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Abs tra c t 

Program s l i c l ng  is a method used by experienc- 
ed computer programmers for  abstract ing from pro- 
grams. Star t ing from a subset o f  a program's be- 
havior, s l i c ing  reduces that  program to a minimal 
form which s t i l l  produces that  behavior. The 
reduced program, cal led a " s l i c e " ,  is an indepen- 
dent program guaranteed to f a i t h f u l l y  represent 
the o r ig ina l  program wi th in  the domain of the 
speci f ied subset of  behavior. 

Finding a s l ice  is in general unsolvable. A 
dataflow algor i thm is presented for  approximating 
s l ices when the behavior subset is speci f ied as 
the values of a set o f  variables at a statement. 
Experimental evidence is presented that these 
sl ices are used by programmers during debugging. 
Experience with two automatic s l i c i ng  tools is 
summarized. New measures of  program complexity 
are suggested based on the organizat ion o? a 
program's s l ices.  

KEYWORDS: debugging, program maintenance, so f t -  
ware tools,  program metrics, human factors,  data- 
flow analysis 

In t roduct ion 

A large con~puter program is ~ r e  eas i ly  con- 
structed, understood, and maintained when broken 
into smaller pieces. Several d i f f e r e n t  methods 
decompose programs during program design, such as 
informat ion hiding (Parnas ]972), data abstract ion 
(Liskov and Z i l l e s  1975), and HIPO ~Stay 1976). 
These methods are not mutal ly exclusive, but 
rather complement one another. Proposed here is 
another complementary method o f  program decomposi- 
t ion:  program s l i c i ng .  Unlike most other methods 
(but see Tarjan and Valdes, 1980), s l i c i ng  is 
applied to programs a f t e r  they are wr i t ten ,  and is 
therefore useful in n~intenance rather than design. 
Unlike design methodologies, working on actual 
program tex t  allows s l i c ing  to be speci f ied pre- 
c ise ly  and performed automat ica l ly .  

S l i c ing  star ts  with the observation that  
these are times when only a por t ion o f  a program's 
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behavior is o f  i n te res t .  For instance, during 
debugging a subset o f  Dehavior is being corrected, 
and in program modi f icat ion or maintenance a sub- 
set o f  behavior is being improved or replaced. In 
these cases, a programmer star ts from the program 
behavior and proceeds to f ind and modify the cor- 
responding portions o f  program code. Code not 
having to do with behavior o f  in te res t  is ignored. 
Gould and Dronkowski k19/4) report  programmers 
behaving this way during debugging, and a fur ther  
confirming experiment is presented below. 

A programmer n~in ta in ing a large,  unfami l iar  
program would almost have to use th is behavior- 
f i r s t  approach to the code. Understanding an en- 
t i r e  system to change only a small piece would 
take too much time. Since most program mainte- 
nance is done by persons other than the program 
designers, and since 67 percent o f  programming 
e f f o r t  goes in to maintenance (Zelkowitz, Shaw, 
and Gannon 1979), decomposing programs by behavior 
must be a common occurence. 

Automatic s l i c ing  requires that  behavior be 
specl f ied in a cer ta in  form. I f  the behavior o f  
i n te res t  can be expressed as the values of  some 
sets o f  var iables a t  some set oi ~ statements, then 
th is  spec i f i ca t ion  is said to be a ~ c r i t e -  
r ion.  Dataflow analysis (Hecht 1977]-can f]n-d a l l  
the program code which might have inf luenced the 
speci f ied behavior, and this code is cal led a 
s l i ce  of  the program. A s l i ce  is i t s e l f  an 
executable program, whose behavior must be i d e n t i -  
cal to the speci f ied subset of the o r ig ina l  pro- 
gram's behavior. 

Figure 1 gives examples o f  some s l i c i ng  c r i t e -  
r ia  and the i r  corresponding s l ices.  

There are usual ly many d i f f e r e n t  s l ices for  
a given program and s l i c ing  c r i t e r i o n ,  depending 
on how minimal a s l ice  is desired. The issue of 
min imal i ty  is discussed fu r ther  below. There is 
always at least  one s l i ce - - the  program i t s e l f .  
The in te res t ing  sl ices are the ones which, compar- 
ed to the o r ig ina l  program, are s i g n i f i c a n t l y  
smaller and simpler. 

The idea of i so la t i ng  port ions of programs 
according to t he i r  behavior has appeared previous- 
ly.  Schwartz (1971) hints at such a p o s s i b i l i t y  
for  a debugging system. Browne and Johnson (1978) 
describe a question-answerer for  Fortran programs 
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The or i  

Sl ice 

Examples o f  Slices 

ginal program: 
l BEGIN 
2 READ(X,Y) 
3 TUTAL := 0.0 
4 SUM := 0.0 
5 IF X ~ l  
6 THEN SUM := Y 
7 ELSE BEGIN 
8 READ(Z) 
9 TOTAL := X*Y 

lO END 
II  WRITE(TOTAL,SUM) 
12 END. 

on the value of Z at statement 12. 
BEGIN 
READ(X,Y) 
IF X < l 

THEN 
ELSE READ(Z) 

END. 

Sl ice on the value of X at statement 9. 
BEGIN 
REAB(X,Y) 
END. 

Sl ice on the value of TOTAL at statement 12. 
BEGIN 
READ(X,Y) 
TOTAL := 0 
IF X <-- l 

THEN 
ELSE TOTAL := X*Y 

END. 

Figure l 

which, through a succession of  questions, could be 
made to reveal the s l ices of a program although 
very slowly. Several on- l ine  debuggers permit a 
l im i ted  traceback of the locat ion of var iab le  
references (e.g. Aygun, 1973), and th is  informa- 
t ion is a kind of "dynamic s l i ce " .  

S l ic ing is a source code transformation of a 
program. Previous work in program transformation 
has concentrated on preserving program correctness 
while improving some desirable property of pro- 
grams. For instance, Baker (1977) and Ashcroft 
and Manna (1973) both are concerned with adding 
"good structure" to programs. Wegbreit (1976), 
Arsac (1979), Gerhart (1975), and Loveman (1977), 
are more or iented to improving a program's per for-  
mance. 

S l ic ing Algorithms 

This section more formal ly  discusses the 
ideas of a s l i c i ng  c r i t e r i o n  and a s l i c ing  algo- 
r i thm, using the reader's i n t u i t i v e  understanding 
of machine execution. Al l  proofs have been c a r r i -  
ed out in an abstract operat ional model (Weiser 
1979). 

This paper considers the s l i c ing  of block- 
structured, possibly recursive programs wr i t ten  in 
a Pascal - l ike language. Al l  var iables are assumed 
to be uniquely named, and a l l  procedures are 
assumed to be s ing le-ent ry ,  s ingle ex i t .  

The fo l lowing notat ion is used throughout th is 
paper. Due to typesett ing l i m i t a t i o n s ,  square 
brackets ( [ . . . ] )  are used to enclose superscripted 
and subscripted quant i t ies .  Set notat ion is ex- 
pressed as fo l lows.  Let A and B denote sets, l e t  
f and g be functions whose values are sets, and 
l e t  C(i) be a f i n i t e  fami ly  of sets indexed by i .  
Then: 

A union B denotes the set union of 
L and B. 

A in tersect  B denctes the set in tersec-  
t ion of A and B. 

f union g denotes the funct ion whose 
value is f (n)  union 
g(n) for  each n in the 
domain of  f and g, and 
is undefined elsewhere. 

UNION C(i) denotes the union of a l l  
C(i)  fo r  each i .  

A slicing_ c r i t e r i o n  for  a program speci f ies a 
window for  observing i t s  behavior. A window is 
speci f ied as a statement and a set of var iab les.  
The window al lows the observation of the values of 
the speci f ied var iables jus t  before executing the 
speci f ied statement. I f  the statement speci f ied by 
the s l i c ing  c r i t e r i o n  is executed several times 
while the program is running, then a sequence of 
var iab le  values w i l l  be observed. 

Iden t i f y ing  statements by numbers and va r i -  
ables by name, a s l i c ing  c r i t e r i o n  is a pai r  
< i , v > ,  where i is the number of the statement at  

which to observe and v is the set of var iab le  
values to be observed. 

There are two propert ies i n t u i t i v e l y  desirable 
in a s l ice .  F i rs t ,  the s l ice  must have been ob- 
tained from the o r ig ina l  program by statement dele- 
t ion .  Second, the behavior of the s l ice  must cor- 
respond to the behavior of the o r ig ina l  program as 
observed through the window of  the s l i c ing  c r i t e -  
r ion.  Both of these informal propert ies a l low 
several in te rp re ta t ions .  The i n te rp re ta t i on  used 
here is derived and j u s t i f i e d  in the next several 
paragraphs. 

The problem with obtain ing a s l i ce  by state- 
ment de le t ion is that the source code of a program 
may become ungrammatical. For instance, removing 
the THEN clause from an IF-THEN-ELSE statement 
leaves an ungrammatical fragment i f  the "nu l l "  
statement is not permitted between THEN and ELSE. 
Because of the i r  language dependence, deta i led 
considerat ion of these issues is beyond the scope 
of th is  paper. See Arsac (1979) for  some approach- 
es. Instead, a flowgraph w i l l  be used to represent 
a program, with each node in the graph correspond- 
ing to a single source language statement. The 
terms "node" and "statement" w i l l  be used i n t e r -  
changably. 

A flowgraph is a structure G = <N,E,nO>, where 
N is the set of nodes, E is a set of edges in NxN, 
and nO is the dist inguished i n i t i a l  node. I f  (n,m) 
is an edge in E then n is an immediate predecessor 
of  m, and m is an immediate successor of n. A path 
of length k from n to m is a set of nodes p(O),p(1), 
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. . . .  p(k) such that p(O) : n, p(k) = m, and ( p ( i ) ,  
p ( i + l ) ) i s i n E  fo r  a l l  i ,O < i < k - l .  There is  a 
path from nO to every othe~ note in N. A node n 
is nearer than a node m to some node q i f  the 
shortest path from n to q has length less than the 
shortest path from m to q. A node m is dominated 
by a node n i f  n is on every path from nO to m. 
An inverse dominator is a dominator on the f low- 
graph obtained by reversing the d i rec t ion  of  a l l  
edges and making the f ina l  node the i n i t i a l  node. 

Deleting statements in a f l o ~ r a p h  produces a 
meaningful new flowgraph so long as any group of 
statements deleted have only a single successor 
(see f igure  2). This r e s t r i c t i o n  ensures that no 
statement increases i t s  numberof immediate succes- 
sors as a resu l t  of  statement de le t ion .  The 
graph transformation fo l lowing statement de le t ion 
is  just :  Al l  predecessors of any member of a 
deleted group of statements have the deleted 
group's unique successor as the i r  new successor. 

I 

Group of statements with a single successor 

Nodes C,D, and E form a set with a single succes~ 
sor, F, not in the set. The flowgraph is shown 
before and after removing this set. 

Figure 2 
l i l  

The second desirable property of slices is 
that they duplicate the behavior observable 
through the window of the s l ic ing cr i ter ion.  This 
means observing original program and slice through 
the "same" window, and not being able to dist ingu- 
ish between them. But how can a s l ic ing cr i ter ion 
for one program (the or ig inal)  be used to specify 
a window for a d i f ferent  program (the slice)? A 
sl ic ing cr i ter ion has the form <i,v>. v can be 

used in both the sl ice and the original program, 
of course. However statement number " i "  may not 
even exist in the sl ice. Therefore, the window 
for observation of the sl ice is specified as 
<SUCC(i),v>. SUCC(i) is the nearest successor to 
" i "  in the original program which is also in the 
sl ice, or " i "  i t se l f  i f  present. I t  is easy to 
prove that SUCC(i) is unique. 

The program and i ts  slice now have correspond- 
ing windows for observing behavior. A reasonable 
requirement for a sl ice might be that the trajec- 
tories of behavior observable through the slice 
window must be identical to that observable 
through the original pragram window for al l  inputs. 
Unfortunately this condition is too strong, be- 
cause i t  implies the unsolvabi l i ty  of f inding 
slices. Consider the following program skeleton: 

1 BEGIN 
2 READ(X) 
3 IF X = 0 
4 THEN BEGIN 

Perform i n f i n i t e  loop 
without changing X. 

:= 1 
END 

ELSE X := 2 
END. 

Let the s l i c ing  c r i t e r i o n  be the value of X at 
l i ne  8. A s l i c ing  algor i thm based on equivalent  
behavior t r a jec to r i es  for  a l l  inputs would neces- 
s a r i l y  include l i ne  5 unless there were some as- 
surance that for  a l l  input l i ne  5 was never reach- 
ed. Such a s l i c ing  algor i thm could be used to 
determine the terminat ion of an a r b i t r a r y  procedure 
by su i tab ly  inser t ing that procedure between l ines 
4 and 5, and then not ic ing whether or not l i ne  5 
appeared in the s l ice.  But there can be no algo- 
r i thm to determine i f  an a r b i t r a r y  procedure must 
terminate, and hence no such s l i ce r  can ex is t .  

To f i x  th is  problem, the requirement of  equi- 
valent projected behaviors can be weakened to be: 
projected behaviors must be equivalent  whenever the 
o r ig ina l  program terminates. This d e f i n i t i o n  is 
the one intended in the remainder of th is  paper 
whenever the phrase "equiva lent  behavior" is used. 

A s imi la r  problem now arises with f ind ing the 
smallest possible s l ice.  The reader can eas i l y  
general ize the above example to show that no 
algor i thm can always f ind the s l ice with the min i -  
mum number of statements, because of  the impossi- 
b i l i t y  o f  evaluat ing the funct ional  equivalence of  
two d i f f e r e n t  pieces of code. This problem 
suggests that a pract ica l  d e f i n i t i o n  of a minimal 
s l ice  must avoid exact knowledge of the funct ions 
computed by pieces of code. Dataflow information 
about a program is of th is  type, and i t  permits an 
exact s l i c ing  algor i thm. The remainder of th is  
section considers the computation of  s l ices from 
dataf low information alone. 

Before going on, the object ion can be raised 
that dataf low analysis provides information that 
is too imprecise to be of any use. Programmers 
know more about the i r  programs than dataf low analy-  
sis can reveal,  and so dataf low sl ices may not be 
s u f f i c i e n t l y  smaller than the o r ig ina l  program to 
j u s t i f y  t he i r  use. For instance, arrays and 
pointer  var iables usual ly  require worst-case as- 
sumptions about var iab le  inf luence (Aho and Ullman 
1977). For more recent work see Reynolds (1979), 
Luckham and Suzuki (1979), and Weihl (1980). How- 
ever, dataf low approximations have the advantage 
of being computable in polynomial time, andin prac- 
t i ce  are of ten good enough. Sections 3 and 4 below 
present empirical evidence for  the adequacy of 
dataf low s l ices.  

D a t a f l  ow al gori thms 

Finding s l ices using dataf low analysis begins 
by t racing backwards possible inf luences of va r i -  
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ables. This process is similar to "reaching de- 
f in i t ions"  (e.g. Hecht 1978). In effect, s l ic ing 
means knowing which variable assignments can 
"reach" ( i .e .  have an ef fect  on) the variables 
observed through the window of the s l ic ing 
cr i ter ion.  

In general, for each statement in the program 
there w i l l  be some set of variables whose values 
can affect,  through some chain of assign- 
ments, a variable observable at the s l ic ing 
cr i ter ion.  For instance, i f  the statement "Y := X" 
is followed by the statement "Z := Y", then the 
value of X before the f i r s t  statement can affect 
the value of Z after the second statement. Let 
R[O,C](n) be the variables at statement n whose 
values can d i rec t l y  affect what is observed 
through the window defined by cr i ter ion C. The 
"0" (zero) refers to the direct effect. R[l,C], 
R[2,C], etc. w i l l  be defined later  for increasing 
levels of indirect  effect. 

To define R[O,C] formally, consider the data- 
flow information known about each statement. I t  
is a convenient s impl i f icat ion to allow only two 
kinds of dataflow information: variables altered 
(called DEF), and variables referenced (called 
REF). DEF(n) is the set of variables whose values 
may be changed at node n. REF(n) is the set of 
variables whose values may be referenced at node 
n. The propagation of influence from variable to 
variable is deduced from the assumption that i f  w 
and x are variable names, with w in DEF(n) and x 
in REF(n) for some statement n, then the value of 
x can influence the value of w. 

This assumption may be inaccurate for cases 
of mult iple assignment or procedure cal ls .  A 
more accurate formulation which uses precise with- 
in-statement influences can be found in Weiser 
(1979). Al l  the results in th is section hold for 
that more precise formulation. 

R[O,C](n), where C = <i,v>, is defined re- 
cursively as follows. 

R[O,C](n) = a l l  variables v such that either: 
I .  n=i and v is in V, 

or 2. n is an immediate predecessor of a node 
m, such that either: 
a) v is in REF(n) and there is a w in 

both DEF(n) and R[O,C](m), 
or 

b) v is not in DEF(n) and v is in 
R[o, cT~).  

The reader can check that the recursion is 
over length of paths to reach node i ,  and that 
case 2) above corresponds to observing behavior 
just  before executing a statement. Notice that 
2b) assumes that a l l  statements not al ter ing a 
variable w i l l  preserve i t s  value. This is a 
s impl i f icat ion of the usual dataflow information, 
which separately uses "PRE" information for th is.  

The def in i t ion of R[O] can also be specified 
by a pair of equations giving values for R[O] 
coming into and going out of a statement (Aho and 
Ullman 1977). For those readers more fami l iar  

wi th t h i s  nota t ion,  here is the d e f i n i t i o n :  

(1) RIN(n) = ROUT(n) - DEF(n) union REF(n) 
union f i f  n=i then a l l  v in V} 

(2) ROUT(n) = UNION RIN(m), for a l l  m imm. 
successors of n. 

I t  happens that R[O] can be imbedded in a fast 
monotone information propagation space, in the 
sense of Graham and Wegman (1976). This means 
R[O] can be found in worst-case time O(e log e) 
for a flowgraph with e edges, and in time O(e) f o r  
structured programs. The proof is immediate from 
noticing that except for the constant union when 
n = i ,  equation ( I )  above corresponds to Graham 
and Wegman's example on the top of page 176. A 
constant union is i rrelevent in defining the 
information propagation space, so the Graham and 
Wegman result  applies. 

The REF and DEF information about statements 
can usually be obtained by inspection of the source 
code. When i t  can't because the statement is a 
procedure ca l l ,  dataflow information about the cal l  
must be obtained by an interprocedural dataflow 
method. Barth (178) is good in practice, and has 
been used in the implementation of the s l ic ing 
algorithm described in section 4. Additional in- 
terprocedural s l ic ing issues are also discussed 
there. 

RIO] provides a suf f ic ient  condition for in-  
cluding statements in a sl ice. Any statement n 
which changes a variable in R[O,C](n) must be in 
the sl ice on C. Excluding such a statement from 
the sl ice would require additional information 
about the function computed by that statement. 
For instance, a statement n with REF(n) = DEF(n) = 
{x} need not be in the sl ice i f  i t  computes the 
ident i ty  function on x. But this is just  the sort 
of information excluded from dataflow analysis, 
although more sophisticated methods could take i t  
pa r t ia l l y  into account. 

The statements included in the sl ice by R[O,C] 
are denoted S[O,C]. S[O,C] is defined by: 

S[O,C] = a l l  nodes n such that 
R[O,C~(n) intersect DEF(n) is non- 
empty. 

R[O] does not allow for the indi rect  effects 
of conditional control-f low, and therefore is not 
a necessary condition for including statements in a 
sl ice (see figure 3). 

Sl icing Criterion C = <5,{Z}> 

l READ(X) 
2 I F X < I  
3 THEN Z := l 
4 ELSE Z := 2 
5 WRITE(Z) 

Even though statement 2 changes no variables 
and hence is not in S[O,C], i t  obviously has an 
effect on the value of Z and should be in the sl ice 
for C. 

Figure 3 
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General ly, any branch statement which can 
choose to execute or not execute some statement 
in S[O] may cause a change in behavior observ- 
able through the s l i c i n g  c r i t e r i o n .  

Finding such branch statements can be done in 
several ways. For instance Denning and Denning 
(1977), in computing secure informat ion f low,  use 
the nearest inverse dominator of a branch state-  
ment to def ine i t s  range of in f luence.  An inverse 
dominator D(n) of a statement n is  on every path 
from n to the f i na l  statement of  the flowgraph. 
Therefore, for  any statement x on a path from a 
statement n to i t s  nearest inverse dominator d, 
there is  another path from n to d which excludes 
x. Presumably by choosing paths which did or did 
not execute x, b could exert  an i nd i r ec t  i n f l u -  
ence over any var iab le  d i r e c t l y  inf luenced by x. 

Another method which is more exact but more 
expensive is  given in Weiser (1980). This is  the 
method used in the automatic s l i ce rs  described in 
section 4. In what fo l lows Denning's approach is 
used fo r  ease of presentat ion.  

Let ND(b) be the set of  statements which are 
on a path from b to i t s  nearest inverse dominator 
d, excluding b and d themselves. ND(b) w i l l  be 
empty unless b has more than one immediate suc- 
cessor. I f  S[O] is the set of  statements wi th  
d i r ec t  in f luence,  then a statement b has i nd i r ec t  
in f luence j us t  i f  S[O] in te rsec t  ND(b) is non- 
empty. This prompts the fo l low ing  d e f i n i t i o n :  

For any flowgraph G, and any set of  statements P, 
CS[G](P) = a l l  nodes n such that  e i ther :  

a) n is  in P, 
or 

b) ND(n) in te rsec t  P is 
non-empty. 

The subscr ipt  G w i l l  be dropped when obvious 
from context.  

CS has the "semi- l inear"  property that :  
CS[G](A) union CS[G](B) = CS[G](A union B) 

fo r  any two sets of statements A and B. In most 
of what fo l lows only the monotonic i ty of  CS is 
required, namely that :  

A ~ B => CS(A) ~ CS(B) 
This fo l lows immediately from the previous pro- 
pe r t y .  

The set of  statements in CS(S[O]) w i l l  i n -  
clude those branch statements which can in f luence 
the execution of a statement in S[O]. For conve- 
nience the branch statements included by CS(S[O]) 
w i l l  be denoted by B[O]. In other words, B[O,C] = 
c s ( s [ o , c ] 0  - s [ o , c ] ) .  

To include a l l  i nd i r ec t  inf luences, the s ta te-  
ments wi th d i r e c ~ n f l u e n c e  on B[O] must now be 
considered, and then the branch statement i n f l u -  
encing those new statements, etc. 

For convenience, l e t  BC(b) denote the s l i c i n g  
c r i t e r i o n  defined as <b,REF(b)>. I f  b is  a branch 
statement, then REF(b) is  assumed to be the set of  
var iables which can in f luence the choice of  paths 
from b. The var iables at a statement n which 

d i r e c t l y  in f luence a branch statement b are j us t  
R[O, BC(b)](n).  The next level  of  in f luence,  R [ I ] ,  
is  therefore defined as: 

R[ l ,C ] (n )  = R[O,C](n) union {s in R[O,C](n), fo r  
a l l  b in B[O,C]}. 

S i m i l a r i l y  for  S [ I ] :  

S[ I ,C]  = {n: DEF(n) in te rsec t  R[ I ,C] (n)  is  non- 
empty, 

or 
n is  in B[O,C]. } 

More genera l ly ,  R,B, and $ are defined for  a l l  
leve ls :  

R [ i+ l ,C ] (n )  = R[ i ,C] (n)  union ~s in R[O, BC(b)](n) ,  
such that  b is  in 
B [ i ,C ] .  } 

B [ i+ l ,C ]  = CS(S[ i+I ,C])  

S [ i + l , C ]  = {n: DEF(n) in te rsec t  R [ i+ l ,C ] (n )  is  non- 
empty, 

or 
n is  in B [ i ,C ] .  } 

The recursion s ta r ts  wi th the S[O], RIO], and B[O] 
as prev ious ly  defined. 

Considered as a funct ion of  i ,  fo r  f i xed n, 
these d e f i n i t i o n s  are non-decreasing. E.g.,  
R[ i ,C] (n)  is  a subset of R [ i+ l ,C ] (n )  fo r  a l l  n, and 
s i m i l a r i l y f o r  B[ i ,C]  and S [ i ,C ] .  

Dropping the superscr ip t ,  we l e t  R[C] denote 
the least  f i xed -po in t  of R[ i ,C ] ,  and S[C] the least  
f i xed -po in t  of S [ i ,C ] .  Obviously, 

R[C] = UNION R[ i ,C] ,  for  a l l  i > O. 
S[C] = UNION S[ i ,C ] ,  for  a l l  i ~-O. 

I 

The time to compute R and S is  no worse than 
O(n.eolog e) fo r  a flowgraph wi th n nodes and e 
edges. This bound is probably not t i g h t ,  since 
pract ica l  times seem much fas ter .  The worst case 
analys is  i s  as fo l lows:  Each computation of 
S [ i+ I ,C ]  from S[ i ,C ]  requires an i n i t i a l  O(e,log e) 
step to compute in f luence.  The remaining computa- 
t ion  of  B [ i ,C ]  is l a rge ly  f i nd ing  the dominators, 
which takes at  most O(e.log n) time (Lengauer and 
Tarjan 1979). The value of  i can be at most n, 
hence the to ta l  complexi ty is  at worst O(n. 
(e~log e + e. log n) ) ,  or approximately O (n e log e). 

The algor i thm above is  conservat ive,  because 
the statements in S[C] are s u f f i c i e n t  to d isp lay  
a l l  the behavior observable from window C. I n t u i -  
t i v e l y ,  t h i s  is  true because a l l  possible sequences 
of dataf low and control  f low in f luence have been 
accounted fo r ,  and there are no other sources of 
in f luence.  A more formal proof requires a deta i led 
model of  possible computations, and is  too long to 
reproduce here. 

Sl ices have the fo l low ing  proper t ies.  

Propert ies of  Sl ices:  
Let C = <i,v>, D = <i,w>, E : < i , v  union w>, 

and F = <j,w>. 
C,D,E, and F are a l l  s l i c i ng  c r i t e r i a .  

Property A: 
SIC] union S[O] = S[E] 
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R[C] union RID] = R[E] 

Property B: 
Let F = <j,w> 
W c R[C](j) => S[W].~S[C] 

Is S[C] always the "smallest" slice that can 
be found using only dataflow and control flow 
information? No. I f  the code being sliced does 
strange things, then the iterating of R and B can 
produce anomalies in the an~sis, as shown in 
figure 4. Such cases are probably rare in prac- 
tice. 

l A := constant 
2 WHILE P(K) 

DO 
BEGIN 

3 IF Q(C) 
THEN BEGIN 

4 B : = A  
5 X : = I  

END 
ELSE BEGIN 

6 C:=B 
7 Y : = 2  

END 
8 K : : K + I  

END 
9 Z : : X + Y  
lO WRITE(Z) 

Criterion = < IO,[Z}> 
The f i r s t  level of anlaysis gives: 

S[O] = {5,7,g} 
B[O] = {2,3} 

Because statement 3 uses C, the next level shows: 
S[l] = {1,2,3,4,5,6,7,8,9} 

Statement l is included because i t  can influence 
the value of C via statements 4 and 6. But the 
value of C is only important to choose between 
statements 5 and 7. By the time A can influence 
C, al l  possible successors to statement 3 must 
have already been executed, so statement l actual- 
ly  can have no effect, and should not be in the 
slice. Notice that this argument can be carried 
out with dataflow information alone. 

Figure 4 

Practical Slicing 

Slicing has been empirically investigated in 
two ways. Preliminary indications that sl icing is 
useful were obtained by showing that experienced 
programmers already use slicing during debugging. 
This led to the construction of a series of s l ic-  
ing tools. Preliminary results from using these 
tools show that in practice sl icing is f a i r l y  fast, 
and can often eliminate large numbers of unneces- 
sary statements from slices of programs. 

The details of the experiment on slicing are 
being reported elsewhere, so just an overview and 
the important conclusions are given here. The 
participants were 21 experienced programmers 
drawn from the academic computing community at the 
University of Michigan in Ann Arbor. Counting 
multiple roles, 12 individuals had taught program- 

ming, I0 were working as counselors to users of  the 
Univers i ty  computing center, and6 were professional 
programmers of  several years experience. There 
were no s i gn i f i can t  cor re la t ions  between type of 
experience and s l i c ing .  

Each participant in the experiment was given 
three programs to debug. Supplied with each pro- 
gram was a brief description of i ts  purpose, and a 
sample of output which clearly showed the bug. The 
bugs were deliberately kept simple, and were found 
in 59 out of the 63 possible opportunities. 

The three programs being debugged had lengths 
of 75, 121, and 150 lines each of ALGOLW code. All 
the participants were familiar with ALGOLW. Each 
program consisted of a main program which did al l  
input and output, and at least one major subroutine 
which contained the bug. Comments were few and 
high-level. 

After finding al l  three bugs, each participant 
was shown fragments of  "algor i thms" that  had been 
present in the three programs. Par t ic ipants  in -  
dicated on a one to four scale (see f igure  5) 
whether or not they thought each "a lgor i thm" had 
been used in one of the three programs. 

An example "algorithm" and rating scale 

T1 := XI: 
FOR B1 : :  X2 UNTIL N1 DO 

BEGIN 
RI(N2,HI,BI,E2): 
IF HI > X3 THEN 

BEGIN 
IF E2 THEN 

E3 := (HI-X3) 
END: 

T1 := T1 + E3: 
END: 

[ ]  
[ ]  
[ ]  
[ ]  

almost certainly used. 
probably used. 
probably not used. 
almost certainly not used. 

Figure 5 

The algorithms participants rated were two 
local ly adjacent segments of code and three im- 
bedded non-adjacent segments of code from each 
original program. Adjacency and non-adjacency 
refer to whether the statements in the code segment 
were next to one another in the original program: 
e.g. a slice is usually non-adjacent. Five 
"algorithms" were taken from each program. Each 
was truncated at top and bottom to a length of 
about lO statements, and had al l  of i ts  variable 
names changed. 

For each program, one of the two adjacent 
algorithms consisted of the lO statements nearest 
(and including) the statement causing the bug, and 
the other consisted of lO adjacent statements from 
elsewhere in the program. Of the non-adjacent 
algorithms, one was a slice based on the output 
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statement and variable at which the error became 
visible. This slice had relat ively few statements 
in common with either of the two adjacent algo- 
rithms. One of the other two non-adjacent algo- 
rithms was a slice not relevant to the bug, and the 
other was constructed by doctoring the segment of 
code consisting of every third or fourth statement 
to look l ike a possible foreshortened algorithm. 

In al l  three programs, the slice relevant to 
the bug was remembered as having been used or 
probably used in almost half of the 63 cases. This 
was not signif icantly worse than how well the two 
adjacent code segments were remembered. Of course, 
the adjacent code was expected to be remembered 
since Shneiderman (1976) has shown that experienced 
programmers can reproduce functionally equivalent 
programs from memory. But no previous work would 
have led to the expection that imbedded non-ad- 
jacent algorithms would be remembered. 

Of non-adjacent code, the relevant slice did 
much better than the other two non-adjacent "algo- 
rithms". A summary of the results pooled for al l  
three programs is shown in figure 6. 

38 
- - ~  36 

I 

36 

17 

12 

Adjacent code slice Non-adjacent code 

Graph shows the number of times 21 programmers, 
after debugging three programs each, rated imbedded 
algorithms as "probably" or "possibly" used. All 
algorithms were actually present. See text for 
details. 

Figure 6 

Since programmers remembered the relevant 
sl ices from programs they had just  debugged, they 
probably were mentally constructing and using 
those sl ices while debugging. The results for the 
i r re levant  sl ices show that not just any imbedded 
algorithm was remembered. Presumably, each pro- 
grammer had in his or her career independently 
developed the s l ic ing method, indicating that s l i c -  
ing must have been a useful technique for each of 
them. 

All the participant~ in this experiment were 
experienced programmers. I t  would be interesting 
to look at novice/expert differences in the use of 
s l ic ing, and also at differences in debugging per- 
formance between novice programmers taught and not 
taught about sl icing as a debugging technique. 

Slicin 9 Real P rojgrams 

The f i r s t  program sl icer was implemented as a 
post-processor to the DAVE program for analyzing 
FORTRAN source code (Fosdick and Osterweil, 1976). 
This arrangement could slice only main programs, 
although calls from the main program to other 
subroutines were permitted. 

Several programs were sliced by this proto- 
type system (see table l ) .  Slicing cri teri~ were 
based on variables whose values were printed near 
the end of the program. In a l l ,  three different 
slices were taken of each of four programs. For 
the larger programs, the slices were considerably 
smaller than the original code. This was what was 
hoped for. 

Results from Prototype Slicer 

PROGRAM Number of Lines Average Slice Size 

MMGS 15 15 
PH2B 60 20 
TALLY 67 25 
MAIN 380 lO0 

Table l 

The small program identif ied as "MMGS" is a 
matrix multiplication subroutine in the IBM 
Scientif ic Subroutine Library (IBM 1968). Almost 
all i ts slices included every statement. The 
single-mindedness of i ts mathematical code made i t  
d i f f i cu l t  to slice, since all i ts statements 
directly or indirect ly affected the matrix product. 
Only by choosing a t r i v ia l  slicing cri ter ion, such 
as the value of a loop control variable, could any 
statements be eliminated. But this does not gen- 
eralize to all mathematical software, since the 
routine TALLY in table l is from the same sub- 
routine l ibrary as MMGS. 

A second sl icer is now being implemented to 
slice programs written in the SIMPL family of 
languages (Basili 1976). The slice is done on a 
language independent representation of the program 
flowgraph, and extensions to other source languages 
are planned. Among the languages in the SIMPL 
family is SIMPL-D (Gannon 1979), which has abstract 
datatype fac i l i t i es  similar to CLU (Liskov 1976), 
MESA (Geschke, Morris, and Satterthwaite 1977), or 
ADA (U.S.D.O.D 1979). The sl icer i t se l f ,  l ike the 
SIMPL-D compiler, is written in SIMPL-D. 

Incorporated into the SIMPL compiler is a 
program which writes to a f i l e  all of the infor- 
mation necessary to slice the program. The pro- 
grammer need not be aware of this f i l e  unti l  the 
program is to be sliced. 

Interprocedural sl ic i  n~ 

Unlike the DAVE sl icer,  the SIMPL sl icer per- 
forms fu l l  interprocedural dataflow analysis. The 
most accurate interprocedural sl icing algorithm 
requires sl icing called and cal l ing procedures 
repeatedly unti l  convergence. This was actually 
implemented, and was very slow. The algorithms of 
Barth (1978) are s l ight ly  less accurate because 
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they do not distinguish separate calls on a proce- 
dure. But they are very fast, and are now being 
used. See Rosen (1979) for another discussion of 
interprocedural dataflow analysis. 

To slice across systems of subroutines re- 
quires two steps. First, a single slice is made of 
the procedure containing the sl icing cri terion. 
Summary dataflow information about calls to other 
procedures is used, but no attempt is made to slice 
the other procedures. In the second step, for each 
procedure call which could influence variables 
relevant to the slice generated in step one, a new 
sl icing cri terioniscreated in the called pro- 
cedure. Steps one and two are then repeated for 
each of these new cr i ter ia unti l  no new cr i ter ia 
are generated. 

There are two basic ways in which sl icing can 
cross a procedure boundary. The f i r s t  occurs when 
a procedure being sliced contains a call to another 
procedure. Summary information about the possible 
effects of the call is suff ic ient to continue s l ic-  
ing within the call ing routine, but not within the 
called routine. The second kind of influence is 
going in the opposite direction--that is,  when the 
procedure sliced is called by another procedure. 

Extending a slice from a call ing procedure P 
to a called procedure Q is done as follows. Sup- 
pose the call to procedure Q is statement number i 
in procedure P. Then there is some set of vari- 
ables (namely ROUT(i)) relevant to the current 
slice of P. Recall that this set is just UNION 
R[C](j), for al l  j successors to i .  C is the s l i c -  
ing cr i ter ion for P. ROUT(i) is easily transformed 
into a sl icing cri terion for Q by simply changing 
actual parameters in the call to Q which are also 
in ROUT(i) to their corresponding formal para- 
meters in Q (See figure 7). Any variables not in 
the scope of Q are also removed from the cri ter ion. 
The statement number in the new sl icing criterion 
for Q is simply the f inal staten~nt in Q. 

Extending slices to called and cal l ing routines 

l READ(A,B) 
2 CALL Q(A,B) 
3 Z : = A + B  

procedure Q(var x,y : integer) 
4 X :=O 
5 Y := X+3  

Slicing on a criterion C=<3,{Z}> causes a new 
criterion C'=<6,{X,Y}> to be generated. The 
complete slice on C is {2,3,4,5}. 
Slicing on a cr i ter ion D=<4,{Y}> causes a new 
cri terion D'=<2,{B}> to be generated. The complete 
slice on D is { l } .  

Figure 7 

Extending a slice from a called procedure Q 
to a call ing procedure P is done as follows. Let i 
be the i n i t i a l  statement of Q. Then the variables 
in RIN(i) form the basis of the sl icing cri ter ion 
for P. Local variables are removed from RIN(i), 
and formal parameters are replaced by actual para- 
meters. I f  an actual parameter is an expression, 

all the variables in the expression are added to 
the cri terion for P. The statement for the slicing 
cri terion of P is the statement which calls Q. 

Generating these additional sl icing cr i ter ia 
and slicing on them could be very time consuming 
i f  several slices are to be found. This is 
especially true since the SIMPL sl icer can only 
keep in memory enough information to slice a single 
subroutine at a time, and therefore has to make 
successive passes over the f i l e  of dataflow infor- 
mation. What is needed is a way of computing as 
many slicing cr i ter ia as possible at one time, so 
as not to miss any opportunities. This is done as 
follows. 

Let PC be the set of al l  possible sl icing 
cr i ter ia .  For each criterion C for a procedure P, 
there is a set of cr i ter ia  UPO(C) which are those 
needed to slice callers of P, and a set of cr i ter ia 
DOWNO(C) which are those needed to slice procedures 
called by P. UPO(C) and DOWNO(C) are computed by 
the methods outlined above. UPO and DOWNO can be 
extended to functions UP and DOWN which map sets 
of cr i ter ia  into sets of cr i ter ia.  Let CC be any 
subset of PC. Then: 

UP(CC) = UNION UPO(C), for al l  C in CC, 

DOWN(CC) = UNION DOWNO(C), for al l  C in CC. 

The transit ive closure of UP and DOWN, denoted 
(UP union DOWN)*, w i l l  map any set of cr i ter ia into 
all those cr i ter ia necessary to complete the cor- 
responding slices through all call ing and called 
routines. The complete inter-proc~ural slice for 
a criterion C is then just the union of the intra- 
procedural slices for each cri terion in (UP union 
DOWN)* (C). 

In implementing this, l i s t s  are kept of a l l  
the cr i ter ia  generated so far, the intra-procedural 
slice for each cr i ter ion, and (UP ~) union DOWN(C)) 
for each criterion C on the l i s t .  Bitmaps are 
used for representing (UP(C) UNION DOWN(C)) and the 
intra-procedural slices. 

This algorithm could possibly be improved by 
using the properties of slices mentioned in section 
3. For instance, before sl icing on a cr i ter ion 
<a,v>, the l i s t  o~F cr i ter ia could be checked to 
see i f  there were already cr i ter ia <a,vl>, <a,v2> 
such that vl union v2 = v. Other improvements in 
speed at the expense of accuracy and memory might 
make use of the value of R from previous slices, 
together with property B from section 3, to avoid 
recomputing slices. This seems to have the poten- 
t i a l . f o r  eliminating quite a b i t  of sl icing work, 
at the expense of remembering the value of R for 
al l  slices. 

None of these tricks have been implemented in 
the current SIMPL sl icer. I t  remains to be seen 
i f  slow sl icing speeds wi l l  compell the use of such 
speed-up heuristics. 

~a ra te  compilation 

SIMPL-D allows separate compilation of modules, 
and this complicates interprocedural sl icing in two 
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respects. F i r s t ,  ca l l s  on separately compiled 
r o u t i n e s  are assumed to both reference and change 
any var iab le  known outside the current  compi lat ion.  
This worst case assumption ensures that  s l i ces  are 
at leas t  as large as necessary. The second compli- 
cat ion is  from procedures in the current  compila- 
t ion  which can be cal led from some other compila- 
t i on .  These are known as "ent ry"  procedures. 

The worst case assumption for entry procedures 
is that there is an external ly compiled program 
which cal ls them in every possible order, and 
between each ca l l  referenc~es and changes al l  vari-  
ables used as parameters and al l  variables known 
outside the current compilation. The worst case 
assumption therefore implies a certain dataflow 
between entry procedures. As with called and ca l l -  
ing procedures, this dataflow causes a sl ice for 
one entry procedure to generate s l ic ing c r i te r ia  
for other entry procedures. 

Let ENTO be a function which maps a cr i ter ion 
into the set of c r i t e r i a  possible under the above 
worst case assumption. Specif ical ly,  ENTO(C) is 
empty unless C is a c r i te r ion  for an entry proce- 
dure P, in which case ENTO is computed as follows: 
Let i be the unique i n i t i a l  statement in P, le t  EE 
be the set of a l l  entry procedures, le t  OUT be the 
set of al l  variables known outside the compilation, 
and for each E in EE le t  f(E) be the unique f inal  
statement in E. Then: ENTO(C) = {<f(E), R[C](i) 
union OUT> : for al l  E in EE}. 
ENTO can be extended to a function ENT which maps 
sets of c r i te r ia  into sets of c r i te r ia  in the 
same manner as UP and DOWN. 

Of course, i t  is now a simple matter to in- 
clude the entry c r i te r ia  in the interprocedural 
s l ic ing algorithm. ENT need only be unioned with 
UP and DOWN when taking the t rans i t ive  closure of 
generated sl ices. 

Slicing Based Metrics 

lhere are two investigations now in progress 
on the practical use of s l ic ing.  One is to use 
s l ic ing in  a program debugging and maintenance aid. 
Programmers w i l l  be able to interact ively obtain 
slices of programs, and so use this information in 
making program changes or to look for bugs. Com- 
parison w i l l  be made of programmer performance with 
and without a s l icer .  This should help establish 
whether or not s l ic ing aids are useful programming 
i~ols. The second practical use being looked at is 
slicing-based program metrics. Numbers of sl ices, 
their  spatial arrangement, etc., may hold s i gn i f i -  
cant information about the structuring of a pro- 
gram. Since programmers do already break programs 
in to  s l ices,  s l ic ing-based metrics may be par t i cu -  
l a r i l y  meaningful, compared to measures such as 
McCabe's (1976) or Halstead's (1977). 

Some possible s l ic ing-based metrics are: 

I .  "Coverage" compares the length of slices 
to the length of the entire program. Coverage 
might be expressed as the ratio of mean sl ice 
length to program length. A low coverage value, 

indicating a long program with many short sl ices, 
may indicate a program which has several d is t inc t  
conceptual purposes. 

2. "Overlap" is a measure of how many state- 
ments in a sl ice are found only in that sl ice. 
This could be computed as the mean of the ratios 
of non-unique to unique statements in each sl ice. 
A high overlap might indicate very interdependent 
code. 

3. "Clustering" reveals the degree to which 
slices are reflected in the original code layout. 
I t  could be expressed as the mean of the ratio of 
statements formerly adjacent to total statements 
in each sl ice. A low cluster value indicates 
slices intertwined l ike spaghetti, while a high 
cluster value indicates slices physically ref lect-  
ed in the code by statement grouping. 

4. "Parallelism" is the number of slices 
which have few statements in common. Parallelism 
could be computed as the number of slices which 
have a pair wise overlap less than a certain 
threshold. A high degree of parallelism would 
suggest that assigning a processor to execute each 
sl ice in parallel could give a s igni f icant  program 
speed-up. 

5. "Tightness" measures the number of state- 
ments which are in every s l ice,  expressed as a 
rat io over the total program length. The pres- 
ence of re la t i ve ly  high tightness might indicate 
that al l  the slices in a subroutine real ly  belong- 
ed together because they al l  shared certain act iv- 
i t ies .  

Slicing-based metrics are now being applied 
to several student-written load-and-go compilers. 
Much more work is needed, but the fo l low ing  are 
some i n i t i a l  resu l ts  and conclusions. 

Slicing on every output statement leads to a 
great many similar sl ices. Clustering together 
slices which d i f f e r  by only a few statements gives 
a more meaningful set of slices on which to apply 
metrics. 

Fo r 
compi I er 

l )  

instance, the 48 output statements in one 
could be c lustered in to  seven categor ies:  
object code i n te rp re ta t i on  messages and 
errors 

2). source code scanning messages and errors 
3) miscellaneous f ixed messages (e.g. 

"EXECUTION BEGINS") 
4) global er ror  messages (e.g. "NO PROCEDUR- 

ES") 
5) symbol table l i s t i n g  
6) object  code l i s t i n g  
7) symbol table er ror  messages 

Slices within a cluster differed by less than 
seven statements, while in ter-c luster  differences 
were between 30 and 400 statements, with most more 
than lO0. There were about 500 executable state- 
ments altogether, divided among 21 procedures and 
functions. 

The cost of f inding these 48 slices is inte- 
resting. Together, the 48 or iginal  s l ic ing c r i te -  
r ia generated 217 additional s l ic ing c r i te r ia  as a 
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resu l t  of  ca l led and ca l l i ng  procedures. (There 
were no entry procedures.) The en t i re  process of  
f i nd ing  the c r i t e r i a ,  propogating the s l ices 
in te rp rocedura l l y ,  and ca lcu la t ing  the 217 i n t r a -  
procedural s l i ces  took about I0 minutes of  CPU 
time on a Univac 1100/40. Six passes over the 
f i l e  of  dataf low informat ion were necessary. 

There were cer ta in  core groups of statements 
which showed up in many d i f f e r e n t  s l i ces .  For 
instance, in the same compiler as above, a set of 
115 statements showed up in every n o n - t r i v i a l  
s l i ce .  These statements were drawn mostly from 
the scanner, wi th a few from the parser and symbol 
table sections of  code. The 115 statements are 
not themselves a s l i ce ,  because they do not con- 
s t i t u t e  an independently executable program. But 
they form the core of  a str ipped down compiler, 
since any n o n - t r i v i a l  output requires that  they be 
executed. 

Conclusion 

S l i c i ng  is a new way of decomposing programs 
automat ica l ly .  Limited to code already w r i t t en ,  
i t  may prove useful during the debugging, tes t ing ,  
and maintenance port ions of  the software l i f e -  
cycle.  Unlike design methodologies which decom- 
pose a program in j us t  one way, many d i f f e r e n t  
s l i c i n g  decompositions can be chosen by se lect ing 
appropriate s l i c i n g  c r i t e r i a .  This paper con- 
centrated on the basic methods fo r  s l i c i n g  pro- 
grams and t h e i r  embodiment in automatic s l i ce rs .  
Future work on s l ic ing-based programming aids and 
s l ic ing-based program metrics is  necessary before 
the imp l ica t ions  of t h i s  kind of decomposition 
are f u l l y  known. 
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