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Abstract 

This paper examines a family of program test data selection 
criteria derived from data flow analysis techniques similar to those 
used in compiler optimization. It is argued that currently used path 
selection criteria which examine only the control flow of a program 
are inadequate. Our procedure associates with each point in a 
program at which a variable is defined, those points at which the 
value is used. Several related path criteria, which differ in the 
number of these associations needed to adequately test the 
program, are defined and compared. 

I ntroduction 

Program testing is the most commonly used method for 
demonstrating that a program actually accomplishes its intended 
purpose. The testing procedure consists of selecting elements from 
the program's input domain, executing the program on these test 
cases, and comparing the actual output with the expected output 
(in this discussion, we assume the existence of an "oracle", that is, 
some method to correctly determine the expected output). While 
exhaustive testing of all possible input values would provide the 
most complete picture of a program's performance, the size of the 
input domain is usually too large for this to be feasible. Instead, 
the usual procedure is to select a relatively small subset of the 
input domain which is, in some sense, representative of the entire 
input domain. An evaluation of the performance of the program 
on this test data is then used to predict its performance in general. 
Ideally, the test data should be chosen so that executing the 
program on this set will uncover all errors, thus guaranteeing that 
any program which produces correct results for the test data will 
produce correct results for any data in the input domain. 
However, discovering such a perfect set of test data is a difficult, if 
not impossible task [1,2]. In practice, test data is selected to give 
the tester a feeling of confidence that most errors will be 
discovered, without actually guaranteeing that the tested and 
debugged program is correct. This feeling of confidence is 
generally based upon the tester's having chosen the test data 
according to some criterion; the degree of confidence depends on 
the tester's perception of how directly the criterion approximates 
correctness. Thus, if a tester has a "good" test data criterion, the 
problem of test data selection is reduced to finding data that meet 
the criterion. 

One class of test data selection criteria is based on measures 
of code coverage. Examples of such criteria are statement 
coverage (every statement of a program must be executed at least 
once during testing) and branch coverage (every branch must be 
traversed). Other coverage measures inc'lude Cn coverage 
measures [3], TERn measures [4] and boundary-interior [5]. 
Obviously, once such a criterion has been chosen, test data must 
be selected to fulfill the criterion. One way to accomplish this is to 

select paths through the program whose elements fulfill the chosen 
criterion, and then to find the input data which would cause each 
of the chosen paths to be selected. 

Using path selection criteria as test data selection criteria has 
a distinct weakness. Consider the strongest path selection criterion 
which requires that all program paths Pl,P2 .... be selected. This 
effectively partitions the input domain D into a set of classes 
D = U D [ j ]  such that for every xED, x~D[j] if and only if 
executing the program with input x causes path pj to be traversed. 

I Then a test T=~ti,t2,...}, where tiED[j] would seem to be a 
reasonably rigorous test of the program. However, this still does 
not guarantee program correctness. If one of the DIj] is not 
revealing [2], that is for some x ~ D [ j ]  the program works 
correctly, but for some other x2~D[j] the program is incorrect, 
then if xl is selected as tj the error will not be discovered. In 
figure 1 we see an example of this. 

PRINT 
"HI" 

STOP 

START 

READ X 

X > 3 ?  

PRINT 
"HO" 

STOP 

figure 1 

Two test cases would be sufficient to execute all paths in this 
program. If the two test values chosen for x are 2 and 5, then we 
would not discover that the condition i f  x > 3  should, in fact, have 
been i f x ~ 3 .  This problem is compounded further by the fact that 
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many programs have  a very large, or possibly infinite,  n u m b e r  of 
paths and thus the cr i ter ion that all paths be se lected mus t  be 
replaced by a significantly weaker  cr i ter ion that  selects  only a 
subset  of the paths. 

Al though  we mus t  be aware that  path se lec t ion  criteria 
cannot  insure  that a set of test data capable of uncover ing  all 
errors  will be chosen,  we are not  arguing that such cri teria be 
abandoned.  In the absence  of feasible and rel iable me thods  to 
formally prove correctness  for all programs,  we mus t  con t inue  to 
use tes t ing strategies.  Deve lop ing  adequate  path se lec t ion  cri teria 
will help bring us closer to es tabl ishing correctness.  In [6] the 
reliability of path analysis  is demons t ra ted .  Fur the rmore ,  path 
select ion criteria are used to de te rmine  correc tness  by symbol ic  
execu t ion  of the code [7,8,9,10]. Our main  goal for path se lect ion 
criteria is that the n u m b e r  of paths selected be small  enough  so 
that all tests can be comple ted ,  yet  large enough  so that  we c a n  
uncover  many errors. In addi t ion,  we want  cri teria that  can be 
mechanical ly  checked.  That  is, we should  be able to write a 
program that,  g iven as input  a program, a set of  test data, and a 
path select ion cr i ter ion,  will tell us whether  the program paths that  
would be executed  using the test data are sufficient to satisfy the 
cri terion. In addi t ion,  this  program should  also be able to give us 
some indicat ion as to why a g iven set of  test data is inadequate .  
Of course,  we would also l ike to be able to use the path se lec t ion  
criteria to mechanical ly  genera te  a set of  paths that  mee t  the 
cr i ter ion a n d / o r  a set  of test data for a g iven program, but that  is a 
difficult, and some t imes  imposs ib le ,  task. 

Most  path se lec t ion  cri teria are based on control  flow 
analysis,  which examines  the branch and loop s t ruc ture  of  a 
program. We bel ieve  that data flow analysis,  which is widely used 
in code opt imiza t ion  [11], shou ld  be cons idered  as well. Data flow 
analysis  focuses  on how variables  are bound to values,  and how 
these variables  are to be used. Rather  than select ing program 
paths based solely on the control  s t ruc ture  of a program, the data 
flow criteria presented  in this  paper track input  variables  through a 
program, following them as they are modif ied,  until  they are 
ul t imately  used to produce output  values.  These  cri teria are 
const ructed  so that  critical associa t ions  between the defini t ion of a 
variable and its uses are examined  dur ing  program testing. It is 
our  bel ief  that,  jus t  as one would not feel confident  about  a 
program wi thout  execut ing  every s t a t emen t  in it as part of  some 
test, one should  not feel conf ident  about  a program wi thout  having 
seen the effect of using the value produced by each and every  
computa t ion .  

In the next  sect ion we present  a p rogramming  language and 
define some graph- theore t ic  terminology.  We  then in t roduce  a 
hierarchy of  path se lect ion criteria based on control  and data flow 
analysis  of a program. In the last sect ion we discuss  the relat ive 
s t rengths  and weaknesses  of the criteria. 

The Programming Language 

We now introduce our  formal  p rogramming  language. This  
may be though t  of as e i ther  the in te rmedia te  level language 
produced by compi la t ion  from a high level language or the actual 
language in which the program was written. Our language allows 
only s imple  variables and conta ins  the following legal statement 
types: 

Start s ta tement :  start  

Input  s ta tement :  read x b . . . , x  n 

where Xl , . . . ,Xn  are variables. 

A s s i g n m e n t  s ta tement :  y : = f ( x l , . . . , x , )  
where  f is an n-ary funct ion (n~>0) and y,xa ..... x,  are 
variables. 

Output  s ta tement :  print e l , . . . , e  n 
where e;, i =  l , . . . ,n,  is e i ther  a literal or a variable. 

Uncondi t iona l  t ransfer  s ta tement :  goto m 
where m is an integer.  

Condi t ional  t ransfer  s ta tement :  if p(x~ ..... x~) then  goto m 
where  p is an n-ary predicate  ( n > 0 ) ,  Xl ..... x,, are variables,  
and m is an integer.  0-ary predicates,  such as T R U E  and 
FALSE are prohibited.  

Halt s ta tement :  stop. 

A p rogram is a finite sequence  of legal s ta tements ,  each 
s t a t emen t  prefixed by a un ique  integer ,  known as its label .  We 
shall  use the te rm "transfer s ta tements"  wheneve r  we wish to 
include both condi t ional  and uncondi t iona l  transfers.  For every  
t ransfer  s t a t ement  goto m or ~fp  then goto m, m mus t  be the label 
of some s t a t ement  in the program. That  s t a t emen t  is called the 
target of the t ransfer  s ta tement .  Every program conta ins  exactly 
one start s t a t emen t  which appears as the first s t a t ement  of the 
sequence  and may not  be the target of a t ransfer  s ta tement .  Every 
program conta ins  at least one halt  s ta tement .  The final s t a t ement  
of a program mus t  be e i ther  a halt  s t a t emen t  or an uncondi t ional  
transfer. 

If  sl is the k ~h s t a t emen t  in a program and s2 is the ( k + l )  st 
s t a t ement  then we say that  s~ physically precedes s2, and s2 

physically succeeds sl.  We say that s t a t emen t  sl executionally 
precedes s t a t emen t  s 2 (s2 executionally succeeds s l )  if and only if  
e i ther  Sl is a t ransfer  s t a t emen t  (e i ther  condi t ional  or 
uncondi t ional )  and s2 is its target, or, sl  is not an uncondi t ional  
t ransfer  or hatt s ta tement ,  and s2 is its physical successor.  A 
s ta tement  s is syntactically reachable if and only if there  is a 
sequence  of s t a t emen t s  SI , . . . ,S  n such that Sl is the start  s t a tement ,  
s,, is s, and for each i = l  ..... n - l ,  s; execut iona l ly  precedes S,+l. 

A transfer  s t a t emen t  is called ineffect ive if  it physically 
precedes its target. All o ther  t ransfer  s t a t emen t s  are effective. We 
require that every s t a t emen t  in the program be syntactically 
reachable,  and that all t ransfer  s t a t emen t s  be effective. Violat ions 
of  these rest r ic t ions are at best the product  of  coding practices 
which tend to obscure program logic and  should  therefore  be 
e l iminated.  More significantly,  their  presence may well be 
indicat ive of certain types of logical or typographical errors  (e.g. 
incorrect  or miss ing labels; miss ing  s ta tements ) .  It s eems  unl ikely 
that a p rogrammer  would in tent ional ly  write code which can never  
be execu ted  or include a comple te ly  unnecessary  t ransfer  
s t a t emen t  'o the very same  s t a t emen t  that  would have been 
executed  w~thout the transfer.  Al though we are concerned mainly 
with tes t ing as a means  of uncover ing  program errors,  it is, of 
course,  highly desirable  to find and correct  as many errors  as 
possible before tes t ing begins. We propose that the procedure  
descr ibed in this  paper include as part of its ou tput  some indicat ion 
of potent ial ly t roub lesome s i tuat ions  encoun te red  in processing a 
program, s imi lar  in nature  to ' syntax error '  messages  produced by 
a compiler .  We will therefore  con t inue  to men t ion  the types of 
program anomal ies  which may be d iscovered at each stage of the 
procedure.  

Flow Graph Theoretic Concepts 

A program can be un ique ly  decomposed  into a set of  disjoint  
blocks having the property that  w h e n e v e r  the first s t a t ement  of the 
block is executed ,  the other  s t a t emen t s  are then executed  in the 
g iven order.  Fur the rmore ,  the first s t a t ement  of the block should  
be the only s t a t emen t  which may be executed  directly af ter  the 
execu t ion  of a s t a t emen t  in ano the r  block. Formal ly ,  a b lock is a 
maximal  set of  ordered s t a t emen t s  b = < s ~ , . . . , s , , > ,  such that  if  
n > l ,  for i = 2  ..... n, s; is the unique execut ional  successor  of s , - i  
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and s,-i  is the unique  execut iona l  predecessor  of s,. Thus  the first 
s t a t emen t  of  a block is the only one which may have an 
execut iona l  predecessor  outs ide the block, and the last s t a t emen t  is 
the only one which may have  an execut iona l  successor  outs ide the 
block. Every condi t ional  t ransfer  mus t  be the last s t a t ement  of a 
block, s ince effective condi t ional  t ransfers  cannot  have un ique  
execut iona l  successors .  

The program graph represen t ing  a program consis ts  of  one 
node i cor responding  to each block b i of the  program and an edge  
from node j to node k, deno ted  (j,k), if  and only if e i ther  the last 
s t a t emen t  of  b~ is  not  an uncondi t iona l  t ransfer  and it physically 
precedes the first s t a t emen t  of bk, or the last s t a t emen t  of bj is a 
t ransfer  whose target is the first s t a t emen t  of b , .  I f  there  is an 
edge f rom node j to node  k we say that  node  j is a predecessor  of 
node k, and k is a successor  of  j. The  node cor responding  to the 
block whose first s t a t emen t  is the start  s t a t emen t  of the program is 
known as the s t a r t  node. Such a node has  no predecessors .  A 
node cor responding  to a block whose  final s t a t emen t  is a halt  
s t a t emen t  is known as an exit node and has  no successors.  In 
addi t ion,  a node  has two successors  if and only if  the final 
s t a t emen t  of  its cor responding  block is a condi t ional  transfer.  The 
r equ i r emen t  that  all t ransfer  s t a t emen t s  be effect ive gua :an tees  
that  the two successors  are different  nodes.  Tha t  is, for every  pair 
of nodes  i and j there  is at mos t  one edge  f rom node i to node j. 

A p a t h  is a finite sequence  of  nodes (n l  ..... nk) ,  k~>2, such 
that  there  is an edge f rom ni to ni+t for i = l , 2 , . . . , k - 1 ,  Because all 
t ransfer  s t a t emen t s  mus t  be effect ive,  there  is at most  one edge  
be tween any pair of nodes,  a l lowing us  to represen t  a path as a 
sequence  of nodes ,  ra ther  than  as a sequence  of edges.  Note  that  
the def ini t ion of  path is a purely syntact ic  one,  that  is, a path is 
any sequence  of nodes  connec ted  by edges.  A complete path is a 
path whose  init ial  node is the start  node and whose  final node is an 
exi t  node. Note  that  it may be the case that  there  is no input  
which will cause the sequence  of s t a t emen t s  represen ted  by a 
part icular  path to be executed.  Since it is known that  there  can be 
no a lgor i thm to decide whe the r  a g iven path is execu tab le  [12], we 
do not  require  that  all comple te  paths be executable .  

A syntactically endless  loop is a path (n l  ..... nk), k > l ,  
n ~ =  nk, such that  none  of  the blocks represen ted  by the nodes  on 
the path contain a condi t ional  t ransfer  s t a t emen t  whose  target  is 
e i ther  in a block which is not  on the path or is a halt  s ta tement .  
Such a loop conta ins  no possible escape and can be de tec ted  
a lgor i thmical ly  and e l imina ted  f rom a program,  or flagged as a 
possible error. We  therefore  a s s u m e  that  p rograms conta in  no 
syntactically endless  loops. Since all s t a t emen t s  in a program m u s t  
be syntactically reachable  and there  may be no syntact ical ly endless  
loops, we are guaran teed  that  every  node  appears  on some  
comple te  path, a l though  possibly an unexecu tab le  one. 

The D e f / U s e  Graph 

Our path se lect ion cri ter ia  are based on an inves t iga t ion  of  
the ways in which values  are associated with variables ,  and  how 
these  associa t ions  can affect the execu t ion  of  the program. This  
analysis  focuses  on the occurrences  of  var iables  within the 
program;  the actual func t ions  and predicates  to be compu ted  play 
no role. Each var iable  occurrence  is classified as being a 
defini t ional  occurrence,  compu ta t ion -use  occurence ,  or predicate-  
use  occurrence.  We shall  refer to these  as clef, c-use and p-use, 
respectively.  

The  a s s ignmen t  s t a t emen t  y:  = f ( x  I ..... X n) conta ins  c-uses  of  
x l  ..... xn fol lowed by a def  of  y. 

The  input  s t a t emen t  read  Xl . . . . .  x ,  conta ins  defs of  x l  ..... x , .  

The ou tpu t  s t a t emen t  print  x I . . . . .  x ,  conta ins  c-uses of 
X I , . . . , X  n. 

The condi t ional  t ransfer  s t a t emen t  i f  p ( x  1 . . . . .  x n) then  goto  m 
conta ins  p-uses of x ~ , . . . , x , .  

In the fol lowing d iscuss ion  we will say that  a node of a 
program graph conta ins  a c-use  or a de f  of a var iable  if  there  is a 
s t a t emen t  in the cor responding  block conta in ing  a c-use or a def  of  
that  variable.  Because the value  of a var iable  occurr ing in the 
predicate  por t ion of  a condi t ional  t ransfer  s t a t e m e n t  will affect the 
execu t ion  sequence  of the program,  we associa te  p-uses  with edges  
rather  than  with nodes.  If  the final s t a t e m e n t  of  the block 
co r re spond ing  to node  i is i f p ( x t  . . . . .  x , )  then goto  m,  and the two 
successors  of node  i are nodes  j and  k then  we will say that  edges  
(i,j) and (i ,k) conta in  p-uses  of x l  ..... x, .  In figure 2, node 6 
conta ins  c-uses  of z and x, fo l lowed by a de f  of z, fol lowed by a c- 
use and a de f  of  pow. Edges  (5,6) and  (5,7) each conta in  a p-use 
of  pow. 

I. s tart  
2. read x,y 
3. if y < 0  then  goto 6 
4. pow : =  y 
5. goto 7 
6. pow : =  -y 
7. z : =  1 
8. if p o w = 0  then goto 12 
9. z := zxx 

I0. pow : =  pow-I  
11. goto 8 
12. if y ~ 0  then goto 14 
13. z : =  1/z 
14. answer  : ~  z + l  
15. print  answer  
16. stop 

ead x,y 

pow: = y  k , ~  , , ~  pow: = - y  

z:=z×× //~ 
pow:=pow-I f / 

y < 0 /  / 

z : = l / z ~  

~ )  a n s w e r : = z +  1 
print  answer 

figure 2 
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Since we are interested in tracing the flow of  data between 
nodes, any definition which is used only within the node in which 
that definition occurs is of  little importance to us. Thus  we 
categorize defs and uses as being either global or local. A 
c-use of a variable x is a global c-use if and only if there is no def 
of  x preceding the c-use within the block in which it occurs. That 
is, the value of  x must  have been assigned in some block other  
than the one in which it is being used. Otherwise it is a loeai c- 
use. Global c-uses are often called locally exposed uses in the data 
flow analysis literature ([11]). 

Let x be a variable occurring in a program. We say that a 
path (i,n 1 ..... n,,,j), m ~ 0 ,  containing no defs of x in nodes 
nl,...,nm is called a def-clear path with respect to (wrt) x from 
node i to node j. A path (i ,nb.. . ,nm,j,k),  m>~0, containing no defs 
of  x in nodes nl ..... n,~,j is called a def-clear path wrt x from node 
i to edge (j ,k).  An edge (i,j) is a def-clear path wrt x f rom node i 
to edge (i,j). A def of a variable x in node i is a global def if and 
only if it is the last def  of x occurring in the block associated with 
node i and there is a def-clear path wrt x from i to either a node 
containing a global c-use of x or to an edge containing a p-use of 
x. Thus,  a global def defines a variable which will be used outside 
the node in which the definition occurs. A def  of a variable x in 
node i which is not a global def  is a local def if and only if there is 
a local c-use of x in node i which follows this def, and no other  
def of  x appears between the def  and the local c-use. The def of  
answer in node 9 of figure 2 is local. Any def  which is neither 
global nor local will never  be used and the program should be 
examined for possible error. 

Methodologies which detect program anomalies using data 
flow analysis [13,14] consider the presence of  any def-clear path 
wrt a variable x from the start node to a use of  x to be a possible 
error. Since some of these paths may not be executable, there may 
well be no error, lf, however,  none of these paths contains a 
definition of x, and at least one is executable, then there is indeed 
an error. Thus  we assume that there is some path f rom the start 
node to every global c-use or p-use of a variable which contains a 
def of that variable. Programs which violate this assumpt ion 
should be flagged as having a possible error. 

We create the def/use graph f rom a program graph by 
associating each node i with two sets, def and c-use, and each edge 
(i,j) with the set p-use, def(i) is the set of  variables for which 
node i contains a global def; c-use( i )  is the set of  variables for 
which node i contains a global c-use; p-use( i , j )  is the set of 
variables for which edge (i,j) contains a p-use. An edge (i,j) for 
which p-use(i,j) is non-empty  is called a labelled edge; if 
p -use ( i , j )=0  then (i,j) is called an unlabel led edge. Because 
0-ary predicates are not  allowed, edges which are the sole out-  
edges of a node are always unlabelled, while those which are one 
of  a pair of out-edges are always labelled. 

In figure 2 these sets are: 

node c-use def 

1 0 Ix,y} 
2 ly} {powl 
3 [y} [pow} 
4 0 {z} 
5 0 0 
6 [x,z,pow} [z,pow} 
7 0 0 
8 {z} {zl 
9 [z} 0 

edge p-use 

(1,2) {.v} 
(1,3) ly} 
(5,6) [pow} 
(5,7) {pow} 
(7,8) b,} 
(7,9) [y} 

Note that answer which has only a local def  and a local c-use, 
does not appear in these sets. Edges (2 ,4) , (3 ,4) , (4 ,5) , (6 ,5) ,  and 
(8,9) are unlabelled. 

We now define several sets needed in the construction of  our  
def /use  criteria. Let i be any node, and x any variable such that 
xEdef(i) .  Then dcu(x,i)  is the set of all nodes j such that 
xEc-use(j)  and for which there is a def-clear path wrt x f rom i to j; 
dpu(x, i )  is the set of all edges (j,k) such that xEp-use( j ,k)  and for 
which there is a def-clear path wrt x from i to (i,k). The dcu and 
dpu sets for figure 2 are: 

variable node dcu dpu 

x 1 {6} ¢ 
y 1 {2,3} {(1,2),(1,3),(7,8),(7,9)} 
pow 2 {6} {(5,6),(5,7)t 
pow 3 16} [(5,6),(5,7)} 
z 4 {6,8,9} 0 
z 6 {6,8,9} 0 
pow 6 [6} I(5,6),(5,7) I 
z 8 [9} 0 

Let P be a set of  complete paths for a def /use  graph of  a 
given program. We say that a node i is included in P if P contains 
a path (nl,...,n,, ,) such that i = n /  for some j, l~< j~m.  Similarly, 
an edge (i l , i  2) is included in P if P contains a path (nb . . . ,n  m) 
such that i l = n  j and i2=nj+ 1 for some j, l~<j~<m-l. A path 
( i l , . . . , i  k) is included in P if P contains a path (nl . . . . .  r/m) and 
i l = n j ,  i2=nj+l ..... ik=nj+k_ l for some j, l ~ < j ~ m - k + l .  In 
addition, we say that P is executed if every path contained in P is 
traversed during the course of executing the program on a set of 
test input data• 

A Family of Path Selection Criteria 

be a 
We now introduce a family of  path selection criteria. Let G 

def /use  graph, and P be a set of complete paths of G. Then  

P satisfies the all-nodes criterion if every node of G is 
included in P. 

P satisfies the all-edges criterion if every edge of G is 
included in P. 

P satisfies the all-defs criterion if for every node i of  G and 
every xEdef(i) ,  P includes a def-clear path wrt x from i to 
some element  of  dcu(i ,x) or dpu(i ,x) .  

P satisfies the all-p-uses criterion if for every node i and 
every x Edef(i), P includes a def-clear path wrt x f rom i to all 
e lements  of dpu(x,i) .  

P satisfies the al l -e-uses /some-p-uses  criterion if for every 
node i and every xEdef( i ) ,  P includes some def-clear path 
wrt x from i to every node in dcu(x,i);  if dcu(x,i)  is empty, 
then P must  include a def-clear path wrt x from i to some 
edge contained in dpu (x,i). This criterion requires that every 
c-use of a variable x defined in node i must  be included in 
some path of  P. If  there is no such c-use, then some p-use 
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of the definition of x in i must be included. Thus to fulfill 
this criterion, every definition which is ever used must have 
some use included in the paths of P, with the c-uses 
particularly emphasized. 

P satisfies the all-p-uses/somc-c-nses criterion if for every 
node i and every x~def(i), P includes a def-clear path wrt x 
from i to all elements of dpu(x,i); if dpu(x,i) is empty, then 
P must include a clef-clear path wrt x from i to some node in 
dcu(x,i). As in the case of all-c-uses/some-p-uses, this 
criterion requires every definition which is ever used to be 
used in some path of P. In this case, however, the emphasis 
is on p-uses. 

P satisfies the all-uses criterion if for every node i and every 
xEdef(i), P includes a def-clear path wrt x from i to all 
elements of dcu(x,i) and to all elements of dpu (x,i). 

A path (nt,...,n k) is loop-free if and only if ni;~nj for i;~j. P 
satisfies the aii-du-paths criterion if for every node i and 
every x Edef(i), P includes every loop-free def-clear path wrt 
x from i to all elements of dpu(x,i) and to all elements of 
dcu(x,i). Note that the complete paths contained in P need 
not be loop-free. 

P satisfies the all-paths criterion if P includes every complete 
path of G. Note that, due to loops, many graphs have 
infinitely many complete paths. 

Criterion cl includes criterion c 2 if for every def/use graph 
G, any set of complete paths of G that satisfies cl also satisfies c 2. 
Criterion Cl strictly includes criterion c2, denoted C l ~  c2, if and 
only if cl includes c2, and for some def/use graph G there is a set 
of complete paths of G that satisfies c2 but not cl. Note that this 
is clearly a transitive relation. We say that criteria ct and c2 are 
ineomparable if neither cl includes c2 nor c2 includes cl. 

We can assume that all def/use graphs contain more than 
one node. Single-node graphs have only one path and thus any of 
the criteria would select that path. Furthermore we may assume 
that all def/use graphs have more than two nodes and at least two 
labelled edges. This follows immediately from our definition of 
block, and the requirement that all transfer statements be 
effective. 

all-paths 

all-du-paths 

,I, 
all-uses 

a,,-c uses, r '  all-p-uses/ 
some-p-uses some-c-uses 

~ all.defs ~ lAP 

all-p-uses 

all-edges 

1 
all-nodes 

Theorem: 

The family of criteria is partially ordered by strict 
inclusion as shown in figure 3. Furthermore, criterion 
ci strictly includes criterion cj if and only if it is 
explicitly shown to be so in figure 3 or follows from the 
transitivity of the relationship. 

A proof of this theorem is contained in [17]. 

Analysis of the Criteria 

The criteria all-nodes (statement coverage) and all-edges 
(branch coverage) are often used in program testing despite the 
fact that they are extremely weak criteria. Our search for stronger 
criteria that make use of data flow information led us at first to 
all-defs. Our assumption is that every definition in a program was 
included by the programmer because it would eventually be used 
somewhere, and, thus, a well-tested program should test all 
definitions. However, we rejected all-defs as an adequate criterion 
since it does not include all-edges. In [15] errors are separated into 
domain errors, which occur when an incorrect path is chosen due 
to a control flow error, and computation errors, which occur when 
a correct path is chosen but an assignment statement contains an 
erroneous computation. All-defs can detect computation errors 
but not necessarily domain errors, while all-edges can detect 
domain errors but not necessarily computation errors. In looking 
for criteria that can detect both types of errors, we separated uses 
of variables into p-uses and c-uses. All-p-uses is our first data flow 
analysis criterion which includes all-edges, but it, too, primarily 
detects domain errors. It is stronger than all-edges since it 
requires a path from every definition of a variable to every possible 
p-use of that variable, while all-edges merely requires that there be 
some path that includes that p-use. Since the value of a variable 
contained in a predicate may have been defined in one of several 
places, it is clear that all-p-uses can uncover more errors than all- 
edges. The criterion all-p-uses/some-c-uses is the weakest of our 
criteria that includes both all-defs and all-edges. We are 
guaranteed that testing according to this criterion exercises every 
edge, and every computation. 

Consider the program of figure 4, which is a translation into 
our programming language of the Wensleysqroot program 
presented in [7] to compute +x/P, 0~<P< 1, to accuracy e, 0<e~<l.  
The program contains an error; statements 11 and 12 should be 
interchanged. The set of paths I(1,6), (1,2,3,4,2,3,5,2,7)} satisfies 
all-edges, but would not detect the error. As stated in [7], "a 
looping factor of two is required to derive test data that reveals the 
bug," that is, the tester must specify that some path containing at 
least two executions of the loop be tested. In fact, a looping factor 
of two or more may not suffice. The problem is that the definition 
of c in node 5 is never used unless the set of paths includes a 
definition-clear path wrt c from node 5 to node 3, and thus the 
error cannot be detected unless the path (5,2,3) is included. The 
all-defs criterion, however, does require that all definitions be 
used, and thus any set of paths selected according to this criterion 
would have to include (5,2,3). The set of paths 
{(1,2,3,5,2,3,5,2,7), (1,2,3,4,2,3,4,2,7)} would detect the error; 
however node 6 and edge (1,6) would not be tested. All-p-uses is 
not adequate to find the error either. {(1,6), (1,2,7), (1,2,3,5,2,7), 
(1,2,3,4,2,3,4,2,7)} satisfies all-p-uses without including (5,2,3). 
However, since the program contains no p-uses of the definitions 
of c in nodes 4 and 5, all-p-uses/some-c-uses does require that the 
paths (5,2,3) and (4,2,3) be included. 

figure 3 

276 



1. start 
2. read p,e 
3. d : = l  
4. x :=0  
5. c : = 2 x p  
6. i f c ~ 2  then goto 18 
7. if d ~ e  then goto 16 
8. d :=d /2  
9. t : = c - ( 2 x x + d )  

10. if t < 0  then goto 14 
11. x : = x + d  
12. c : = 2 x ( c - ( 2 × x + d ) )  
13. goto 7 
14. c :=2×c  
15. goto 7 
16. print x 
17. stop 
18. print 'error'  
19. stop 

read p,e 

T 1 

p r i n t  ~k 
'error'  

print x ~dJ ~ t : . . s d / ( 2 2  x x + d ) ~ ~  

figure 4 

Since the value of a variable used in a c-use may have been 
defined in one of several places, all-c-uses/some-p-uses is more 
likely to find computation errors than all-p-uses/some-c-uses. In 
particular, all-c-uses/some p-uses requires paths between every 
definition and every possible c-use of that definition. For figure 4, 
this means that any set of paths chosen according to 
all-c-uses/some-p-uses must include the paths (4,2,3,4), (4,2,3,5), 
(5,2,3,4) and (5,2,3,5). However, this criterion does not include 
all-edges either. For example, {(1,2,3,5,2,3,5,2,7), 
(1,2,3,4,2,3,5,2,7,), (1,2,3,4,2,3,4,2,7), (1,2,3,5,2,3,4,2,7)} 
satisfies all-c-uses/some-p-uses, but does not include edge (1,6). 
Furthermore, it does not include path (1,2,7), which would be 
executed if the input data were incorrect and e > l .  Since the 
program does check for p < l ,  it may very well be an error that it 
does not explicitly check for e ~ l .  This error would be detected 
by all-p-uses/some-c-uses, however, since it does require that the 
path (1,2,7) be included. 

The criterion all-uses, which includes both 
all-p-uses/some-c-uses and all-c-uses/some-p-uses, can detect both 
types of errors. This criterion is similar to required element 

testing [16]. One set of paths which satisfies the all-uses criterion 
for figure 4 is {(1,6), (1,2,3,5,2,3,5,2,7), (1,2,7), 
(1,2,3,4,2,3,5,2,7), (1,2,3,4,2,3,4,2,7), (1,2,3,5,2,3,4,2,7)}. 
Notice that any set of paths which satisfies this criterion must 
contain the paths (1,6), (1,2,7), and all of the combinations of 
predicates represented by the paths (4,2,3,4), (4,2,3,5), (5,2,3,4) 
and (5,2,3,5). However, for some programs, this criterion may 
not test all possible combinations of predicates, as can be seen in 
figure 5. 

ad x 

"qL 
y:=0 ~ ~ y : = 2  

M. 

print code 

figure 5 

{(1,2,4,5,7), (1,3,4,6,7)} satisfies all-uses, but it does not include 
the paths (1,2,4,6,7) and (1,3,4,5,7). We therefore defined the 
all-du-paths criterion. 

Conclusion and Future Work 

The data flow criteria that we have defined can be used to 
bridge the gap between the requirement that every branch be 
traversed and the requirement that every path be traversed. Our 
criteria focus on the interaction of portions of the program linked 
by the flow of data rather than solely by the flow of control. 
Research is currently underway to determine the relative costs of 
the criteria in terms of the number of test cases required to satisfy 
them, and to more precisely characterize the types of errors 
detectable by each. We envision a tester being able to select a 
particular criterion by determining whether the likely payoff in 
terms of errors detectable is worth the added cost in terms of 
additional tests necessary. 
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