Data Flow Analysis Techniques for Test Data Selection

Sandra Rapps* and Elaine J. Weyuker

Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University. 251 Mercer Street, N.Y., N.Y. 10012

*also. YOURIDN inc., 1133 Ave. of the Americas, N.Y., N.Y. 10036

Abstract

This paper examines a family of program test data selection
criteria derived from data flow analysis techniques similar to those
used in compiler optimization. It is argued that currently used path
selection criteria which examine only the control flow of a program
are inadequate. Qur procedure associates with each point in a
program at which a variable is defined, those points at which the
value is used. Several related path criteria, which differ in the
number of these associations needed to adequately test the
program, are defined and compared.

Introduction

Program testing is the most commonly used method for
demonstrating that a program actually accomplishes its intended
purpose. The testing procedure consists of selecting elements from
the program’s input domain, executing the program on these test
cases, and comparing the actual output with the expected output
(in this discussion, we assume the existence of an "oracle", that is,
some method to correctly determine the expected output). While
exhaustive testing of all possible input values would provide the
most complete picture of a program’s performance, the size of the
input domain is usually too large for this to be feasible. Instead,
the usual procedure is to select a relatively small subset of the
input domain which is, in some sense, representative of the entire
input domain. An evaluation of the performance of the program
on this test data is then used to predict its performance in general.
Ideally, the test data should be chosen so that executing the
program on this set will uncover all errors, thus guaranteeing that
any program which produces correct results for the test data will
produce correct results for any data in the input domain.
However, discovering such a perfect set of test data is a difficult, if
not impossible task {1,2]. In practice, test data is selected to give
the tester a feeling of confidence that most errors will be
discovered, without actually guaranteeing that the tested and
debugged program is correct. This feeling of confidence is
generally based upon the tester’s having chosen the test data
according to some criterion; the degree of confidence depends on
the tester’s perception of how directly the criterion approximates
correctness. Thus, if a tester has a "good" test data criterion, the
problem of test data selection is reduced to finding data that meet
the criterion.

One class of test data selection criteria is based on measures
of code coverage. Examples of such criteria are statement
coverage (every statement of a program must be executed at least
once during testing) and branch coverage (every branch must be
traversed). Other coverage measures include Cn coverage
measures [3], TERn measures [4] and boundary-interior [5].
Obviously, once such a criterion has been chosen, test data must
be selected to fulfill the criterion. One way to accomplish this is to

0270-5257/82/0000/0272$00.75 © 1982 IEEE

272

select paths through the program whose elements fulfill the chosen
criterion, and then to find the input data which would cause each
of the chosen paths to be selected.

Using path selection criteria as test data selection criteria has
a distinct weakness. Consider the strongest path selection criterion
which requires that afl program paths py,p,,... be selected. This
effectively partitions the input domain D into a set of classes
D=uUDIj) such that for every x€D, x€D[j} if and only if
executing the program with input x causes path p; to be traversed.
Then a test T=/!f,1,...}, where 1;€D[j] would seem to be a
reasonably rigorous test of the program. However, this still does
not guarantee program correctness. If one of the DIjl is not
revealing [2], that is for some x;€D[] the program works
correctly, but for some other x2€DJj] the program is incorrect,
then if x, is selected as ; the error will not be discovered. In
figure 1 we see an example of this.

figure 1

Two test cases would be sufficient to execute all paths in this
program. If the two test values chosen for x are 2 and S, then we
would not discover that the condition if x> 3 should, in fact, have
been if x=3. This problem is compounded further by the fact that

many programs have a very large, or possibly infinite, number of
paths and thus the criterion that all paths be selected must be
replaced by a significantly weaker criterion that selects only a
subset of the paths.

Although we must be aware that path selection criteria
cannot insure that a set of test data capable of uncovering all
errors will be chosen, we are not arguing that such criteria be
abandoned. In the absence of feasible and reliable methods to
formally prove correctness for all programs, we must continue to
use testing strategies. Developing adequate path selection criteria
will help bring us closer to establishing correctness. In [6] the
reliability of path analysis is demonstrated. Furthermore, path
selection criteria are used to determine correctness by symbolic
execution of the code [7,8,9,10]. Our main goal for path selection
criteria is that the number of paths selected be small enough so

that all tests can be completed, yet large enough so that we can

uncover many errors. In addition, we want criteria that can be
mechanically checked. That is, we should be able to write a
program that, given as input a program, a set of test data, and a
path selection criterion, will tell us whether the program paths that
would be executed using the test data are sufficient to satisfy the
criterion. In addition, this program should also be able to give us
some indication as to why a given set of test data is inadequate.
Of course, we would also like to be able to use the path selection
criteria to mechanically generate a set of paths that meet the
criterion and/or a set of test data for a given program, but that is a
difficult, and sometimes impossible, task.

Most path selection criteria are based on control flow
analysis, which examines the branch and loop structure of a
program. We believe that data flow analysis, which is widely used
in code optimization [11], should be considered as well. Data flow
analysis focuses on how variables are bound to values, and how
these variables are to be used. Rather than selecting program
paths based solely on the control structure of a program, the data
flow criteria presented in this paper track input variables through a
program, following them as they are modified, until they are
ultimately used to produce output values. These criteria are
constructed so that critical associations between the definition of a
variable and its uses are examined during program testing. It is
our belief that, just as one would not feel confident about a
program without executing every statement in it as part of some
test, one should not feel confident about a program without having
seen the effect of using the value produced by each and every
computation.

In the next section we present a programming language and
define some graph-theoretic terminology. We then introduce a
hierarchy of path selection criteria based on control and data flow
analysis of a program. In the last section we discuss the relative
strengths and weaknesses of the criteria.

The Programming Language

We now introduce our formal programming language. This
may be thought of as either the intermediate level language
produced by compilation from a high level language or the actual
language in which the program was written. Our language allows
only simple variables and contains the following legal statement
types:

Start statement: start

Input statement: read x,...,x,
where xi,...,x, are variables.

Assignment statement: y:=f(x,,...,x,)
where f is an n-ary function (n=0) and y,x,,...x, are
variables.

273

Output statement: print e),...,e,
where ¢,, i=1,...,n, is either a literal or a variable.

Unconditional transfer statement: goto m
where m is an integer.

Conditional transfer statement: if p(x,,...,x,) then goto m
where p is an n-ary predicate (n>0), x,,...,x, are variables,
and m is an integer. 0-ary predicates, such as TRUE and
FALSE are prohibited.

Halt statement: stop.

A program is a finite sequence of legal statements, each
statement prefixed by a unique integer, known as its label. We
shall use the term "transfer statements”" whenever we wish to
include both conditional and unconditional transfers. For every
transfer statement goto m or if p then goto m, m must be the label
of some statement in the program. That statement is called the
target of the transfer statement. Every program contains exactly
one start statement which appears as the first statement of the
sequence and may not be the target of a transfer statement. Every
program contains at least one halt statement. The final statement
of a program must be either a halt statement or an unconditional
transfer.

If s, is the k™" statement in a program and s, is the (k+1)™
statement then we say that s; physically precedes s;, and s,
physically succeeds s,. We say that statement s, executionally
precedes statement s, (s, executionally succeeds s,) if and only if
either s, is a transfer statement (either conditional or
unconditional) and s; is its target, or, s; is not an unconditional
transfer or halt statement, and s, is its physical successor. A
statement s is syntactically reachable if and only if there is a
sequence of statements sy,...,s, such that s, is the start statement,
s, is s, and for each i=1,....n-1, s5; executionally precedes s,4|.

A transfer statement is called ineffective if it physically
precedes its target. All other transfer statements are effective. We
require that every statement in the program be syntactically
reachable, and that all transfer statements be effective. Violations
of these restrictions are at best the product of coding practices
which tend to obscure program logic and should therefore be
eliminated. More significantly, their presence may well be
indicative of certain types of logical or typographical errors (e.g.
incorrect or missing labels; missing statements). It seems unlikely
that a programmer would intentionally write code which can never
be executed or include a completely unnecessary transfer
statement ‘o the very same statement that would have been
executed without the transfer. Although we are concerned mainly
with testing as a means of uncovering program errors, it is, of
course, highly desirable to find and correct as many errors as
possible before testing begins. We propose that the procedure
described in this paper include as part of its output some indication
of potentially troublesome situations encountered in processing a
program, similar in nature to ‘syntax error’ messages produced by
a compiler. We will therefore continue to mention the types of
program anomalies which may be discovered at each stage of the
procedure.

Flow Graph Theoretic Concepts

A program can be uniquely decomposed into a set of disjoint
blocks having the property that whenever the first statement of the
block is executed, the other statements are then executed in the
given order. Furthermore, the first statement of the block should
be the only statement which may be executed directly after the
execution of a statement in another block. Formally, a block is a
maximal set of ordered statements b= <s,...,s,>, such that if
n>1, for i=2,...,n, s, is the unique executional successor of s;_;

and s,_; is the unique executional predecessor of s, Thus the first
statement of a block is the only one which may have an
executional predecessor outside the block, and the last statement is
the only one which may have an executional successor outside the
block. Every conditional transfer must be the last statement of a
block, since effective conditional transfers cannot have unique
executional successors.

The program graph representing a program consists of one
node i corresponding to each block b; of the program and an edge
from node j to node k, denoted (j,k), if and only if either the last
statement of b; is not an unconditional transfer and it physically
precedes the first statement of b, or the last statement of b; is a
transfer whose target is the first statement of b,. If there is an
edge from node j to node k we say that node j is a predecessor of
node k, and k is a successor of j. The node corresponding to the
block whose first statement is the start statement of the program is
known as the start node. Such a node has no predecessors. A
node corresponding to a block whose final statement is a halt
statement is known as an exit node and has no successors. In
addition, a node has two successors if and only if the final
statement of its corresponding block is a conditional transfer. The
requirement that all transfer statements be effective guarantees
that the two successors are different nodes. That is, for every pair
of nodes i and j there is at most one edge from node i to node j.

A path is a finite sequence of nodes (n,...,n,), k=2, such
that there is an edge from n; to n;4 for i=1,2,....k-1. Because all
transfer statements must be effective, there is at most one edge
between any pair of nodes, allowing us to represent a path as a
sequence of nodes, rather than as a sequence of edges. Note that
the definition of path is a purely syntactic one, that is, a path is
any sequence of nodes connected by edges. A complete path is a
path whose initial node is the start node and whose final node is an
exit node. Note that it may be the case that there is no input
which will cause the sequence of statements represented by a
particular path to be executed. Since it is known that there can be
no algorithm to decide whether a given path is executable [12], we
do not require that all complete paths be executable.

A syntactically endless loop is a path (ni,...,n), k>1,
n=n,, such that none of the blocks represented by the nodes on
the path contain a conditional transfer statement whose target is
either in a block which is not on the path or is a halt statement.
Such a loop contains no possible escape and can be detected
algorithmically and eliminated from a program, or flagged as a
possible error. We therefore assume that programs contain no
syntactically endless loops. Since all statements in a program must
be syntactically reachable and there may be no syntactically endless
loops, we are guaranteed that every node appears on some
complete path, although possibly an unexecutable one.

The Def/Use Graph

Our path selection criteria are based on an investigation of
the ways in which values are associated with variables, and how
these associations can affect the execution of the program. This
analysis focuses on the occurrences of wvariables within the
program, the actual functions and predicates to be computed play
no role. Each variable occurrence is classified as being a
definitional occurrence, computation-use occurence, or predicate-
use occurrence. We shall refer to these as def, c-use and p-use,
respectively.

The assignment statement y:=fx,,...,x,) contains c-uses of
X1aeeen Xy, fOllowed by a def of y.

274

The input statement read x,...,x, contains defs of xi,...,x,.

The output statement print xy,...,x, contains c-uses of
XseesXp.

The conditional transfer statement if p(x,,...,x,) then goto m
contains p-uses of x,...,x,.

In the following discussion we will say that a node of a
program graph contains a c-use or a def of a variable if there is a
statement in the corresponding block containing a c-use or a def of
that variable. Because the value of a variable occurring in the
predicate portion of a conditional transfer statement will affect the
execution sequence of the program, we associate p-uses with edges
rather than with nodes. If the final statement of the block
corresponding to node i is if p(xy,...,x,) then goto m, and the two
successors of node i are nodes j and k then we will say that edges
(i,j) and (i,k) contain p-uses of xi,...,x, In figure 2, node 6
contains c-uses of z and x, followed by a def of z, followed by a c-
use and a def of pow. Edges (5,6) and (5,7) each contain a p-use
of pow.

1. start

2. read x,y

3. if y<0 then goto 6
4. pow =y

S. goto 7

6. pow := -y

7.z2:=1

8. if pow=0 then goto 12
9.z:=zXx

10. pow := pow-1

11. goto 8

12. if y=0 then goto 14
13.z:=1/z

14. answer := z+1

15. print answer

16. stop

O answer:=z+1
print answer

figure 2

Since we are interested in tracing the flow of data berween
nodes, any definition which is used only within the node in which
that definition occurs is of little importance to us. Thus we
categorize defs and uses as being either global or local. A
c-use of a variable x is a global c-use if and only if there is no def
of x preceding the c-use within the block in which it occurs. That
is, the value of x must have been assigned in some block other
than the one in which it is being used. Otherwise it is a local c-
use. Global c-uses are often called locally exposed uses in the data
flow analysis literature ([11]).

Let x be a variable occurring in a program. We say that a
path (i,ny,...n,.J), m=0, containing no defs of x in nodes
ni,...,n, is called a def-clear path with respect to (wrt) x from
node i to node j. A path (i,n,...,n,.j,k), m=0, containing no defs
of x in nodes #y,...,n,.j is called a def-clear path wrt x from node
i to edge (,k). An edge (i,j) is a def-clear path wrt x from node i
to edge (i,j). A def of a variable x in node i is a global def if and
only if it is the last def of x occurring in the block associated with
node i and there is a def-clear path wrt x from i to either a node
containing a global c-use of x or to an edge containing a p-use of
x. Thus, a global def defines a variable which will be used outside
the node in which the definition occurs. A def of a variable x in
node i which is not a global def is a local def if and only if there is
a local c-use of x in node i which follows this def, and no other
def of x appears between the def and the local c-use. The def of
answer in node 9 of figure 2 is local. Any def which is neither
global nor local will never be used and the program should be
examined for possible error.

Methodologies which detect program anomalies using data
flow analysis [13,14] consider the presence of any def-clear path
wrt a variable x from the start node to a use of x to be a possible
error. Since some of these paths may not be executable, there may
well be no error. If, however, none of these paths contains a
definition of x, and at least one is executable, then there is indeed
an error. Thus we assume that there is some path from the start
node to every global c-use or p-use of a variable which contains a
def of that variable. Programs which violate this assumption
should be flagged as having a possible error.

We create the def/use graph from a program graph by
associating each node i with two sets, def and ¢-use, and each edge
(i,j) with the set p-use. def(i) is the set of variables for which
node i contains a global def; c-use(i) is the set of variables for
which node i contains a global c-use; p-use(i,j) is the set of
variables for which edge (i,j) contains a p-use. An edge (i,j) for
which p-use(i,j) is non-empty is called a labelled edge; if
p-use(i,j)=@ then (i,j) is called an unlabelled edge. Because
0-ary predicates are not allowed, edges which are the sole out-
edges of a node are always unlabelled, while those which are one
of a pair of out-edges are always labelled.

In figure 2 these sets are:

node c-use def
1) x.y})
2 vl {pow]
3 ty) ipow}
4 ('] iz}
S '] ']
6 ix,z,pow} lz,pow}
7 '] "]
8 iz} (z}
9 iz} 0

275

edge p-use
(1,2) v
(1,3) iy}
(5,6) {pow}
(5,7 lpow}
(1,8) ly}
(7,9 ly)

Note that answer which has only a local def and a local c-use,
does not appear in these sets. Edges (2,4),(3,4),(4,5),(6,5), and
(8,9) are unlabelled.

We now define several sets needed in the construction of our
def/use criteria. Let i be any node, and x any variable such that
x€def(i). Then dcu(x,i) is the set of all nodes j such that
x€c-use(j) and for which there is a def-clear path wrt x from i to j;
dpu(x,i) is the set of all edges (j,k) such that x €p-use(j,k) and for
which there is a def-clear path wrt x from i to (j,k). The dcu and
dpu sets for figure 2 are:

variable node dcu dpu

X 1 {6} [}

y 1 12,3) {(1,2),(1,3),(7,8),(7,9))
pow 2 16} 1(5,6),(5, 1}

pow 3 6} 1(5,6),(5, D}

z 4 6,89 @ .

z 6 {6,8,9} [}

pow 6 6} {(5,6),(5,1}

z 8 19]

Let P be a set of complete paths for a def/use graph of a
given program. We say that a node i is included in P if P contains
a path (ny,...,n,) such that i=n, for some j, 1<\j=m. Similarly,
an edge (ij,iy) is included in P if P contains a path (ny,...,n,)
such that /y=n; and iy=n;,, for some j, 1<j<m-1. A path
(i}yeensfi) is included in P if P contains a path (n,....n,) and
=N, =ni4,.ik=n4_ for some j, 1<sj=m-k+I1. In
addition, we say that P is executed if every path contained in P is
traversed during the course of executing the program on a set of
test input data.

A Family of Path Selection Criteria

We now introduce a family of path selection criteria. Let G
be a def/use graph, and P be a set of complete paths of G. Then

P satisfies the all-nodes criterion if every node of G is
included in P,

P satisfies the all-edges criterion if every edge of G is
included in P.

P satisfies the all-defs criterion if for every node i of G and
every x€def(i), P includes a def-clear path wrt x from i to
some element of dcu(i,x) or dpu(i,x).

P satisfies the all-p-uses criterion if for every node i and
every x €def(i), P includes a def-clear path wrt x from i to all
elements of dpu(x.i).

P satisfies the all-c-uses/some-p-uses criterion if for every
node i and every x€def(i), P includes some def-clear path
wrt x from i to every node in deu(x,i); if deu(x,i) is empty,
then P must include a def-clear path wrt x from i to some
edge contained in dpu(x,i). This criterion requires that every
c-use of a variable x defined in node i must be included in
some path of P. If there is no such c-use, then some p-use

of the definition of x in i must be included. Thus to fulfill
this criterion, every definition which is ever used must have
some use included in the paths of P, with the c-uses
particularly emphasized.

P satisfies the all-p-uses/some-c-uses criterion if for every
node i and every x£def(i), P includes a def-clear path wrt x
from i to all elements of dpu{x,i}; if dpu(x.i) is empty, then
P must include a def-clear path wrt x from | to seme node in
deulx,i). As in the case of all-c-uses/some-p-uses, this
criterion requires every definition which is ever used to be
used in some path of P. In this case, however, the emphasis
is on p-uses.

P satisfles the all-uses criterion if for every node i and every
x€def(i), P includes a def-clear path wrt x from i to all
elements of dcu(x,i) and to all clements of dpu(x.i).

A path (n,...,m;) is loap-free if and only if nZn forizj. P
salisfies the all-du-paths criterion if for every node i and
every x €def(i), P includes every loop-free def-clear path wrt
x from i to all elements of dpu(x.i} and 1o all elemenis of
dcu(x,i). Note that the compiere paths contwined in P need
not be loop-free.

P satisfies the all-paths criterion if P includes every complete
path of G. Note that, due to loops, many graphs have
infinitely many complete paths,

Criterion ¢; includes criterion ey if for every def/use graph
G, any sct of complete paths of G that satisfies ¢ also satisfies 3
Criterion ¢, strictly includes criterion ¢;, denoted cy—= 3, if and
only if ¢, includes ¢, and for some def/use praph G there is a set
of complete paths of G that satisfies ¢; but not ¢). Note that this
is clearly a transitive relation. We say that criteria ¢; and ¢y are
incomparable if neither ¢ includes ¢, nor ¢, includes ¢,.

We can assume that all def/use graphs confain more than
one node. Singlc-node graphs have only one path and thus any of
the criteria would select thal path. Furthermore we may assumc
that all def/use graphs have more than two nodes and at least two
labelled edges. This follows immediately from our definition of

block, and the requirement that all transfer statements be
effective.
all-paths
all-du-paths
atl-uses
all-c-uses/ / all-p-uses/
some-p-uses Some-c-uses
all-defs ‘
all-p-uses
all-edges
all-nodes
figure 3

276

_criteria

Theorem:

The family of criteria is partially ordered by strict
inclusion as shown in figure 3. Furihermere, criterion
¢, strictly includes criterion ¢; if and only if it is
explicitly shown to be so in figpure 3 or follows from the
transitivity of the relationship.

A proof of this theorem is contained in [17].

Analysis of the Criteria

The criteria all-nodes (statement coverage) and all-edges
(branch coverage) are often used in program testing despite the
fact that they are extremely weak criteria. Qur search for stronger
criteria that make use of data flow information led us at first to
all-defs. Our assumption is that every definition in a program was
tncluded by the programmer because it would eventually be used
somewhere, and, thus, a well-tested program should test all
definitions. However, we rejected all-defs as an adequate criterion
since it does not include all-edges. In [15] errors are separated into
dormain errors, which occur when an incorrect path is chosen due
to a control flow error, and computation errors, which occur when
a correct path is chosen but an assignment statement contains an
erroneous computation. All-defs can detect computation errors
but not necessarily domain errors, while all-edges can detect
domain errors but not necessarily computation errors. In looking
for criteria that can detect both types of errors, we separated uses
of variables into p-uses and c-uses. All-p-uses is our first data flow
analysis criterion which includes all-edges, but it, too, primarily
detects domain errors. It is stronger than all-edges since it
requires a path from every definition of a variable t0 every possible
p-use of that variable, while all-edges merely rcquires that there be
some path that includes that p-use. Since the value of a variable
contained in a predicaie may have been defined in one of several
places, it is clear that all-p-uses can uncover more errors than ali-
edges. The crilerion all-p-uses/some-c-uses is the weakest of our
that includes both all-defs and all-edges. Wc¢ are
guaranteed that testing according to this criterion exercises every
edge, and every computation.

Consider the program of figure 4, which is a translation into
our programming language of the Wensleysgroot program
presented in [7] to compute /p, 0<p<1, to accuracy ¢, 0 <e=s].
The program contains an error; statements 11 and 12 should be
interchanged. The set of paths [{1,6), (1,2,3.4,2,3,5,2.7)} satisfies
all-edges, but would not detect the error. As stated in [7], "a
looping factor of two is required to derive test data that reveals the
bug,” that is, the tester must specify that some path containing at
lzast two executions of the loop be tested. In fact, a looping factor
of two or more may nol suffice. The problem is that the definition
of ¢ in node 5 is never used unless the set of paths includes a
definition-clear path wrt ¢ from node S to node 3, and thus the
error cannot be detected unless the path (5,2,3) is included. The
all-defs criterion, however, does require that all definitions be
used, and thus any set of paths selected according te this criterion
would have to include (5,2,3). The set of paths
1(1,2,3,5,2,3,5,2,7}, (1,2,3,4,2,3,4,2,7} would detect the error;
however node 6 and edge (1,6) would not be tested. All-p-uses is
not adequate to find the error either. {(1,6), (1,2,7), (1,2,3.5.2,7),
(1,2,3,4,2,3,4,2,7] satisfies all-p-uses without including (5,2,3).
However, since the program conlains no p-uses of the definitions
of ¢ in nodes 4 and 5, all-p-uses/some-c-uses does require that the
paths (5,2,3) and (4,2,3) be included.

. start

. read p,e

d:=1

x:=0

c:=2xp

if c=2 then goto 18
. if d=te then goto 16
.d:=d/2
Sti=c-(2xx+d)

10. if t<0 then goto 14
11. x:=x+d

12. c:=2x(c-2xx+d))
13. goto 7

14. ¢c:=2x¢

15. goto 7

16. print x

17. stop

18. print ‘error’

19. stop

R T

‘error’

print x

figure 4

Since the value of a variable used in a c-use may have been
defined in one of several places, all-c-uses/some-p-uses is more
likely to find computation errors than all-p-uses/some-c-uses. In
particular, all-c-uses/some p-uses requires paths between every
definition and every possible c-use of that definition. For figure 4,
this means that any set of paths chosen according to
all-c-uses/some-p-uses must include the paths (4,2,3.4), (4,2,3,5),
(5.2,3,4) and (5,2,3,5). However, this criterion does not include
all-edges either. For example, 1(1,2,3,5,2,3,5,2,7),
(1,2,3,4,2,3,5,2.7.), (1,2,3,4,2,3.4.2.7), (1,2,3,5,2,3,4,2.7)}
satisfies all-c-uses/some-p-uses, but does not include edge (1.,6).
Furthermore, it does not include path (1,2,7), which would be
executed if the input data were incorrect and e>1. Since the
program does check for p<1, it may very well be an error that it
does not explicitly check for e<<1. This error would be detected
by all-p-uses/some-c-uses, however, since it does require that the
path (1,2,7) be included.

The criterion ali-uses, which includes both
all-p-uses/some-c-uses and all-c-uses/some-p-uses, can detect both
types of errors. This criterion is similar to required element

21

testing [16]. One set of paths which satisfies the all-uses criterion
for figure 4 s {(1,6), (1,2,3,5,2,3,5.2.7), (1,2,7),
(1,2,3,4,2,3,5,2.7), (1,2,3,4,2,3,4.2,7), (1,2,3,5,2,3,4,2,1}.
Notice that any set of paths which satisfies this criterion must
contain the paths (1,6), (1,2,7), and all of the combinations of
predicates represented by the paths (4,2,3,4), (4,2,3,5), (5,2,3,4)
and (5.2,3,5). However, for some programs, this criterion may
not test all possible combinations of predicates, as can be seen in
figure 5.

print code

figure 5

1(1,2,4,5,7), (1,3,4,6,7)] satisfies all-uses, but it does not include
the paths (1,2,4,6,7) and (1,3,4,5,7). We therefore defined the
all-du-paths criterion.

Conclusion and Future Work

The data flow criteria that we have defined can be used to
bridge the gap between the requirement that every branch be
traversed and the requirement that every path be traversed. Our
criteria focus on the interaction of portions of the program linked
by the flow of data rather than solely by the flow of control.
Research is currently underway to determine the relative costs of
the criteria in terms of the number of test cases required to satisfy
them, and to more precisely characterize the types of errors
detectable by each. We envision a tester being able to select a
particular criterion by determining whether the likely payoff in
terms of errors detectable is worth the added cost in terms of
additional tests necessary.

References
(1] J.B. Goodenough and S.L. Gerhart, "Toward a Theory of
Testing: Data Selection Criteria,” in Current Trends in
Programming Methodology, Vol.2, ed. R.T. Yeh, Prentice-
Hall, 1977, pp. 44-79.

E.J. Weyuker and T.J. Ostrand, "Theories of Program Testing
and the Application of Revealing Subdomains," IEEE Trans.
Software Eng., Vol.SE-6, May 1980, pp.236-246.

E. Miller, "Coverage Measure Definitions Reviewed,"
Testing Techniques Newsletter, Vol.3, No.4, Nov 1980, p.6.

(2]

[3]

(4]

(5]

(61

171

(8]

(91

[10]

(11}

21

[13]

{14]

{151

{16]

(17]

M.R. Woodward, D.Hedley, and M.A. Hennell, "Experience
With Path Analysis and Testing of Programs," IEEE Trans.
Software Eng., Vol.SE-6, May 1980, pp.278-286.

W.E. Howden, "Methodology for the Generation of Test
Data," IEEE Trans. Computers, Vol. TC-24, May 1975.

W.E. Howden, "Reliability of the Path Analysis Testing
Strategy,” IEEE Trans. Software Eng., Vol.SE-2, Sept 1976,
pp.208-215.

R.S. Boyer, B.E. Elspas, and K.N. Levitt, "SELECT--A
Formal System for Testing and Debugging,” Proc. of the Int.
Conf. on Reliable Software, Los Angeles, April 1975,
pp.234-245.

L.A. Clarke, "A System to Generate Data and Symbolically
Execute Programs,” IEEE Trans. Software Eng., Vol.SE-2,
Sept 1976, pp.215-222.

W.E. Howden, "Symbolic Testing and the DISSECT Symbolic
Evaluation System,” IEEE Trans. Software Eng., Vol.SE-3,
July 1977, pp.266-278.

J.C. King, "Symbolic Execution and Program Testing,"
Commun. ACM, 19, July 1976, pp.385-394.

M.S. Hecht, Flow Analysis of Computer Programs, North
Hotland, 1977.

E.J. Weyuker, "The Applicability of Program Schema
Results to Programs," Int. J. Comput. Inf. Sci., Vol.8,
No.S5, Nov 1979.

L.D.Fosdick and L.J. Osterweil, "Data Flow Analysis in
Software Reliability,” Comput. Surveys, Vol.8, No.3, Sept
1976, pp.305-330.

L.J. Osterweil, "The Detection of Unexecutable Program
Paths Through Static Data Flow Analysis," Proc. 1EEE
COMSAC, Chicago, lll., Dec 1977.

L.J. White and E.I. Cohen, "A Domain Strategy for
Computer Program Testing," IEEE Trans. Software Eng.,
Vol. SE-6, May 1980, pp.247-257.

S. Ntafos, "On Testing With Required Elements," U. Texas at
Dallas Technical Report 90, July 1981.

S. Rapps and E.J. Weyuker, "Data Flow Analysis Techniques
for Test Data Selection,” Dept of Computer Science
Technical Report 023, Courant Institute of Mathematical
Sciences, New York University, Aug 1980 (revised Dec
1981).

278

