
Data Flow Analysis Techniques for Test Data Selection

Sandra Rapps* and Elaine J. Weyuker

Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, 251 Mercer Street, N.Y., N.Y. 10012

*also, YOURII)N inc., 1133 Ave. of the Americas, N.Y., N.Y. 10036

Abstract

This paper examines a family of program test data selection
criteria derived from data flow analysis techniques similar to those
used in compiler optimization. It is argued that currently used path
selection criteria which examine only the control flow of a program
are inadequate. Our procedure associates with each point in a
program at which a variable is defined, those points at which the
value is used. Several related path criteria, which differ in the
number of these associations needed to adequately test the
program, are defined and compared.

I ntroduction

Program testing is the most commonly used method for
demonstrating that a program actually accomplishes its intended
purpose. The testing procedure consists of selecting elements from
the program's input domain, executing the program on these test
cases, and comparing the actual output with the expected output
(in this discussion, we assume the existence of an "oracle", that is,
some method to correctly determine the expected output). While
exhaustive testing of all possible input values would provide the
most complete picture of a program's performance, the size of the
input domain is usually too large for this to be feasible. Instead,
the usual procedure is to select a relatively small subset of the
input domain which is, in some sense, representative of the entire
input domain. An evaluation of the performance of the program
on this test data is then used to predict its performance in general.
Ideally, the test data should be chosen so that executing the
program on this set will uncover all errors, thus guaranteeing that
any program which produces correct results for the test data will
produce correct results for any data in the input domain.
However, discovering such a perfect set of test data is a difficult, if
not impossible task [1,2]. In practice, test data is selected to give
the tester a feeling of confidence that most errors will be
discovered, without actually guaranteeing that the tested and
debugged program is correct. This feeling of confidence is
generally based upon the tester's having chosen the test data
according to some criterion; the degree of confidence depends on
the tester's perception of how directly the criterion approximates
correctness. Thus, if a tester has a "good" test data criterion, the
problem of test data selection is reduced to finding data that meet
the criterion.

One class of test data selection criteria is based on measures
of code coverage. Examples of such criteria are statement
coverage (every statement of a program must be executed at least
once during testing) and branch coverage (every branch must be
traversed). Other coverage measures inc'lude Cn coverage
measures [3], TERn measures [4] and boundary-interior [5].
Obviously, once such a criterion has been chosen, test data must
be selected to fulfill the criterion. One way to accomplish this is to

select paths through the program whose elements fulfill the chosen
criterion, and then to find the input data which would cause each
of the chosen paths to be selected.

Using path selection criteria as test data selection criteria has
a distinct weakness. Consider the strongest path selection criterion
which requires that all program paths Pl,P2 be selected. This
effectively partitions the input domain D into a set of classes
D = U D [j] such that for every xED, x~D[j] if and only if
executing the program with input x causes path pj to be traversed.

I Then a test T=~ti,t2,...}, where tiED[j] would seem to be a
reasonably rigorous test of the program. However, this still does
not guarantee program correctness. If one of the DIj] is not
revealing [2], that is for some x ~ D [j] the program works
correctly, but for some other x2~D[j] the program is incorrect,
then if xl is selected as tj the error will not be discovered. In
figure 1 we see an example of this.

PRINT
"HI"

STOP

START

READ X

X > 3 ?

PRINT
"HO"

STOP

figure 1

Two test cases would be sufficient to execute all paths in this
program. If the two test values chosen for x are 2 and 5, then we
would not discover that the condition i f x > 3 should, in fact, have
been i f x ~ 3 . This problem is compounded further by the fact that

272
0 2 7 0 - 5 2 5 7 / 8 2 / 0 0 0 0 / 0 2 7 2 5 0 0 . 7 5 © 1982 I E E E

many programs have a very large, or possibly infinite, n u m b e r of
paths and thus the cr i ter ion that all paths be se lected mus t be
replaced by a significantly weaker cr i ter ion that selects only a
subset of the paths.

Al though we mus t be aware that path se lec t ion criteria
cannot insure that a set of test data capable of uncover ing all
errors will be chosen, we are not arguing that such cri teria be
abandoned. In the absence of feasible and rel iable me thods to
formally prove correctness for all programs, we mus t con t inue to
use tes t ing strategies. Deve lop ing adequate path se lec t ion cri teria
will help bring us closer to es tabl ishing correctness. In [6] the
reliability of path analysis is demons t ra ted . Fur the rmore , path
select ion criteria are used to de te rmine correc tness by symbol ic
execu t ion of the code [7,8,9,10]. Our main goal for path se lect ion
criteria is that the n u m b e r of paths selected be small enough so
that all tests can be comple ted , yet large enough so that we c a n
uncover many errors. In addi t ion, we want cri teria that can be
mechanical ly checked. That is, we should be able to write a
program that, g iven as input a program, a set of test data, and a
path select ion cr i ter ion, will tell us whether the program paths that
would be executed using the test data are sufficient to satisfy the
cri terion. In addi t ion, this program should also be able to give us
some indicat ion as to why a g iven set of test data is inadequate .
Of course, we would also l ike to be able to use the path se lec t ion
criteria to mechanical ly genera te a set of paths that mee t the
cr i ter ion a n d / o r a set of test data for a g iven program, but that is a
difficult, and some t imes imposs ib le , task.

Most path se lec t ion cri teria are based on control flow
analysis, which examines the branch and loop s t ruc ture of a
program. We bel ieve that data flow analysis, which is widely used
in code opt imiza t ion [11], shou ld be cons idered as well. Data flow
analysis focuses on how variables are bound to values, and how
these variables are to be used. Rather than select ing program
paths based solely on the control s t ruc ture of a program, the data
flow criteria presented in this paper track input variables through a
program, following them as they are modif ied, until they are
ul t imately used to produce output values. These cri teria are
const ructed so that critical associa t ions between the defini t ion of a
variable and its uses are examined dur ing program testing. It is
our bel ief that, jus t as one would not feel confident about a
program wi thout execut ing every s t a t emen t in it as part of some
test, one should not feel conf ident about a program wi thout having
seen the effect of using the value produced by each and every
computa t ion .

In the next sect ion we present a p rogramming language and
define some graph- theore t ic terminology. We then in t roduce a
hierarchy of path se lect ion criteria based on control and data flow
analysis of a program. In the last sect ion we discuss the relat ive
s t rengths and weaknesses of the criteria.

The Programming Language

We now introduce our formal p rogramming language. This
may be though t of as e i ther the in te rmedia te level language
produced by compi la t ion from a high level language or the actual
language in which the program was written. Our language allows
only s imple variables and conta ins the following legal statement
types:

Start s ta tement : start

Input s ta tement : read x b . . . , x n

where Xl , . . . ,Xn are variables.

A s s i g n m e n t s ta tement : y : = f (x l , . . . , x ,)
where f is an n-ary funct ion (n~>0) and y,xa x, are
variables.

Output s ta tement : print e l , . . . , e n
where e;, i = l , . . . ,n, is e i ther a literal or a variable.

Uncondi t iona l t ransfer s ta tement : goto m
where m is an integer.

Condi t ional t ransfer s ta tement : if p(x~ x~) then goto m
where p is an n-ary predicate (n > 0) , Xl x,, are variables,
and m is an integer. 0-ary predicates, such as T R U E and
FALSE are prohibited.

Halt s ta tement : stop.

A p rogram is a finite sequence of legal s ta tements , each
s t a t emen t prefixed by a un ique integer , known as its label . We
shall use the te rm "transfer s ta tements" wheneve r we wish to
include both condi t ional and uncondi t iona l transfers. For every
t ransfer s t a t ement goto m or ~fp then goto m, m mus t be the label
of some s t a t ement in the program. That s t a t emen t is called the
target of the t ransfer s ta tement . Every program conta ins exactly
one start s t a t emen t which appears as the first s t a t ement of the
sequence and may not be the target of a t ransfer s ta tement . Every
program conta ins at least one halt s ta tement . The final s t a t ement
of a program mus t be e i ther a halt s t a t emen t or an uncondi t ional
transfer.

If sl is the k ~h s t a t emen t in a program and s2 is the (k + l) st
s t a t ement then we say that s~ physically precedes s2, and s2

physically succeeds sl. We say that s t a t emen t sl executionally
precedes s t a t emen t s 2 (s2 executionally succeeds s l) if and only if
e i ther Sl is a t ransfer s t a t emen t (e i ther condi t ional or
uncondi t ional) and s2 is its target, or, sl is not an uncondi t ional
t ransfer or hatt s ta tement , and s2 is its physical successor. A
s ta tement s is syntactically reachable if and only if there is a
sequence of s t a t emen t s SI , . . . ,S n such that Sl is the start s t a tement ,
s,, is s, and for each i = l n - l , s; execut iona l ly precedes S,+l.

A transfer s t a t emen t is called ineffect ive if it physically
precedes its target. All o ther t ransfer s t a t emen t s are effective. We
require that every s t a t emen t in the program be syntactically
reachable, and that all t ransfer s t a t emen t s be effective. Violat ions
of these rest r ic t ions are at best the product of coding practices
which tend to obscure program logic and should therefore be
e l iminated. More significantly, their presence may well be
indicat ive of certain types of logical or typographical errors (e.g.
incorrect or miss ing labels; miss ing s ta tements) . It s eems unl ikely
that a p rogrammer would in tent ional ly write code which can never
be execu ted or include a comple te ly unnecessary t ransfer
s t a t emen t 'o the very same s t a t emen t that would have been
executed w~thout the transfer. Al though we are concerned mainly
with tes t ing as a means of uncover ing program errors, it is, of
course, highly desirable to find and correct as many errors as
possible before tes t ing begins. We propose that the procedure
descr ibed in this paper include as part of its ou tput some indicat ion
of potent ial ly t roub lesome s i tuat ions encoun te red in processing a
program, s imi lar in nature to ' syntax error ' messages produced by
a compiler . We will therefore con t inue to men t ion the types of
program anomal ies which may be d iscovered at each stage of the
procedure.

Flow Graph Theoretic Concepts

A program can be un ique ly decomposed into a set of disjoint
blocks having the property that w h e n e v e r the first s t a t ement of the
block is executed , the other s t a t emen t s are then executed in the
g iven order. Fur the rmore , the first s t a t ement of the block should
be the only s t a t emen t which may be executed directly af ter the
execu t ion of a s t a t emen t in ano the r block. Formal ly , a b lock is a
maximal set of ordered s t a t emen t s b = < s ~ , . . . , s , , > , such that if
n > l , for i = 2 n, s; is the unique execut ional successor of s , - i

273

and s,-i is the unique execut iona l predecessor of s,. Thus the first
s t a t emen t of a block is the only one which may have an
execut iona l predecessor outs ide the block, and the last s t a t emen t is
the only one which may have an execut iona l successor outs ide the
block. Every condi t ional t ransfer mus t be the last s t a t ement of a
block, s ince effective condi t ional t ransfers cannot have un ique
execut iona l successors .

The program graph represen t ing a program consis ts of one
node i cor responding to each block b i of the program and an edge
from node j to node k, deno ted (j,k), if and only if e i ther the last
s t a t emen t of b~ is not an uncondi t iona l t ransfer and it physically
precedes the first s t a t emen t of bk, or the last s t a t emen t of bj is a
t ransfer whose target is the first s t a t emen t of b , . I f there is an
edge f rom node j to node k we say that node j is a predecessor of
node k, and k is a successor of j. The node cor responding to the
block whose first s t a t emen t is the start s t a t emen t of the program is
known as the s t a r t node. Such a node has no predecessors . A
node cor responding to a block whose final s t a t emen t is a halt
s t a t emen t is known as an exit node and has no successors. In
addi t ion, a node has two successors if and only if the final
s t a t emen t of its cor responding block is a condi t ional transfer. The
r equ i r emen t that all t ransfer s t a t emen t s be effect ive gua :an tees
that the two successors are different nodes. Tha t is, for every pair
of nodes i and j there is at mos t one edge f rom node i to node j.

A p a t h is a finite sequence of nodes (n l nk) , k~>2, such
that there is an edge f rom ni to ni+t for i = l , 2 , . . . , k - 1 , Because all
t ransfer s t a t emen t s mus t be effect ive, there is at most one edge
be tween any pair of nodes, a l lowing us to represen t a path as a
sequence of nodes , ra ther than as a sequence of edges. Note that
the def ini t ion of path is a purely syntact ic one, that is, a path is
any sequence of nodes connec ted by edges. A complete path is a
path whose init ial node is the start node and whose final node is an
exi t node. Note that it may be the case that there is no input
which will cause the sequence of s t a t emen t s represen ted by a
part icular path to be executed. Since it is known that there can be
no a lgor i thm to decide whe the r a g iven path is execu tab le [12], we
do not require that all comple te paths be executable .

A syntactically endless loop is a path (n l nk), k > l ,
n ~ = nk, such that none of the blocks represen ted by the nodes on
the path contain a condi t ional t ransfer s t a t emen t whose target is
e i ther in a block which is not on the path or is a halt s ta tement .
Such a loop conta ins no possible escape and can be de tec ted
a lgor i thmical ly and e l imina ted f rom a program, or flagged as a
possible error. We therefore a s s u m e that p rograms conta in no
syntactically endless loops. Since all s t a t emen t s in a program m u s t
be syntactically reachable and there may be no syntact ical ly endless
loops, we are guaran teed that every node appears on some
comple te path, a l though possibly an unexecu tab le one.

The D e f / U s e Graph

Our path se lect ion cri ter ia are based on an inves t iga t ion of
the ways in which values are associated with variables , and how
these associa t ions can affect the execu t ion of the program. This
analysis focuses on the occurrences of var iables within the
program; the actual func t ions and predicates to be compu ted play
no role. Each var iable occurrence is classified as being a
defini t ional occurrence, compu ta t ion -use occurence , or predicate-
use occurrence. We shall refer to these as clef, c-use and p-use,
respectively.

The a s s ignmen t s t a t emen t y: = f (x I X n) conta ins c-uses of
x l xn fol lowed by a def of y.

The input s t a t emen t read Xl x , conta ins defs of x l x , .

The ou tpu t s t a t emen t print x I x , conta ins c-uses of
X I , . . . , X n.

The condi t ional t ransfer s t a t emen t i f p (x 1 x n) then goto m
conta ins p-uses of x ~ , . . . , x , .

In the fol lowing d iscuss ion we will say that a node of a
program graph conta ins a c-use or a de f of a var iable if there is a
s t a t emen t in the cor responding block conta in ing a c-use or a def of
that variable. Because the value of a var iable occurr ing in the
predicate por t ion of a condi t ional t ransfer s t a t e m e n t will affect the
execu t ion sequence of the program, we associa te p-uses with edges
rather than with nodes. If the final s t a t e m e n t of the block
co r re spond ing to node i is i f p (x t x ,) then goto m, and the two
successors of node i are nodes j and k then we will say that edges
(i,j) and (i ,k) conta in p-uses of x l x, . In figure 2, node 6
conta ins c-uses of z and x, fo l lowed by a de f of z, fol lowed by a c-
use and a de f of pow. Edges (5,6) and (5,7) each conta in a p-use
of pow.

I. s tart
2. read x,y
3. if y < 0 then goto 6
4. pow : = y
5. goto 7
6. pow : = -y
7. z : = 1
8. if p o w = 0 then goto 12
9. z := zxx

I0. pow : = pow-I
11. goto 8
12. if y ~ 0 then goto 14
13. z : = 1/z
14. answer : ~ z + l
15. print answer
16. stop

ead x,y

pow: = y k , ~ , , ~ pow: = - y

z:=z×× //~
pow:=pow-I f /

y < 0 / /

z : = l / z ~

~) a n s w e r : = z + 1
print answer

figure 2

274

Since we are interested in tracing the flow of data between
nodes, any definition which is used only within the node in which
that definition occurs is of little importance to us. Thus we
categorize defs and uses as being either global or local. A
c-use of a variable x is a global c-use if and only if there is no def
of x preceding the c-use within the block in which it occurs. That
is, the value of x must have been assigned in some block other
than the one in which it is being used. Otherwise it is a loeai c-
use. Global c-uses are often called locally exposed uses in the data
flow analysis literature ([11]).

Let x be a variable occurring in a program. We say that a
path (i,n 1 n,,,j), m ~ 0 , containing no defs of x in nodes
nl,...,nm is called a def-clear path with respect to (wrt) x from
node i to node j. A path (i ,nb.. . ,nm,j,k), m>~0, containing no defs
of x in nodes nl n,~,j is called a def-clear path wrt x from node
i to edge (j ,k). An edge (i,j) is a def-clear path wrt x f rom node i
to edge (i,j). A def of a variable x in node i is a global def if and
only if it is the last def of x occurring in the block associated with
node i and there is a def-clear path wrt x from i to either a node
containing a global c-use of x or to an edge containing a p-use of
x. Thus, a global def defines a variable which will be used outside
the node in which the definition occurs. A def of a variable x in
node i which is not a global def is a local def if and only if there is
a local c-use of x in node i which follows this def, and no other
def of x appears between the def and the local c-use. The def of
answer in node 9 of figure 2 is local. Any def which is neither
global nor local will never be used and the program should be
examined for possible error.

Methodologies which detect program anomalies using data
flow analysis [13,14] consider the presence of any def-clear path
wrt a variable x from the start node to a use of x to be a possible
error. Since some of these paths may not be executable, there may
well be no error, lf, however, none of these paths contains a
definition of x, and at least one is executable, then there is indeed
an error. Thus we assume that there is some path f rom the start
node to every global c-use or p-use of a variable which contains a
def of that variable. Programs which violate this assumpt ion
should be flagged as having a possible error.

We create the def/use graph f rom a program graph by
associating each node i with two sets, def and c-use, and each edge
(i,j) with the set p-use, def(i) is the set of variables for which
node i contains a global def; c-use(i) is the set of variables for
which node i contains a global c-use; p-use(i , j) is the set of
variables for which edge (i,j) contains a p-use. An edge (i,j) for
which p-use(i,j) is non-empty is called a labelled edge; if
p -use (i , j)=0 then (i,j) is called an unlabel led edge. Because
0-ary predicates are not allowed, edges which are the sole out-
edges of a node are always unlabelled, while those which are one
of a pair of out-edges are always labelled.

In figure 2 these sets are:

node c-use def

1 0 Ix,y}
2 ly} {powl
3 [y} [pow}
4 0 {z}
5 0 0
6 [x,z,pow} [z,pow}
7 0 0
8 {z} {zl
9 [z} 0

edge p-use

(1,2) {.v}
(1,3) ly}
(5,6) [pow}
(5,7) {pow}
(7,8) b,}
(7,9) [y}

Note that answer which has only a local def and a local c-use,
does not appear in these sets. Edges (2 ,4) , (3 ,4) , (4 ,5) , (6 ,5) , and
(8,9) are unlabelled.

We now define several sets needed in the construction of our
def /use criteria. Let i be any node, and x any variable such that
xEdef(i) . Then dcu(x,i) is the set of all nodes j such that
xEc-use(j) and for which there is a def-clear path wrt x f rom i to j;
dpu(x, i) is the set of all edges (j,k) such that xEp-use(j ,k) and for
which there is a def-clear path wrt x from i to (i,k). The dcu and
dpu sets for figure 2 are:

variable node dcu dpu

x 1 {6} ¢
y 1 {2,3} {(1,2),(1,3),(7,8),(7,9)}
pow 2 {6} {(5,6),(5,7)t
pow 3 16} [(5,6),(5,7)}
z 4 {6,8,9} 0
z 6 {6,8,9} 0
pow 6 [6} I(5,6),(5,7) I
z 8 [9} 0

Let P be a set of complete paths for a def /use graph of a
given program. We say that a node i is included in P if P contains
a path (nl,...,n,, ,) such that i = n / for some j, l~< j~m. Similarly,
an edge (i l , i 2) is included in P if P contains a path (nb . . . ,n m)
such that i l = n j and i2=nj+ 1 for some j, l~<j~<m-l. A path
(i l , . . . , i k) is included in P if P contains a path (nl r/m) and
i l = n j , i2=nj+l ik=nj+k_ l for some j, l ~ < j ~ m - k + l . In
addition, we say that P is executed if every path contained in P is
traversed during the course of executing the program on a set of
test input data•

A Family of Path Selection Criteria

be a
We now introduce a family of path selection criteria. Let G

def /use graph, and P be a set of complete paths of G. Then

P satisfies the all-nodes criterion if every node of G is
included in P.

P satisfies the all-edges criterion if every edge of G is
included in P.

P satisfies the all-defs criterion if for every node i of G and
every xEdef(i) , P includes a def-clear path wrt x from i to
some element of dcu(i ,x) or dpu(i ,x) .

P satisfies the all-p-uses criterion if for every node i and
every x Edef(i), P includes a def-clear path wrt x f rom i to all
e lements of dpu(x,i) .

P satisfies the al l -e-uses /some-p-uses criterion if for every
node i and every xEdef(i) , P includes some def-clear path
wrt x from i to every node in dcu(x,i); if dcu(x,i) is empty,
then P must include a def-clear path wrt x from i to some
edge contained in dpu (x,i). This criterion requires that every
c-use of a variable x defined in node i must be included in
some path of P. If there is no such c-use, then some p-use

275

of the definition of x in i must be included. Thus to fulfill
this criterion, every definition which is ever used must have
some use included in the paths of P, with the c-uses
particularly emphasized.

P satisfies the all-p-uses/somc-c-nses criterion if for every
node i and every x~def(i), P includes a def-clear path wrt x
from i to all elements of dpu(x,i); if dpu(x,i) is empty, then
P must include a clef-clear path wrt x from i to some node in
dcu(x,i). As in the case of all-c-uses/some-p-uses, this
criterion requires every definition which is ever used to be
used in some path of P. In this case, however, the emphasis
is on p-uses.

P satisfies the all-uses criterion if for every node i and every
xEdef(i), P includes a def-clear path wrt x from i to all
elements of dcu(x,i) and to all elements of dpu (x,i).

A path (nt,...,n k) is loop-free if and only if ni;~nj for i;~j. P
satisfies the aii-du-paths criterion if for every node i and
every x Edef(i), P includes every loop-free def-clear path wrt
x from i to all elements of dpu(x,i) and to all elements of
dcu(x,i). Note that the complete paths contained in P need
not be loop-free.

P satisfies the all-paths criterion if P includes every complete
path of G. Note that, due to loops, many graphs have
infinitely many complete paths.

Criterion cl includes criterion c 2 if for every def/use graph
G, any set of complete paths of G that satisfies cl also satisfies c 2.
Criterion Cl strictly includes criterion c2, denoted C l ~ c2, if and
only if cl includes c2, and for some def/use graph G there is a set
of complete paths of G that satisfies c2 but not cl. Note that this
is clearly a transitive relation. We say that criteria ct and c2 are
ineomparable if neither cl includes c2 nor c2 includes cl.

We can assume that all def/use graphs contain more than
one node. Single-node graphs have only one path and thus any of
the criteria would select that path. Furthermore we may assume
that all def/use graphs have more than two nodes and at least two
labelled edges. This follows immediately from our definition of
block, and the requirement that all transfer statements be
effective.

all-paths

all-du-paths

,I,
all-uses

a,,-c uses, r ' all-p-uses/
some-p-uses some-c-uses

~ all.defs ~ lAP

all-p-uses

all-edges

1
all-nodes

Theorem:

The family of criteria is partially ordered by strict
inclusion as shown in figure 3. Furthermore, criterion
ci strictly includes criterion cj if and only if it is
explicitly shown to be so in figure 3 or follows from the
transitivity of the relationship.

A proof of this theorem is contained in [17].

Analysis of the Criteria

The criteria all-nodes (statement coverage) and all-edges
(branch coverage) are often used in program testing despite the
fact that they are extremely weak criteria. Our search for stronger
criteria that make use of data flow information led us at first to
all-defs. Our assumption is that every definition in a program was
included by the programmer because it would eventually be used
somewhere, and, thus, a well-tested program should test all
definitions. However, we rejected all-defs as an adequate criterion
since it does not include all-edges. In [15] errors are separated into
domain errors, which occur when an incorrect path is chosen due
to a control flow error, and computation errors, which occur when
a correct path is chosen but an assignment statement contains an
erroneous computation. All-defs can detect computation errors
but not necessarily domain errors, while all-edges can detect
domain errors but not necessarily computation errors. In looking
for criteria that can detect both types of errors, we separated uses
of variables into p-uses and c-uses. All-p-uses is our first data flow
analysis criterion which includes all-edges, but it, too, primarily
detects domain errors. It is stronger than all-edges since it
requires a path from every definition of a variable to every possible
p-use of that variable, while all-edges merely requires that there be
some path that includes that p-use. Since the value of a variable
contained in a predicate may have been defined in one of several
places, it is clear that all-p-uses can uncover more errors than all-
edges. The criterion all-p-uses/some-c-uses is the weakest of our
criteria that includes both all-defs and all-edges. We are
guaranteed that testing according to this criterion exercises every
edge, and every computation.

Consider the program of figure 4, which is a translation into
our programming language of the Wensleysqroot program
presented in [7] to compute +x/P, 0~<P< 1, to accuracy e, 0<e~<l.
The program contains an error; statements 11 and 12 should be
interchanged. The set of paths I(1,6), (1,2,3,4,2,3,5,2,7)} satisfies
all-edges, but would not detect the error. As stated in [7], "a
looping factor of two is required to derive test data that reveals the
bug," that is, the tester must specify that some path containing at
least two executions of the loop be tested. In fact, a looping factor
of two or more may not suffice. The problem is that the definition
of c in node 5 is never used unless the set of paths includes a
definition-clear path wrt c from node 5 to node 3, and thus the
error cannot be detected unless the path (5,2,3) is included. The
all-defs criterion, however, does require that all definitions be
used, and thus any set of paths selected according to this criterion
would have to include (5,2,3). The set of paths
{(1,2,3,5,2,3,5,2,7), (1,2,3,4,2,3,4,2,7)} would detect the error;
however node 6 and edge (1,6) would not be tested. All-p-uses is
not adequate to find the error either. {(1,6), (1,2,7), (1,2,3,5,2,7),
(1,2,3,4,2,3,4,2,7)} satisfies all-p-uses without including (5,2,3).
However, since the program contains no p-uses of the definitions
of c in nodes 4 and 5, all-p-uses/some-c-uses does require that the
paths (5,2,3) and (4,2,3) be included.

figure 3

276

1. start
2. read p,e
3. d : = l
4. x :=0
5. c : = 2 x p
6. i f c ~ 2 then goto 18
7. if d ~ e then goto 16
8. d :=d /2
9. t : = c - (2 x x + d)

10. if t < 0 then goto 14
11. x : = x + d
12. c : = 2 x (c - (2 × x + d))
13. goto 7
14. c :=2×c
15. goto 7
16. print x
17. stop
18. print 'error'
19. stop

read p,e

T 1

p r i n t ~k
'error'

print x ~dJ ~ t : . . s d / (2 2 x x + d) ~ ~

figure 4

Since the value of a variable used in a c-use may have been
defined in one of several places, all-c-uses/some-p-uses is more
likely to find computation errors than all-p-uses/some-c-uses. In
particular, all-c-uses/some p-uses requires paths between every
definition and every possible c-use of that definition. For figure 4,
this means that any set of paths chosen according to
all-c-uses/some-p-uses must include the paths (4,2,3,4), (4,2,3,5),
(5,2,3,4) and (5,2,3,5). However, this criterion does not include
all-edges either. For example, {(1,2,3,5,2,3,5,2,7),
(1,2,3,4,2,3,5,2,7,), (1,2,3,4,2,3,4,2,7), (1,2,3,5,2,3,4,2,7)}
satisfies all-c-uses/some-p-uses, but does not include edge (1,6).
Furthermore, it does not include path (1,2,7), which would be
executed if the input data were incorrect and e > l . Since the
program does check for p < l , it may very well be an error that it
does not explicitly check for e ~ l . This error would be detected
by all-p-uses/some-c-uses, however, since it does require that the
path (1,2,7) be included.

The criterion all-uses, which includes both
all-p-uses/some-c-uses and all-c-uses/some-p-uses, can detect both
types of errors. This criterion is similar to required element

testing [16]. One set of paths which satisfies the all-uses criterion
for figure 4 is {(1,6), (1,2,3,5,2,3,5,2,7), (1,2,7),
(1,2,3,4,2,3,5,2,7), (1,2,3,4,2,3,4,2,7), (1,2,3,5,2,3,4,2,7)}.
Notice that any set of paths which satisfies this criterion must
contain the paths (1,6), (1,2,7), and all of the combinations of
predicates represented by the paths (4,2,3,4), (4,2,3,5), (5,2,3,4)
and (5,2,3,5). However, for some programs, this criterion may
not test all possible combinations of predicates, as can be seen in
figure 5.

ad x

"qL
y:=0 ~ ~ y : = 2

M.

print code

figure 5

{(1,2,4,5,7), (1,3,4,6,7)} satisfies all-uses, but it does not include
the paths (1,2,4,6,7) and (1,3,4,5,7). We therefore defined the
all-du-paths criterion.

Conclusion and Future Work

The data flow criteria that we have defined can be used to
bridge the gap between the requirement that every branch be
traversed and the requirement that every path be traversed. Our
criteria focus on the interaction of portions of the program linked
by the flow of data rather than solely by the flow of control.
Research is currently underway to determine the relative costs of
the criteria in terms of the number of test cases required to satisfy
them, and to more precisely characterize the types of errors
detectable by each. We envision a tester being able to select a
particular criterion by determining whether the likely payoff in
terms of errors detectable is worth the added cost in terms of
additional tests necessary.

References

[1] J.B. Goodenough and S.L. Gerhart, "Toward a Theory of
Testing: Data Selection Criteria," in Current Trends in
Programming Methodology, Vol.2, ed. R.T. Yeh, Prentice-
Hall, 1977, pp. 44-79.

[2] E.J. Weyuker and T.J. Ostrand, "Theories of Program Testing
and the Application of Revealing Subdomains," IEEE Trans.
Software Eng., VoI.SE-6, May 1980, pp.236-246.

[3] E. Miller, "Coverage Measure Definitions Reviewed,"
Testing Techniques Newsletter, Vol.3, No.4, Nov 1980, p.6.

277

[4] M.R. Woodward, D.Hedley, and M.A. Hennell, "Experience
With Path Analysis and Testing of Programs," IEEE Trans.
Software Eng., VoI.SE-6, May 1980, pp.278-286.

[5] W.E. Howden, "Methodology for the Generation of Test
Data," IEEE Trans. Computers, VoI.TC-24, May 1975.

[6] W.E. Howden, "Reliability of the Path Analysis Testing
Strategy," IEEE Trans. Software Eng., VoI.SE-2, Sept 1976,
pp.208-215.

[7] R.S. Boyer, B.E. Elspas, and K.N. Levitt, "SELECT--A
Formal System for Testing and Debugging," Proe. of the Int.
Conf. on Reliable Software, Los Angeles, April 1975,
pp.234-245.

[8] L.A. Clarke, "A System to Generate Data and Symbolically
Execute Programs," IEEE Trans. Software Eng., VoI.SE-2,
Sept 1976, pp.215-222.

[9] W.E. Howden, "Symbolic Testing and the DISSECT Symbolic
Evaluation System," IEEE Trans. Software Eng., VoI.SE-3,
July 1977, pp.266-278.

[10] J.C. King, "Symbolic Execution and Program Testing,"
Commun. ACM, 19, July 1976, pp.385-394.

[11] M.S. Hecht, Flow Analysis of Computer Programs, North
Holland, 1977.

[121 E.J. Weyuker, "The Applicability of Program Schema
Results to Programs," Int. J. Comput. Inf. Sci., Vol.8,
No.5, Nov 1979.

[13] L.D.Fosdick and L.J. Osterweil, "Data Flow Analysis in
Software Reliability," Comput. Surveys, Vol.8, No.3, Sept
1976, pp.305-330.

[14] L.J. Osterweil, "The Detection of Unexecutable Program
Paths Through Static Data Flow Analysis," Proe. IEEE
COMSAC, Chicago, I11., Dec 1977.

[15] L.J. White and E.I. Cohen, "A Domain Strategy for
Computer Program Testing," IEEE Trans. Software Eng.,
Vol. SE-6, May 1980, pp.247-257.

[16] S. Ntafos, "On Testing With Required Elements," U. Texas at
Dallas Technical Report 90, July 1981.

[17] S. Rapps and E.J. Weyuker, "Data Flow Analysis Techniques
for Test Data Selection," Dept of Computer Science
Technical Report 023, Courant Institute of Mathematical
Sciences, New York University, Aug 1980 (revised Dec
1981).

278

