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Abstract { Mutation testing is a technique for unit
testing software that, although powerful, is computa-
tionally expensive. Recent engineering advances have
given us techniques and algorithms for signi�cantly re-
ducing the cost of mutation testing. These techniques
include a new algorithmic execution technique called
schema-based mutation, an approximation technique
called weak mutation, a reduction technique called se-
lective mutation, and algorithms for automatic test
data generation. This paper outlines a design for a
system that will approximate mutation, but in a way
that will be accessible to everyday programmers. We
envision a system to which a programmer can submit a
program unit, and get back a set of input/output pairs
that are guaranteed to form an e�ective test of the unit
by being close to mutation adequate.

1 INTRODUCTION

Software testing activities are described in terms of
the scope of the software being tested. Unit testing
validates small subroutines and functions. Integration
testing validates complete programs or signi�cant sub-
programs. Most formal testing research is currently at
the unit level, whereas most industry testing is at the
integration level.

Unit testing is typically left to the individual pro-
grammers, who are given little or no formal training
or test tools. The few tools that are available are
usually test support tools such as drivers or test case
managers, rather than tools that solve the hard prob-
lems of generating test cases to satisfy formal criteria.
In extreme cases, the testing problem is solved by a
huge investment in labor. It is common, when de-
veloping mission critical software, to use as many as
one tester for every programmer. Testing researchers,
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on the other hand, try to develop testing techniques
that can be utilized to test a wide variety of software.
Formal testing techniques such as statement coverage,
branch coverage, mutation analysis, and data ow cov-
erage were developed to test software units, and there
is little or no reason to believe that they can be applied
to complete programs.

There are good reasons for both groups' view of
testing. A tester in industry will claim that unit test-
ing is too expensive, whereas a testing researcher will
point out that we �nd failures more e�ciently and in
greater numbers during unit testing. Unfortunately,
both sides are correct.

Unit testing is too expensive because software
contains orders of magnitudes more pieces than inte-
gration components, which means more testing. Unit
level testing methods are not currently used because
they require manual application, and the labor costs
are simply too high. To apply mutation testing, for
example, a tester needs to analyze hundreds or thou-
sands of similar versions of the software, in many cases
performing a careful hand analysis of small di�erences
between the programs, generate test cases for the pro-
gram, and verify the outputs of each test case. It is
reasonable for this to take four hours for a single sub-
routine, which means if the programmer is working on
an air tra�c control system with 100,000 subroutines,
it will take almost 200 person-years to test the system!
This is too expensive for practical application.

In software testing, a failure is external, incorrect
behavior of a program { incorrect output, or runtime
failure. A fault is the incorrect statement in the pro-
gram that causes a failure. Because program units
are so much smaller, testers can �nd failures more ef-
�ciently during unit testing. In addition, it is eas-
ier to track down and solve faults (debug) in soft-
ware units. Software units also tend to be generic
code, which make them more amenable to testing by
general-purpose, formal strategies. And what happens
to the faults that we do not �nd when we skip unit
testing? They are left in the software for the users to
�nd, and for the maintainers to �x. This hidden cost
of not doing unit testing is borne not by the developers



or the testers, but by the users and maintainers of the
software. This cost is eventually charged against the
customers' \good will" towards the company, which is
decreased every time a customer encounters a software
failure.

Industry needs to apply unit testing, but re-
searchers �rst need to develop the technology neces-
sary to do so. Unit testing will only, can only, be
practically applied if the techniques are automated as
completely as theoretically possible. To use the known
formal unit testing techniques, we need to decrease the
cost of unit testing through massive automation. This
paper discusses attempts to reduce the cost of one test-
ing technique, mutation analysis, by a mixture of tech-
nological advances and approximation techniques, and
presents a new process for applying mutation testing
that is incorporated into a design for a new mutation
system.

The eventual goal of this research is a testing sys-
tem that is highly e�ective, e�cient, and convenient
to use. This system should be usable by program-
mers, and integrated with their normal software de-
velopment environment. The testing system will allow
the programmer to submit a program unit or module
to the system, and receive back a set of test cases that
are guaranteed to e�ectively test the program, and
corresponding outputs that the programmer must ex-
amine to determine on what inputs the software failed.
This system could be integrated with a debugger, so
that the testing system supplies additional informa-
tion about the test cases that failed; in particular,
information about the program statements that the
test cases targeted (which are likely places for the pro-
grammer to examine for the fault).

2 Mutation Testing Overview

Mutation testing helps a user create test data by in-
teracting with the user to iteratively strengthen the
quality of test data. During mutation testing, faults
are introduced into a program by creating many ver-
sions of the program, each of which contains one fault.
Test data are used to execute these faulty programs
with the goal of causing each faulty program to fail.
Hence we use the term mutation; faulty programs are
mutants of the original, and a mutant is killed when
a test case causes it to fail. When this happens, the
mutant is considered dead and no longer needs to re-
main in the testing process since the faults represented
by that mutant have been detected, and more impor-
tantly, it has satis�ed its requirement of identifying a
useful test case.

Figure 1 contains a small Fortran function with
three mutated lines (preceded by the � symbol). Note
that each of the mutated statements represents a sep-
arate program. The most recent mutation system,
Mothra [2, 6], uses 22 mutation operators to test
Fortran-77 programs. These operators have been de-

FUNCTION Min (I,J)

1 Min = I

� Min = J

2 IF (J .LT. I) Min = J

� IF (J .GT. I) Min = J

� IF (J .LT. Min) Min = J

3 RETURN

Figure 1: Function Min.

veloped and re�ned over 10 years through several mu-
tation systems. The mutation operators are limited
to simple changes on the basis of the coupling e�ect,
which says that complex faults are coupled to simple
faults in such a way that a test data set that detects
all simple faults in a program will detect most com-
plex faults [3]. The coupling e�ect has been supported
experimentally [9] and theoretically [8].

The mutation testing process begins with the con-
struction of mutants of a test program. The user then
adds test cases (generated manually or automatically)
to the mutation system and checks the output of the
program on each test case to see if it is correct. If the
output is incorrect, a fault has been found and the pro-
gram must be modi�ed and the process restarted. If
the output is correct, that test case is executed against
each live mutant. If the output of a mutant di�ers
from that of the original program on the same test
case, the mutant is assumed to be incorrect and it is
killed.

After each test case has been executed against
each live mutant, each remaining mutant falls into
one of two categories. One, the mutant is functionally
equivalent to the original program. An equivalent mu-
tant always produces the same output as the original
program, so no test case can kill it. Two, the mutant
is killable, but the set of test cases is insu�cient to
kill it. In this case, new test cases need to be created,
and the process iterates until the test set is strong
enough to satisfy the tester. The mutation score for
a set of test data is the percentage of non-equivalent
mutants killed by that data. We call a test data set
mutation-adequate if its mutation score is 100%.

Figure 2 graphically shows the mutation process.
The solid boxes represent steps that are automated by
traditional systems such as Mothra, and the dashed
boxes represent steps that are done manually. Recent
advances, described below, have enabled us to modify
this process to makemutation testing more automated
and more practical. We refer to the process shown in
Figure 2 as the traditional mutation testing process.

2.1 The Cost of Mutation Testing

The major computational cost of mutation testing is
incurred when running the mutant programs against
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Figure 2: Traditional Mutation Testing Process.

Solid boxes represent steps that are automated and dashed boxes represent steps that are manual.

the test cases. Budd [1] analyzed the number of mu-
tants generated for a program and found it to be
roughly proportional to the product of the number
of data references times the number of data objects.
Recent empirical measurements have validated this es-
timate over a number of programs [10]. Typically, this
is a large number for even small program units. For
example, 44 mutants are generated for the function
Min shown in Figure 1. Since each mutant must be
executed against at least one, and potentially many,
test cases, mutation testing requires large amounts of
computation. This is shown in Figure 2 in the box la-
beled \Run test cases on each live mutant". It
is by the far the most computationally expensive step
in mutation testing.

Until recently this cost has been too great to al-
low mutation to be used in a practical way. For ex-
ample, a 30 minute procedure that can be written in
one or two hours will take several hours to test using
traditional mutation systems. Using the techniques
described here, it should be possible to test the same
procedure in 10 or 15 minutes.

There are also several manual costs associated
with traditional mutation systems. In Figure 2,
the solid steps are performed automatically, and the
dashed steps are performed manually. The process we
develop through this paper eliminates the two manual
steps of inputting test cases and analyzing equivalent

mutants, which dramatically reduces the human cost
of applying mutation. Unfortunately, we cannot elim-
inate the resulting major human cost, determining if
the output of each test case is correct. We do how-
ever, as a result of our test data generation ability,
modify the mutation process so as to reduce the num-
ber of test cases for which the programmer needs to
determine output correctness.

3 Constraint-based Test Data

Generation

One of the most di�cult technical task in test software
is that of generating the test case values needed to
satisfy the testing criteria. Constraint-based test data
generation (CBT) is a set of procedures designed to
create test data that satisfy mutation. CBT is based
on the observation that a test case that kills a mutant
must satisfy three conditions. The reachability condi-
tion is that the mutated statement must be reached.
A further condition is that once the mutated state-
ment is executed, the test case must cause the mutant
program to behave erroneously|the fault that is be-
ing modeled must result in a failure in the program's
behavior; this is called the necessity condition. The
su�ciency condition states that the incorrect state



must propagate through the program's computation
to result in a failure. Godzilla is a test data genera-
tor that uses constraint-based testing to automatically
generate test data for Mothra.

Godzilla describes these conditions on the test
cases as mathematical systems of constraints. Reach-
ability conditions are described by constraint systems
called path expressions. Each statement in the pro-
gram has a path expression that describes each exe-
cution path through the program to that statement.
The condition that the test case must cause an erro-
neous state is described by a constraint that is speci�c
to the type of fault being modeled by each mutation,
and requires that the computation performed by the
mutated statement create an incorrect intermediate
program state. This is called a necessity constraint
because although an incorrect intermediate program
state is necessary to kill the mutant, it is not suf-
�cient to kill it. To kill the mutant, the test case
must cause the program to create incorrect output, in
which case the �nal state of the mutant program dif-
fers from that of the original program. Although sat-
isfying the su�ciency condition is certainly desirable,
it is impractical in practice. Completely determining
the su�ciency condition implies knowing in advance
the complete path a program will take, which is in-
tractable.

Godzilla conjoins each necessity constraint with
the appropriate path expression constraint. The re-
sulting constraint system is solved to generate a test
case such that the constraint system is true.

Constraint-based testing solves a major problem
with using mutation testing as a practical method
for testing software, that of creating test data.
Constraint-based testing has been fully implemented
and integrated with the Mothra testing system. Ex-
perimentation [4] has veri�ed that constraint-based
testing creates test cases that score well on the mu-
tation system. DeMillo and O�utt [4] observed that
an automatic test data generation capability allows us
to view test cases as \throw-away" items rather than
expensive, scarce resources. With this view, we can
generate test cases, toss them at mutants, and then
throw them away if they do not work.

This means that we can examine the output of a
test case after mutants had been executed. By post-
poning this expensive (manual!) step, we only have
to look at the output of the program on e�ective test
cases, rather than all test cases.

4 Engineering Advances in

Mutation Analysis

The new technological advances in mutation testing
individually o�er speedup in the application of muta-
tion testing, and collectively may increase the speed

of mutation tools by orders of magnitude. All of these
techniques have been studied in laboratory experi-
ments, although have not yet been implemented in
a production system. These techniques fall into three
broad categories. First, the speed of mutation exe-
cution is reduced by using schema-based mutant exe-
cution, weak mutation, and selective mutation. Sec-
ond, automated test data generation is used to reduce
manual creation of test cases. Third, an optimistic
approach is used to reduce manual intervention into
mutation analysis. These ideas are discussed in more
detail in the following subsections.

4.1 Weak Mutation

Research systems such as Mothra execute mutant pro-
grams until they terminate, then compare the �nal
output of the program with the output of the original
program. Weak mutation is an approximation tech-
nique that compares the internal states of the mutant
and original program immediately after execution of
the mutated portion of the program [5, 7, 11]. Exper-
imental studies have shown that this technique can
save at least 50%, and usually more, of the execution
without a serious degradation in the quality of the test
cases.

4.2 Schema-based Mutation Analysis

Mothra translates programs to an intermediate form
and creates mutants by modifying the intermediate
form. To execute the mutants, the intermediate
form is interpreted. As an interpretive-based system,
Mothra su�ers from the expected problem | it is
slow. In addition, interpretive-based systems are la-
borious to build and do not completely emulate the
intended operational environment of the software be-
ing tested. A new technique for performing mutation
analysis uses program schemata to encode all mutants
for a program into one metaprogram, which is sub-
sequently compiled and run at speeds substantially
higher than achieved by previous interpretive systems.
Preliminary performance improvements of over 300%
are reported [13, 14]. This technique has the addi-
tional advantages of being easier to implement than
interpretive systems, easier to port across a wide range
of hardware and software platforms, and using the
same compiler and run-time support system that is
used during development and/or deployment.

4.3 Selective Mutation

Mothra uses 22 mutation operators, of which the six
most populous account for 40 to 60% of all mutants.
These six mutants, and others, are in some sense re-
dundant; that is, test sets that are generated to kill



only mutants generated from the other mutant oper-
ators are very e�ective in killing mutants generated
from the redundant ones. Selective mutation is an ap-
proximation technique that selects only mutants that
are truly distinct from other mutants [12, 10]. Re-
cent results have shown that of the 22 mutation oper-
ators used by Mothra, only �ve are su�cient to ensure
high quality test data. In experimental trials, selective
mutation provides almost the same coverage as non-
selective mutation, with cost reductions of at least four
times with small programs, and up to 50 times with
larger programs.

4.4 Optimistic Mutation

One of the most expensive manual steps of using previ-
ous mutations systems is determining which mutants
are equivalent. The automatic test data generator
within Mothra will generate test data that kills 95
to 99% of the mutants. If a tester is willing to accept
less than full mutation coverage, then the equivalent
mutants that cannot be automatically detected can be
safely ignored. Although this also means that a few
killable mutants will not be killed, the test cases that
would be required to kill the last few mutants can be
expected to add little testing power and can proba-
bly be safely left out. This obviates the need for the
tester to determine which mutants are equivalent, sig-
ni�cantly reducing the amount of work done by the
human tester.

4.5 New Mutation Process

Figure 3 presents a new model of the mutation testing
process. Initially, Godzilla will be used to generate a
set of test cases (perhaps a test that is smaller than ul-
timately desired) and those test cases will be executed
against the original program, and then the mutants.
The tester will de�ne a \threshold" value, which is a
minimum acceptable mutation score. If the threshold
has not been reached, then test cases that killed no
mutants (termed ine�ective), will be removed. This
process will be repeated, each time generating test
cases to only target live mutants, until the threshold
mutation score is reached. Up to this point, the pro-
cess has been entirely automatic. To �nish testing,
the tester will examine expected output of the e�ec-
tive test cases, and �x the program if any faults are
found.

In both the traditional and this new process, the
major part of the time and e�ort of mutation is in
the loop of generating, running, and disposing of test
cases. The signi�cant di�erence between the processes
is that the loop in the new process contains no man-
ual steps. All manual steps are outside the loop, and
only need to be done once. In fact, the only signif-
icant manual step is that of deciding if the outputs
of each test case is correct. There seems to be little

hope of automating this step, although by disposing
of ine�ective test cases before checking outputs, we
signi�cantly reduce the workload of the tester.

5 A Practical and E�ective

Mutation Analysis System

Using these technological advances and process im-
provements, the next generation of mutation systems
will be faster and more practical, and require signif-
icantly less human interaction. Figure 4 presents a
high level architectural view of this type of testing
system.

In this system, a program to be tested is submit-
ted to the schemata generator, which produces ameta-
mutant, a program that incorporates all the mutants
of the test program into one program. The schemata
generator also produces a mutant data table, which
is used to store statistics about the mutants such as
which are alive and which have been killed. The test
case generator examines each mutant in the metamu-
tant, and generates test cases to try to kill each mu-
tant. The driver subsystem compiles the metamutant,
runs each test case on the original program, then on
each mutant. The results of running the mutants are
saved in the mutant data table, and a report summa-
rizing how many mutants have been killed is gener-
ated. The output of the original program on each ef-
fective test case is saved for examination by the tester.

The schemata generator only generates selective-
style mutants. This consists of mutants that replace
each arithmetic operator with each other arithmetic
operator, replace each relational operator with each
other relational operator, replace each logical connec-
tor operator with each other logical connector oper-
ator, and that modify expressions by inserting unary
operations that cause each expression to be zero, neg-
ative, positive, and that modify each expression by
very small amounts. The metamutant will incorpo-
rate weak mutation semantics, so that each mutant
will not execute completely, but will only execute to
the end of the basic block that contains the mutated
statement.

6 Conclusions

By combining the orthogonal techniques of schema-
based mutation, weak mutation, and selective muta-
tion, this system has the ability to execute mutants
at speeds that are orders of magnitude faster than ex-
isting research systems such as Mothra. By including
automated test data generation and treating equiva-
lent mutants optimistically, this system would require
signi�cantly less human involvement, dramatically re-
ducing the cost of using such a tool. Not only that, our
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Figure 3: New Mutation Testing Process.

Solid boxes represent steps that are automated and dashed boxes represent steps that are manual.

experience has shown that building mutation systems
using program schemata instead of interpretation is
much easier and faster, which decreases the cost of
building a mutation system. Schema-based systems
have the additional advantage of being able to use the
standard development compiler and runtime environ-
ment for executing the mutants, instead of the special-
purpose tools included in the mutation system.

We envision a system that provides almost com-
plete automation to the tester. This type of system
would allow a programmer to submit a software mod-
ule, and after a few minutes of computation, respond
with a set of test cases that are assured of provid-
ing the software with a very e�ective test, and a set
of outputs that can be examined to �nd failures in
the software. Furthermore, these input-output pairs
can be used as a basis for debugging when failures are
found.
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