be detected. 
This loss of anomaly detection power is 
worrisome, and it is seemingly avoided only 
when programmers call functionally distinct 
subarrays by separate names. 

There are also certain difficulties involved 
in determining the leafs-up subprogram 
processing order referred to earlier. This 
order is important, because it ensures that 
each subprogram will be analyzed exactly 
once, yet that data flow anomalies across 
subprogram boundaries will be detected. 
If subprogram names are passed as argu- 

ments, this order may become difficult to 
determine. This difficulty can arise because 
the name used in a subprogram invocation 
may not be the name of a subprogram, but 
rather can be a variable which has received 
the subprogram name, perhaps through a 
long chain of subprogram invocations. All 
such chains must be explored in order to 
expose all subprogram invocations and then 
determine the leafs-up order. Recent work 
by Kallal and Osterweil [20] indicates that 
the AVAIL algorithm can be used to effi- 
ciently expose all such invocations. 

Recursive subprograms pose another ob- 
stacle to determining leafs-up order. Al- 
though recursion is not allowed in FORTRAN, 
it is a capability of many other languages. 
Moreover, it is possible to write two 
FORTRAN subprograms such that each may 
invoke the other, but such that no program 
execution will force a recursive calling se- 
quence. Such a program would be legal in 
FORTRAN, but would not appear to have 
sufficient leaf subprograms (i.e., those that 
invoke no others) to allow construction of 
the complete leafs-up order. This problem 
is not adequately handled by DAVE, how- 
ever no FORTRAN programs with this con- 
struction have been encountered. In any case 
current work indicates that recursive pro- 
grams can be analyzed using the methods 
described here. 

Finally it should be observed that sub- 
program invocations involving the passing 
of a single variable as an argument more 
than once may be incorrectly analyzed. 
This occurs because DAVE assumes that all 
subprogram parameters represent different 
variables as it analyzes subprograms in 
leafs-up order. 

Despite these limitations, the DAvE sys- 
tem has proven to be a useful diagnostic 
tool. We have used DAVE to analyze a 
number of operational programs and it 
has often found errors or stylistic short- 
comings. Among the most common of these 
have been: variables having path ex- 
pressions equivalent to purp' (referencing 
uninitialized variables), and pdup' (failing 
to use a computed value) occurring simul- 
taneously, usually due to a misspelling; 
subprogram parameters having path ex- 
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pressions equivalent to 1, caused by  naming 
unused parameters  in parameter  lists; and 
C O M M O N  variables ha,ving pa th  expres- 
sions equivalent to purp or pdup' usually 
due to omitting C O M M O N  declarations 
from higher level program units. 

The  cost of using DAv~. has proven to be 
relatively high, par t ly  due to the fact tha t  
it is a pro to type  built for flexibility, and not 
speed, and par t ly  due to the failure to use 
the more efficient algorithms described here. 
We have observed the execution speed of 
the system to average between 0.3 and 0.5 
seconds per source s ta tement  on the CDC 
6400 computer  for programs whose size 
ranged from several dozen to several thou- 
sand statements.  The total  cost per state- 
ment  has averaged between 7 and 9 cents 
per s ta tement  for these test  programs using 
the Universi ty of Colorado Comput ing 
Center  charge algorithm. I t  is, of course, 
anticipated tha t  these costs would decline 
sharply if a production version of DAvE 
were to be implemented. 

Based on these experiences and observa- 
tions, we believe tha t  systems like DAvE 
can serve the impor tant  purpose of auto- 
matically performing a thorough initial scan 
for the presence of certain types of errors. 
I t  seems tha t  the most  useful characteristics 
of such systems are tha t  1) they require no 
human intervention or guidance and 2) they 
are capable of scanning all paths for possible 
da ta  flow anomalies. A human tester  need 
not be concerned with designing test  cases 
for this system, yet  can be assured by the 
system tha t  no anomalies are present. In  
case an anomaly is present, the system will 
so advise the tester  and further testing or 
debugging would be necessary. Clearly such 
a system is capable of detecting only a 
limited class of errors. Hence further  testing 
would always be necessary. Through the 
use of a system such as DAVE, however, the 
thrust  of this testing can be more sharply 
focussed. I t  seems tha t  these systems could 
be most  profitably employed in the early 
phases of a testing regimen (e.g., as par t  of a 
compiler) and used to guide and direct later 
testing efforts involving more powerful 
systems tha t  employ such techniques as 
symbolic execution. Towards this end, fur- 
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ther work should be done to widen the 
class of errors detectable by  means such as 
those described in this paper.  
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