
An Information Flow Model of Fault Detection

Margaret. C. Thompson’

Debra J. Richardson

Lori A. Clarke*

*Department of Computer Science

University of Massachusetts

Amherst, MA 01003

Abstract

RELAY is a model of how a fault causes a failure on

execution of some test datum. This process begins with

introduction of an original state potential failure at a

fault location and continues as the potential failure(s)

transfers to output. Here we describe the second stage of

this process, transfer of an incorrect intermediate state

from a faulty statement to output.

Transfer occurs along information flow chains, where

each link in the chain involves data dependence trans-

fer and/or control dependence transfer. RELAY mod-

els concurrent transfer along multiple information flow

chains with transfer sets, which identify possible interac-

tion bet ween potential failures, and with transfer routes,

which identify actual interactions. Transfer sets, trans-

fer routes, and control dependence transfer are unique

to the RELAY model.

The model demonstrates that the process of poten-

tial failure transfer is extremely complex and full anal-

ysis of real programs may not be practical. Nonethe-

less, RELAY provides insight into testing and fault de-

tection and suggests an approach to fault-based testing

and analysis that may be warranted for critical systems

soft ware.

This material is based upon work sponsored by the Defense

Advanced Research Projects Agency under Grants # h4DA972-

91-J-1oo9 and # MDA972-91-J-1012. The content does not nec-

essarily reflect the position or the policy of the U.S. Government,

and no official endorsement should be inferred.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

titla of the publication and its date appear, and notice is givan

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to rapublish, raquires a fee

and/or specific permission.

ACM4SSTA’93-6/93 /Cambridge, MA, USA

o 1993 ACM 0-89791 -608 -5193 /000610182 . ..$1 .50

t Department of Information

and Computer Science

University of California

Irvine, CA 92717

1 Introduction

Software testing is concerned with the selection of

test data to produce incorrect output or “failures”.

When a program produces a failure for some test ex-

ecution, one knows the program contains at least one

mistake or “fault”. When a program produces correct

output for all test executions, one hopes to have selected

the test data so as to gain some confidence in the cor-

rectness of the program. Unfortunately, it is possible

for faulty code to be executed but not cause a failure.

This phenomenon, known as coincidental correctness, is

very common. If it were not, a test data set that cov-

ers all statements in a program would be adequate to

detect most faults. To understand how to select test

data to avoid coincidental correctness, we must under-

stand how a fault may or may not cause a failure on

execution of some test datum. The authors have been

developing a model of faults and failures, called RELAY,

that describes this process.

The RELAY model builds upon the cre-

ation/propagation model developed by Morell [Mor84].

For a fault to cause a failure, execution on some test

datum causes intermediate incorrect values to be com-

puted that eventually result in a failure. In the RELAY

model, an intermediate incorrect value is termed a “po-

tential failure”, since the value may or may not cause

a failure. In previous work [RT88, RT93], we describe

how a potential failure “originates”, or is introduced,

in the smallest evaluable subexpression containing the

fault and then must “transfer” through all subsequent

operations in the statement that depend directly or in-

directly on the faulty value until the entire statement

evaluates to an incomect value. Transfer through oper-

ators within a statement is called ‘~computational trans-

fer”. Potential failures occur when a subexpression of a

statement or an entire statement evaluates to an incor-

rect value. In this paper, we are interested in tracking

“state potential failures” , which are potential failures

182

that cause the final value of a statement to be incor-

rect, thereby effecting the “state” of the program. A

variable whose value is incorrect is called a ‘potential

failure variable”. When a statement that contains a

fault evaluates to an incorrect value, an “originals tate

potential failure” is introduced. Ifthevalue of thevari-

able is output, it is called a ‘tfailure variable”.

In our current research, we have focused onhowan

original state potential failure introduced at some faulty

statement transfers along information flow to an out-

put statement and thus results in a failure. This pro-

cess, called ‘information flow transfer”, is composed of

the components of “data dependence transfer” and/or

“control dependence transfer”. Information flow trans-

fer can occur simultaneously along more than one chain

of information flow to the same output statement. This

phenomenon of multiple chain transfer is captured with

the concepts of “transfer sets” and “transfer routes”.

Transfer sets, transfer routes, and control dependence

transfer are unique to the RELAY model. The informa-

tion flow transfer aspects of the RELAY model are the

subject of this paper.

RELAY is related to fault-based test data selection

methods, which attempt to select test data that would

expose a set of faults if they existed in the code.

So-me fault-based testing methods focus on introduc-

ing an initial incorrect “state” at a faulty expression

[Fos80, How82, Bud83, Zei83]. This is sometimes called

“weak mutation testing” [How82, Bud83]. Weak mu-

tation testing, however, does not guarantee a failure

will result. Subsequent execution may mask the ef-

fect of incorrect values and produce correct final re-

sults. Several researchers have considered what must

happen to cause a failure after an initial incorrect state

has been introduced, thereby satisfying what is some-

times called “strong mutation testing” [DLS79, Bud83].

Morell describes a model of fault based testing that in-

troduces the ideas of “creating” an initial “error” for a

fault and “propagating” it to the output [Mor84]. Of-

futt describes a method, called constraint-based test-

ing [Off88], which defines three conditions: a “reacha-

bility” condition to force execution of the hypothetically

faulty statement, a “necessity” condition for introducing

an error, and a “sufficiency” condition for then produc-

ing a failure. Offutt’s reachability y and necessity condi-

tions are similar to Morell’s creation condition, and his

sufficiency condition is similar to the propagation con-

dition. Neither of these models fully captures how an

incorrect state once introduced remains incorrect until

a failure is revealed as an output value.

The RELAY model augments both the weak and

strong mutation testing approaches and related models.

RELAY formalizes the weak mutation testing method by

describing the conditions required to “guarantee” that a

fault in some subexpression of a statement produces an

incorrect stat e for the whole statement; this work is de-

scribed in [RT88, RT93]. RELAY extends Morell’s model

and Offutt’s definitions by identifying and explicitly de-

scribing the ways an incorrect state may transfer during

execution and how this transfer occurs along multiple

chains of information flow.

Throughout this paper, we illustrate the components

of the model with examples. To simplify and clearly

present the ideas, we use what are obviously trivial

modules and faults. As is clear from this exploration

of information flow transfer on just simple modules, the

process of potential failure transfer is extremely complex

and full analysis of real programs may not generally be

practical. Nonetheless, RELAY provides insight into the

difficulty of guaranteeing fault detection. This insight

is imperative to understanding what fault detection ca-

pabilities are lost by methods that do not consider fully

the complexity of information flow transfer. Further-

more, alt bough computationally expensive, RELAY sug-

gests an approach to fault-based testing and analysis

that may be warranted for critical systems software.

Such an application is outlined here. We have also found

that RELAY provides a basis for evaluating the transfer

capabilities of fault-based testing approaches as well as

highlighting areas requiring empirical study. This lat-

ter application is beyond the scope of this paper and is

discussed elsewhere [TRC92, Tho91a].

This paper is organized as follows. Section 2 defines

some related terminology and outlines the underlying

assumptions of the model along with some additional

simplifying assumptions for this presentation. Section 3

discusses the components of information flow transfer

and how these components fit together in the model.

Section 4 discusses one application of the model, test-

ing and analysis of critical software syst ems. Section 5

summarizes the major contributions of RELAY and con-

cludes with research directions suggested by this work.

2 Terminology and Assumptions

2.1 Terminology

We consider the analysis of a module, where a module

is a procedure or function with a single entry point.

A module, M, is represented by a control pow gmaph,

GM, which is a directed graph (N, E), where N is a

(finite) set of nodes and E ~ N x N is the set of edges.

Each node in N represents a simple statement or the

predicate of a conditional statement in M. For each

pair of distinct nodes m and n in N where control may

pass directly from the statement represented by m to

that represented by n there is an edge (m, n) in E. A

node with more than a single successor node is called a

bTanching node.

183

A path in a control flow graph GM = (N, E)

is a finite, possibly empty, sequence of nodes p =

(n,, rlz,..., n,p,) 1 such that for all i, 1 < i < \pl,

(ni, ni+l) E E. A path p may be executed on some

input z 2. A state is a vector of values for all variables

after execution of path p on input z. If the last node in

p is a branching node, then the state includes a dummy

variable BP thatholds the value for the branch predi-

cate associated with this node.

RELAY uses information derived from program de-

pendence , which are syntactic relationships between

nodes. Program dependence capture potential flow

of information between nodes and include both con-

trol flow and data flow information. The definitions

presented here are informal. See [FOW87, PC90] for a

more complete discussion of program dependence.

Let V be a variable in a module M. A definition of

V is associated with each node n in GM that represents

a statement that assigns a value to V. A use of V

is associated with each node n in GM that represents

a statement that accesses the value of V. With each

node n in a control flow graph, we associate the set

defined(’ra), which is the set of all variables to which a

value is assigned by the statement represented by n, and

the set used(n), which is the set of all variables whose

value is referenced by the statement represented by n.

To simplify our discussion, we assume at each node there

is at most a single variable in defined(n). A definition

for V at node m reaches a node n if and only if there

is a path (m) - p - (n) 3 such that for all nodes 1 in p,

V @ defined(l) 4.

A node n is (diTectly) data dependent on a node m

if and only if there is a definition for V at node m that

reaches a use for V at node n. Since this is the only

data dependence relationship we use, we will refer to it

simply as ‘tdata dependence”. Consider the control flow

graph shown in Figure 1 5. Node 9 is data dependent

on node 2 because A is defined at node 2, used at node

9, and there is a path such that the definition of A at

node 2 reaches the use of A at node 9.

Information may also flow by one node controlling

execution of another. The immediate foTwmw’ domina-

toT of a (branching) node b is the node where all paths

leaving b first come together. A node n is (zndzrectly

strongly) control dependent on m if and only if there

1We denote the length of (the number of elements in) a se-

quence s by Isl.

‘The input c includes the values of all variab]es at the start of

execution of path p and any data input during execution of the

path.

s g . P represents the concatenation of path q with path p.
4For languages where a variable may be “undefined” at a node,

V must also not be undefined at any node n in p.

5 Nodes 2’ and 3’ are not part of the control flow graph and

are d]scuss.ed in subsequent sections.

3* E = G*H
I

2* A.= G-3*I
1

1 input G,H.I 1

l?. A := G+H I

T w

v

F

1’
6 B.= .4**G+I

1
8 B = A*G+I

w w
1

Figure 1: Example Module

exists a path from m to n that does not include the im-

mediate forward dominator of m. Intuitively, this rela-

tionship characterizes the nodes that are in the “body”

of a structured branching construct. Since this is the

only control dependence relationship we use, we refer to

it as ~tcontrol dependence”. In Figure 1, nodes 6, 7, 8

and 9 are control dependent on node 5.

An information jlow chain is a sequence of nodes

such that each node in the chain is either control de-

pendent or data dependent on the previous node in the

chain. We represent an information flow chain X in a

control flow graph GM = (N, E) as a sequence of tuples

(*, dbnl), (u2, ~2, ~2), (u,xl, dlxl, nlxl), where 1X1 is

the number of tuples in the chain and Vi, 1 < i ~

1X1, ni E N and ~ E defined, and ‘dk, 1< k <

1X1, W ~ Wd(nk), w = dk_~, and n~ is either con-

trol dependent or data dependent on nk _ ~. At the first

node in a chain, the symbol ‘*’ is used in place of the

used variable. For branching nodes, the dummy vari-

able BP, which represents the branch predicate, is used

in place of the defined variable. For a tuple that rep-

resents control dependence, BP is used in place of the

used variable. For nodes where a value is communicated

to the external environment, the symbol ‘out’ is used in

place or the defined variable. Note that due to loops

a node could appear more than once in an information

flow chain and would be distinguished by a subscript.

In Figure 1, one information flow chain from node 3 to

node 11 is (*, E,3), (E, F,4), (17,13 P,5), (BP, B, 6),

(B, D, lo), (D, out, 11).

2.2 Model Assumptions

Our model relies on the “competent programmer” hy-

pothesis [ABD+ 79, BDLS78], which says that the mod-

184

ule being tested differs horn the correct module by some

small set of faults. Although the concept of transferring

potential failures along information flow can be applied

to faults that affect larger portions of code, the faults

considered in this presentation are contained within a

single node in a control flow graph. Further, the faults

we consider in this presentation are restricted to those

that do not change the control flow graph and do not

change the set defined(n) for any node. This last re-

quirement disallows changes that alter the information

flow from the faulty node and thus the transfer require-

ments. This restriction, however, may be relaxed with

additional information flow analysis that takes into ac-

count the difference in information flow introduced by

the fault.

We also assume there is either a single fault in the

module or that multiple faults do not mask each other.

Two faults mask each other if a test datum that would

have caused a failure for one of the faults occurring

alone, fails to cause a failure for the module contain-

ing both faults. This assumption allows us to consider

faults one at a time. The model allows evaluation and

possible relaxation of this assumption. Such an evalua-

tion is shown in [TRC92, Tho91a].

3 Information Flow Tkansfer

The two components of information flow transfer are

“data dependence transfer” and “control dependence

transfer”. Informally, data dependence transfer occurs

when the use of a potential failure variable at some node

results in an incorrect value being computed at that

node. Control dependence transfer occurs when the in-

correct selection of a path results in an incorrect value

being assigned to a variable computed along the path.

To illustrate the components of information flow

transfer, we examine several test data for the module

in Figure 1 and see how potential failures do and do not

transfer. Table 1 lists five test data along with partial

execution traces. Suppose that the module contains a

fault and node 3 should be E := G * H. That is, the ad-

dition operator should be multiplication. This correct

node is labeled 31 in the figure. For each test datum,

there are two lines in the table. The first line for a test

datum records the variable values on execution of the

faulty module, while the second line records the values

for the correct module. When the modules execute dif-

ferent paths, whereby a variable is defined at diiferent

nodes, the node where the value is assigned is shown

in parentheses. For all test data in this set, an origi-

nal state potential failure is introduced, since E has an

incorrect value after execution of node 3.

Consider test datum 1. At node 4 where E is refer-

enced, we see that the incorrect value for E is masked

out by multiplication, and thus F has the same value

in both the correct and the incorrect module. Although

node 4 is data dependent on the (incorrect) value held

in E, data dependence transfer does not occur. Note

that E is the only variable that holds an incorrect value

at this point and is not referenced at any subsequent

nodes; t bus, no failure results for this test datum.

For test datum 2, execution of node 4 assigns an in-

correct value to F; thus, data dependence transfer does

occur. F is used at node 5, where the branch predi-

cate evaluates to False in both the correct and faulty

modules. Thus, data dependence transfer fails, and the

same branch is selected in both the correct and faulty

modules. Since there are no subsequent uses of either

E or F, which are the only variables with faulty values,

no failure results.

For test datum 3, data dependence transfer succeeds

from E to F at node 4 and from F to BP at node 5;

thus, an incorrect branch is selected. Since nodes 6,

7, 8, and 9 are control dependent on node 5, we con-

sider whether a potential failure transfers through this

incorrect branch selection. After an incorrect branch

is selected, transfer occurs when a value is assigned to

some variable that is dktinct from that which would

have been assigned along the correctly selected branch.

In this case, one or both of B or C would need to be

assigned an incorrect value. For this test datum, how-

ever, both B and C are assigned the same value on the

incorrectly selected branch as on the correctly selected

branch, which masks out the effect of selecting the in-

correct branch. Thus, control dependence transfer does

not occur.

Consider test datum 4, for which data dependence

transfer occurs at nodes 4 and 5, and control depen-

dence transfer to B fails at node 6, Control dependence

transfer to C does occur at node 7, however, since C is

assigned a different value at node 7 on the incorrectly

selected branch from that assigned at node 9 on the cor-

rectly selected branch. C is used at node 10, where D is

assigned different values in the correct and faulty mod-

ules, thus data dependence transfer occurs. An incor-

rect value is output at node 11, thus revealing a failure

for execution of the module on test datum 4.

Test datum 5 is another case where a failure occurs.

For this test datum, data dependence transfer occurs

up to node 5. Control dependence transfer occurs both

to B at node 6 and to C at node 7. At node 10, data

dependence transfer occurs from both B and C to D,

and a failure is revealed at node 11.

These example test data illustrate two types of trans-

fer – data dependence transfer and control dependence

transfer. We define these concepts more completely as

follows.

185

test data evaluated variables

module G H I A E F F<G–6 B c D output

1 faulty 1 2 3 3 3 0 F 6 (8) 6 (9) 36 36

correct 1 2 3 3 2 0 F 6 (8) 6 (9) 36 36

2 faulty 1 2 4 3 3 3 F 7 (8) 6 (9) 42 42

correct 1 2 4 3 2 2 F 7 (8) 6 (9) 42 42

3 fault y 1 1 -1 2 2 -8 T 1 (6) 2 (7) 2 2

correct 1 1 -1 2 1 -4 F 1 (8) 2 (9) 2 2

4 faulty 1 2 1 3 3 -6 T 4 (6) 9 (7) 36 36

correct 1 2 1 3 2 -4 F 4 (8) 6 (9) 24 24

5 faulty 4 0 2 4 4 -4 T 258 (6) 1 (7) 258 258

correct 4 0 2 4 0 0 F 18 (8) o (9) o 0

Table 1: Test Data Set for Fault at Node 3

Data dependence tmnsfer occurs froma node

m that defines a potential failure variable V

to a node n that uses V when the value of V

defined at node m reaches node n, and the use

of V results in computing an incorrect value at

n.

Cont~ol dependence transfer occurs from a

branching node m to a node n that is con-

trol dependent on m when n is incorrectly se-

lected and defines an incorrect value for some

variable V that reaches the immediate forward

dominator of m.

For a fault to cause a failure, transfer must oc-

cur from an original state potential failure along some

information flow chain(s) to output. Transfer along

an information flow chain involves data dependence

transfer andior control dependence transfer at each

link in the chain. In the example, for test da-

tum 4, transfer occurs along the information flow chain

(*, E, 3), (E, 17,4), (17, BP,5), (BP, C, 7), (C, D, 10),

(D, out,ll).

In general, there may be several information flow

chains from a faulty node to a failure node. In the mod-

ule in Figure 1, there are four information flow chains

from node 3 to node 11, which appear in Table 2. Notice

that more than one information flow chain may be exe-

cuted by the same test datum. In this example, any test

datum that selects the True branch at node 5 executes

both chains i and ii. Execution of a chain, however,

does not imply that transfer occurs along it. In fact,

transfer may occur along some, all, or none of the exe-

cuted chains. For test datum 4, both chains i and ii are

executed, but transfer occurs only along chain ii. On

the other hand, for test datum 5, transfer occurs along

both chains i and ii.

3.1 Transfer Sets and Transfer Routes

To fully model the process of how a fault becomes

a failure, RELAY must model transfer of potential fail-

ures along multiple information chains. It is important

to determine all chains along which transfer may occur

and to distinguish between potential transfer and actual

transfer. To illustrat e this, let us consider the conditions

that would guarantee transfer of an originated potential

failure.

Consider first the simplest case where there is only a

single information flow chain along which transfer could

occur. In this case, there is at most one potential failure

variable used at each node in the chain, since a node us-

ing multiple potential failure variables indicates transfer

has occurred along a second information flow chain up

to that node. The condition to guarantee transfer along

a single chain from some faulty node to a particular fail-

ure node is the conjunction of the conditions to transfer

the potential failure within each node in the chain along

with the condition to execute the chain.

The necessary and sufficient condition to guarantee

transfer within a single node is called a computational

tmnsfer condition. See [RT88, Tho9 la] for a discus-

sion of computational transfer conditions and their con-

struction. Intuitively, we may argue by induction that

the condition formed from the conjunction of compu-

tational transfer conditions at each node in the chain

(along with the path condition to execute the chain)

is suflcient to transfer an original state potential fail-

ure along the entire single chain. When there is not

another chain that could be transferred along horn the

same faulty node to the same failure node, we may also

argue that the condition formed from the conjunction of

the computational transfer conditions at each node in

the chain (along with the path condition to execute the

chain) is necessary to transfer along this single chain.

186

information flow chains

i (*, E,3), (E, F,4), (F, BP, 5), (BP, B,6), (B, D,1O), (D, orJt, 11)

;;. (*, E,3), (E, F,4), (F, BP, 5), (BP, C,7), (C, D,KJ), (D, out,ll)

; (*, E,3), (E, F,4), (F, BP,5), (BP, B,8), (B, D,1o), (D, out,ll)

(*, E,3), (E, F,4), (F, BP,5), (BP, C,9), (C, D,1O), (D, out,ll)

Table 2: Information Flow Chains from Node 3 to Node 11

Thus, when there is a single chain, the conjunction of

the computational transfer conditions is both necessary

and sufficient to transfer along the entire chain,

When more than one chain exists along the same

path, the conditions to guarantee transfer for informa-

tion flow chains are more complicated. Consider again

the module shown in Figure 1, and suppose that node

2 is faulty and should be A := G – 3 * 16. This correct

node is labeled 2’ in the figure. From node 2 to node 11,

there are four information flow chains, which appear in

Table 3. If we construct the condition to transfer along

a chain as described above – that is, as if it were the only

chain and thus without taking into consideration other

chains that might be transferred along concurrently –

we find that this approach is inadequate. Consider the

condition to transfer along chain i. To transfer at node

8 from A to B, we must guarantee that G # O. To

then transfer horn B to D at node 10, we must guar-

antee that C # O. The condition that should guarantee

transfer along this chain is the conjunction of these two

conditions along with a path condition to execute the

chain:

G # O (at node 8) and C # O (at node 10)

and F < G – 6 = False (at node 5).

Similarly, we could construct the conditions that should

guarantee transfer along chain ii:

H # O (at node 9) and B # O (at node 10)

and F < G – 6 = False (at node 5).

Both test data in Table 4 introduce an original state

potential failure for this fault. Test datum 1 satisfies

the “transfer” conditions derived above for both chains

but fails to reveal a failure. Thus, the condition is not

sufficient to transfer for either chain, nor are the con-

ditions for the two chains together sufficient. On the

other hand, test datum 2 does not satisfy the transfer

condition for either chain but does reveal a failure; thus,

the conditions for the chains are also not necessary to

transfer.

6Node 3 now is assumed correct for this example.

From this example, we see the simple approach de-

scribed above, which works when there is only one chain

along which transfer could occur, is inadequate in the

more general cent ext. This is because at nodes where

more than one potential failure variable are used, the

computational transfer condition must take into account

all potential failure variables. Otherwise, when com-

bined, two or more potential failure variables may “in-

teract” and mask out all the potential failures referenced

at the node. Thus, to determine the necessary and suf-

ficient conditions to transfer a potential failure and to

fully model transfer behavior, we must take into consid-

eration all chains transferred along as well as know on

which chains transfer act ually occurs.

A “transfer set” defines the set of chains that may be

executed together. It is possible, however, that while

a test datum executes all chains in a transfer set, not

all chains are transferred along. This happens when

transfer fails at some nodes in a chain. Thus, we not

only need to know which chains are actually transferred

along, but more precisely, at which tuples in the chains

transfer occurs. This is defined by “transfer routes”.

More completely, we define these concepts below.

A transfer set is a collection of information flow

chains with the following properties:

1.

2.

3.

4.

all chains start at the same faulty node;

all chains end at the same failure node

and with output of the same designated

variable;

there is a set of paths such that each path

executes all the chains in the transfer set;

all chains executed by such a set of paths

are included in the transfer set.

Given a transfer set TS, let Nodes(TS) be the set of

nodes that are in tuples in the information flow chains

in TS. Nodes that could appear more than once in an

information flow chain are disambiguated by a subscript

indicating the visit to the node on a path covering the

chain.

A transfer route tT of a transfer set TS is a

subset of Nodes(TS) such that:

187

Table 3: Information Flow Chains born Node 2 to Node 11

1.

2.

Given a

II test data II evaluated variables

module

&

2 faulty]111-1-11 -l-l-l - I -,-, -1-, I o 0
correct 1 -Ilo]ll lolo F 1(8) -l(9) \ -1 -1

G H I A E F F<G–6 B c L?

1 2 2 3 3 -3 F 5(8) 6(9) 30
1 2 2 -5 3 -3 F -3(8) -lo(9) 30

.1 (1 n 0 n P n[s) n(~)

Table 4: Test Data

all nodes for at least one information flow

chain in TS are in tr;

for every node in tr,there exists a sub-

chain from the faulty node to that node

such that all nodes in the subchain are

also in tr.

transfer route tr, a node n E tr is called a

transferring node. A node n G {Node s(TS) – tT} is

called a non-transferring node.

There may be several transfer routes for a particular

transfer set. A particular test datum, however, satisfies

at most one transfer route of a transfer set. At transfer-

ring nodes in the transfer route, data dependence t rans-

fer and/or control dependence transfer occurs. At non-

transferring nodes in the transfer route, transfer fails or

has failed at previous points such that the node refer-

ences no potential failure variables.

Consider again the example module shown in Fig-

ure 1. As noted in the previous subsection, if we con-

sider a fault at node 2, there are four information flow

chains to the output statement at node 11, shown in

Table 3. For these four information flaw chains, there

are two transfer sets. One transfer set 27.5x consists of

information flow chains (i,ii), executed by test data that

select the false branch. The other transfer set TSY con-

sists of chains (iii,iv), executed by test data that select

the true branch. For transfer set TSX consisting of the

information flow chains (i,ii), there are three different

transfer routes, which are provided in Table 5. Because

a transfer route is associated with a transfer set, the ac-

tual potential failure variable at each node and sequence

of transfers is implicit in the set of nodes. This infor-

mation has been made explicit in the second column of

Set for Fault at Node 2

Table 5 to assist in the discussion. The second test da-

tum in Table 4 executes the first of the transfer routes

enumerated above.

To represent transfer routes more concisely, we will

use a shortened notation and write a transfer route as a

list of tuples of the form (Vl +V2 +...+Vk, W, n) for trans-

ferring nodes and of the form -(V1 + VZ + ... + Vk, W, n)

for non-transferring nodes, where ~ are the potential

failure variables that are used at node n and W is the

variable to which transfer occurs (or does not occur) at

node n. Not included in the list of non-transferring tu-

ples are non-transferring nodes that do not reference any

potential failure variables because transfer has failed

along all chains up to that node. The transfer routes

written in this notation are shown in column three of

Table 5.

At nodes where two or more variables used at the

node are pot ential failure variables, we say that ‘Lint er-

action” occurs. A transfer set identifies the nodes where

interact ions pot entially occur. A transfer route identi-

fies the nodes where actual interactions occur. For t~l

in Table 5, interaction occurs at node 10 where 1? and

C are both potential failure variables. No interactions

occur for transfer routes trz and tT3.In this example,

interaction involves only data dependence, alt bough in-

teraction may also occur with control dependence and

data dependence in combination.

It is important for us to note here a subtlety of trans-

fer routes. Transfer routes are defined at the granularity y

of whole nodes rather than at the level of computations

wit hin a node. To elucidate this point, consider a state-

ment containing a computation such as

A:=(B*C)+(D*E),

188

rout e explicit transfers shortened notation

trl = {8,9,10,11} transfer from A to B at node 8, (A, B,8);
transfer from A to C at node 9, (A, C, 9);

transfer from Band/or Cto Dat node 10, (B+ C,D, 10);

transfer from D to output at node 11 (D,out,ll)

trz = {8, 10, 11} transfer from A to B at node 8, (A, B,8);
do not transfer from A to C at node 9, 1(A, C,9);

transfer from B to D at node 10, (B, D,1o);

transfer from D to output at node 11 (D,out,ll)

trs = {9, 10, 11} do not transfer from A to B at node 8, =(A, B,8);

transfer from A to C at node 9, (A, C, 9);

transfer from C to D at node 10, (C, D,1O);

transfer from D to output at node 11 (D, out,ll)

Table 5: Transfer Routes for Transfer Set Z’SX of Example

and suppose that both B and D are potential failure 2. Transfer of a state potential failure along one or

variables at a node representing this statement. This

node is either transferring, in which case either B or D

transfers or both transfer, or it is non-transferring, in

which case, neither transfers. The different possibilities

of transfer within the node are explicitly captured by the

computational transfer conditions, not by the transfer

route. This convention simplifies the transfer routes,

decreases the number of routes for each transfer set,

and allows transfer routes to be determined from an

information flow graph.

It is beyond the scope of this paper to present the

algorithms for identifying transfer sets and transfer

routes; they may be found in [Tho9 lb]. The general

approach for identifying transfer sets is to generate all

information flow chains from a faulty node to a failure

node and then determine the sets of chains with consis-

tent path conditions. Identification of transfer routes in-

volves a search on a graphical representation of a trans-

fer set to generate legal combinations of transferring and

non-transferring nodes. Identification of these struc-

tures is relatively straightforward when the code con-

tains no loops. When loops are added, however, there

may be a potentially infinite number of information flow

chains and in turn a potentially infinite number of trans-

fer sets. To identify transfer sets and transfer routes in

code involving loops, additional loop analysis must be

performed. One approach to this loop analysis is also

described in [Tho91b].

3.2 Summary of the Relay Model

In summary, RELAY models how a fault causes a fail-

ure on execution of some test datum as follows:

1. Introduction of an original state potential failure at

the faulty node;

189

more information flow chains:

(a)

(b)

(c)

(d)

(e)

a transfer set is the set of information flow

chains that may be transferred along concur-

rent ly;

a transfer route is a subset of nodes in a trans-

fer set at which actual transfer occurs;

data dependence transfer and/or control

dependence transfer occurs at transferring

nodes;

transfer does not occur at non-transferring

nodes;

interaction occurs at nodes where multiple po-

tent ial failure variables are used.

4 Applying Information Flow Transfer

4.1 Failure Condition

The RELAY model describes the information required

to originate and transfer a potential failure from fault to

failure. This information for a particular fault may be

captured in a failure condition, which guarantees a fault

originates a potential failure that transfers to produce

incorrect output. To develop such conditions for use in

testing and analysis, we hypothesize the existence of a

fault and then derive the failure condition for the fault.

The formula for a failure condition is summarized in

Figure 2. The failure condition is the conjunction of the

original state potential failure condition, the derivation

of which is presented in [RT88, Tho9 la], and the condi-

tion to guarantee transfer, the construction of which is

demonstrated here. For a particular fault, the meaning

of the failure condition may be summarized as follows:

●

●

e

Incorrect execution on a test datum that satisfies

such a failure condition indicates that the module

contains the fault;

Correct execution on a test datum that satisfies

such a failure condition implies that the module

does not contain the hypothetical fault for any in-

put;

If known to be unsatisfiable, this failure condition

means that the module being tested is equivalent

to the hypothetically correct module, and the hy-

pothetical fault is not a fault.

Note that if the condition cannot be solved because

of the complexity of the condition, then we can draw no

conclusion about the existence or absence of the hypo-

thetical fault.

4.2 An Example

Here we show the transfer set condition for TSX in

our example with node 2 as hypothetically faulty. The

conditions are written in terms of a constraint on one

or more variables at a particular node – e.g., (G # 1)

at node 4. To actually find test data to satisfy this con-

dition, symbolic evaluation must be performed to gen-

erate constraints in terms of input values. We simplify

our presentation below by skipping this step.

When constructing a failure condition, we must be

concerned with several problems. In addition to the

general ditliculty of selecting test data to satisfy a par-

ticular set of conditions, the conditions themselves may

be fault dependent and thus require reconstruction for

each fault being considered. Fortunately, in some cases

fault independent conditions may exist while at other

times sufficient (but not necessary) conditions can be

constructed. Fault independence and dependence of the

conditions is discussed more fully in [TRC92, Tho9 la].

The transfer set condition for TSX is derived in the

following 4 steps.

Step 1: Construct computational transfer conditions

(Ctc) 7

ctc(A, B, 8) = (G # O) at node 8

ctc(A, C, 9) = (H # O) at node 9

ctc(B, D, 10) = (C # O) at node 10

ctc(C, D, 10) = (.B # O) at node 10

ctc(B + C, D, 10) = (1? * C) # (B’ * C’) at node 10

ctc(D, out, 11) = (i%ue) at node 11

7 B ~ and CJ ~epre~=nt the values Of B and C, respcctivelyl in

the hypothetically correct module.

failure corzdition(fault j) E

original 9tute potential jailure condition(~)

A (V transfer set condition(~s~))

TSI(f)

transfer set condition(TSr) ~

path condition(TS1)

A(v hm9jer route conddion(hk))

t?. kCNmie8(TS1)

h’fZn9fer ~Ute .Ondition(trk) ~

(A
computational transfer C0nO!iti072(~i))

n;ctransfeming nodes (t.k)

A(A Tcomputational tran9fer cOnditiOn(nj))

q cnon-transferring nodes (trk)

Figure 2: Formula for Failure Condition

Step 2: Construct transfer route condition (t~c)a

tTC(tTI) = ctc(A, B, 8) A ctc(A, C, 9)A

ctc(B + C, D, 10) A ck(D, out, 11)

=(G#O)A(H#O) A((13*C)#(B*C7’))

trc(t~2) = ctc(A, B, 8) A ~ctc(A, C, 9) A ctc(l?, D, 10)

Actc(D, out,11)

=(G#O)A(H=O)A(C#O)

trc(tr~) = lcic(A, B, 8) A ctc(A, C, 9) A ctc(c, D, 10)

Actc(D, OUt, 11)

=(G= O) A(H#O)A(B#O)

Step 3: Construct transfer set path condition g

PC(TS’X) = 7(F < G – 6) (at node 5)

=(F>G-6)

Step 4: Construct transfer set condition (tsc)

isc(TSx) = pc(TSx) A (t~c(t~l) V trc(tr2) V t~c(tr~))

=(F> G–6)A

(((G;0) A (fi # 0) A ((B * C) # (H * C’))
V((G#O) A(H=O)A(C #O))

v(G=OA (H#O)A (B #O)))

We may similarly derive the transfer set condition

‘dropping the condition true and the node references

9The transfer set path condition guarantees execution of all

information flow chains in the set.

190

for TSY. As summarized in Figure 2, the disjunction of

tsc(Z’Sx) and tsc(TSY) when conjoined with the origi-

nal state potential failure condition (which includes the

path condition to reach the fault) for some hypothetical

fault at node 2 yields a failure condition.

4.3 Applying Failure Conditions

Using R.ELAY as a testing and analysis method is

computationally expensive and thus applying it to a

large set of faults at all locations in a program is im-

practical. For critical software systems, however, where

some failures may be exceptionally costly or intolera-

ble, we can selectively apply a R.mAY-based testing ap-

proach by focusing the method on system components

that may affect critical aspects of the system behav-

ior, such as critical variables, statements, and mod-

ules. This information might be based on safety-critical

or mission-critical analyses (such as those proposed by

the British MOD Standard 0055 & 0056 [BMD91a,

BMD91b]) or software safety analysis [LH83]. Test-

ing approaches must determine and test for the poten-

tially catastrophic faults associated with these compo-

nents. For example, in an x-ray machine, the compo-

nent controlling the level of radiation requires particu-

lar scrutiny, and faults that could lead to lethal doses,

if possible, should be identified and analyzed.

Given an identified section of critical code, we then

construct transfer sets and transfer routes for this code

by program dependence analysis. Because construc-

tion requires analysis of only the dependence relations

between the statements, it is more feasible to analyze

transfer across modules, and we may potentially reuse

the analysis for several hypothetical faults. To support

testing and analysis of critical systems, we may use the

failure conditions in several ways. First, a failure con-

dition may be used to evaluate a previously selected

test data set for its fault detection capabilities. Second,

because a failure condition identifies and captures the

pot ential effects of a fault, we can use the condition to

assist us in reasoning about the system’s behavior. We

can analyze this failure condition and transfer route in-

formation to determine if a hypothetical fault or state

potential failure could lead to a critical failure. A fail-

ure condition leading to a critical failure is similar to

the “failure scenarios” constructed by software fault tree

analysis [LH83]. Third, we may use the failure condition

to direct selection of additional test data for execution.

5 Major Contributions and Summary

This paper presents the RELAY model of faults and

failures, focusing on transfer of an incorrect intermedi-

ate state, or potential failure, from a faulty statement to

out put. Transfer occurs along information flow chains,

where each link in the chain involves data dependence

transfer and/or control dependence transfer. RELAY

models the fact that multiple information flow chains

that may be concurrently transferred along with trans-

fer sets, which identify possible interaction between po-

tential failures. RELAY models actual interaction with

transfer routes. Transfer sets and transfer routes form

the framework that unifies the components oft ransfer.

While previous work in fault-based testing recog-

nized the two steps of introducing an incorrect state

and transferring an incorrect state to output, RELAY

fully describes the complexity of these steps. In partic-

ular, some previous research recognized data flow trans-

fer, but RELAY provides an in-depth investigation of the

role of control dependence transfer and of the interac-

tion between control dependence and data dependence

transfer. Moreover, while other research has only con-

sidered transfer along a particular path, RELAY con-

siders how transfer may occur concurrently along sev-

eral intersecting information flow chains, Interact ions

occur at these intersection points and may mask po-

tent ial failures. The RELAY model pulls together re-

search in fault-based testing, data flow path selection

[Nta81, Nta82, Nta84, LK83, CPRZ86, RW85], program

slices [Wei84], and program dependence analysis [P C90].

The RELAY model provides an interesting basis for

future work in software analysis and testing. Additional

research is needed in how the comprehensive transfer in-

formation provided by RELAY may be used in guiding

testing. Although we have hypothesized its applicability

to safety critical systems, in depth studies are needed.

Another area of future research is in empirical studies.

The rigor of the RELAY model has been beneficial in

demonstrating weaknesses in previous studies on fault

based testing approaches [TRC92, Tho91a]. Given the

insight of RELAY, we hope to investigate whether cer-

tain constructs in the code are more prone to coinciden-

tal correctness by looking at transfer through different

information flow constructs. Such studies should pro-

vide insight into how to handle dilferent types of code.

If such code is identified, then some partial information

flow transfer conditions through such code, resulting in

a mutation approach between strong and weak, known

as firm mutation testing [wH88], may prove sufficient

to achieve high fault detection.

References

[ABD+ 79] A.T. Acree, T. A. Budd, R.A. DeMdlo, R.J. Lip-

ton, and F.G. Sayward. Mutation analysis. Tech-

nical Report TR GIT- IC S-79/08, Georgia Insti-

tute of Technology, September 1979.

[BDLS78] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G.

Sayward. The design of a prototype mutation

191

[BMD91a]

[BMD91b]

[Bud83]

[CPRZ86]

[DLS79]

[Fos80]

[FOW87]

[How82]

[LH83]

[LK83]

[Mor84]

[Nta81]

[Nta82]

[Nta84]

system for program testing. In Proceedings iVCC,

1978.

The Procurement of Safety- L%tical Software in

Defence Equipment. British Mkistry of Defence,

Interim Defence Standard 00-55, Issue 1, April

1991.

Hazard Analysis and Safety Classification of the

Computer and Progmmmable Electronic System

elements of Defence Equipment. British Mh-&try

of Defence, Interim Defence Standard 00-56, Is-

sue 1, April 1991.

Timothy A. Budd. The portable mutation test-

ing suite. Technical Report TR 83-8, University

of Arizona, March 1983.

L.A. Clarke, A. Podgursky, D .J. I%hardson, and

S.J. Zeil. An investigation of data flow path

selection criteria. In Proceedings of the A Clf

SIGSOFT/ZEEE Work9hop on Software Te$ting,

pages 23–32, Banff, Canada, July 1986.

R.A. DeMlllo, R.J. Lipton, and F.G. Sayward.

Program mutation: A new approach to program

testing. In Info Tech State of the Art Report:

Software Testing, Vol. 2, pages 107-128, 1979.

Kenneth A. Foster. Error sensitive test case anal-

ysis (ESTCA). IEEE Transactions on Soflware

Engineering, SE-6(3):258-264, May 1980.

J. Ferrante, K.J. Ottenstein, and J.D. Warren.

The program dependence graph and its use in

optimization. ACM Transactions on Program-

ming Languages and Systems, 9(5):319–349, July

1987.

WilHam E. Howden. Weak mutation testing and

completeness of test sets. IEEE Transactions

on Software Engineering, SE-8(2):371-379, July

1982.

Nancy G. Leveson and Peter R. Harvey. An-

alyzing soft ware safety. IEEE Tramactiong on

Software Engineering, 9(5):569-579, September

1983.

Janusz W. Laskl and Bogdan Korel. A data flow

oriented program testing strategy. LEEE Tmns-

actions on Software Engineering, SE-9(3):347–

354, May 1983.

Larry J. MoreIl. A Theory of Errov-Based Test-
ing. PhD thesis, University of Maryland, April

1984.

Simeon C. Ntafos. On testing with required ele-

ments. In Proceedings of COMPSA C ’81, pages

132–139, November 1981.

Simeon C. Ntafos. On required element testing.

Technical Report 123, Computer Science Pro-

gram, University of Texas at Dallas, November

1982.

Simeon C. Ntafos. On required element test-

ing. IEEE Transactions on Software Engineer-

ing, SE 10(6) :795–803, November 1984.

[OfR38]

[PC90]

[FtT88]

[RT93]

[RW85]

[Tho91a]

[Tho91b]

[TRC92]

[Wei84]

[WH88]

[Zei83]

A. Jefferson Offutt. Automatic Test Data Gen-

eration. PhD thesis, Georgia Institute of Tech-

nology, August 1988.

H. Andy Podgurskl and Lori A. Clarke. A formal

model of program dependence and its implica-

tions for software testing, debugging, and main-

tenance. IEEE Tmnsactiona on Software Engi-

neering, 16(9):965–979, September 1990.

Debra J. Richardson and Margaret C. Thomp-

son. The relay model of error detection and

its application. In Proceedings of the Second

Workshop on Software Testing, Verification, and

Arzaly~i~, July 1988.

Debra J. Richardson and Margaret C. Thomp-

son. An analysis of test data selection criteria

using the relay model of faults and failures. to ap-

pear IEEE Transactions on Software Engineer-

ing, May 1993.

Sandra Rapps and Elaine J. Weyuker. Select-

ing software test data using data flow informat-

ion. IEEE Tmnsactions on Software Engineer-

ing, SE-11(4):367–375, April 1985.

Margaret C. Thompson. An Investigation of

Fault-Based Testing U9ing the RELAY Model.

PhD thesis, University of Massachusetts at

Amherst, May 1991.

Margaret C. Thompson. Single iteration chain

loop analysis and identification of transfer sets

and transfer routes for the RELAY model. Tech-

nical Report 91-22, Computer and Information

Science, University of Massachusetts, Amherst,

May 1991.

Margaret C. Thompson, Debra J. Richardson,

and Lori A. Clarke. Information flow transfer

in the RELAY model. Technical Report 92-62,

Computer Science, University of Massachusetts,

Amherst, August 1992.

Mark Weiser. Program slicing. IEEE Tmns-

actions on Software Engineering, SE-10(4), July

1984.

M.R. Woodward and K. Halewood. From weak

to strong, dead or alive? an analysis of some mu-

tation testing issues. In Proceedings of the Second

Workshop on Software Testing, Verification, and

Analyais, July 1988.

Steven J. ‘Zeil. Testing for perturbations of pro-

gram statements. IEEE Transactions on Soft-

ware Engineering, SE-9(3):335-346, May 1983.

192

