
Composing Integrated Systems Using GUI-Based
Applications And Web Services

Mark Grechanik and Kevin M. Conroy
Systems Integration Group, Accenture Technology Labs

Chicago, IL 60601
Email: {mark.grechanik, kevin.m.conroy}@accenture.com

Abstract— Integrated systems are composed of components
that exchange information (i.e., interoperate [5]). These compo-
nents include Graphical User Interface (GUI) APplications (GAPs)
and web services. It is difficult to make GAPs interoperate,
especially if they are closed and monolithic. Unlike GAPs, web
services are applications that are designed to interoperate over
the Internet.

We propose a novel generic approach for creating integrated
systems by composing GAPs with each other and web services
efficiently and non-invasively. This approach combines a nonstan-
dard use of accessibility technologies for accessing and controlling
GAPs in a uniform way with a visualization mechanism that
enables nonprogrammers to compose integrated systems by
performing point-and-click, drag-and-drop operations on GAPs
and web services. We built a tool based on our approach, and
using this tool we created an integrated application that controls
two closed and monolithic commercial GAPs and third-party web
services. Our evaluation suggests that our approach is effective,
and it can be used to create nontrivial integrated systems by
composing GAPs with each other and web services.

I. INTRODUCTION

Integrated applications consist of components that exchange
information (i.e., to interoperate [5]). Building integrated ap-
plications is difficult and expensive, since in addition to build-
ing components of these applications programmers should
define protocols and implement the functionality for data
exchanges between these components.

Components of integrated applications include Graphical
User Interface (GUI) APplications (GAPs) and web services.
Organizations use legacy GAPs to assist business operations.
However, it is difficult to interoperate GAPs because many
of them are closed and monolithic, and they do not expose
any programming interfaces or data in known formats. Thus,
while it is desireable to use GAPs as components in integrated
applications, it is often difficult to add functionality to GAPs
to enable them to interoperate with other applications.

Web services are software components that interoperate
over the Internet, and they have gained widespread acceptance
partly due to the business demand for applications to exchange
information [9]. Unlike GAPs, using web services enables
organizations to quickly build integrated systems by compos-
ing these services for information exchange. By composing
legacy GAPs with each other and web services into integrated
systems, organizations can support their business processes
better with these systems [8].

Integrating legacy GAPs with each other and web services
is important for most organizations that have invested heavily
in a variety of GAPs from multiple vendors [1]. Changing
source code of GAPs to make them interoperable is difficult
because of brittle legacy architectures, poor documentation,
significant programming effort, and subsequently, the large
cost of these projects. Modifying third-party GAPs may not
even be possible since organizations often do not have access
to the source code. Given the complexity of GAPs and the
cost of making them interoperable, a fundamental problem
of interoperability is how to build integrated systems by
composing GAPs with each other and web services efficiently
and non-invasively.

Our main contribution is a novel generic approach for
composing GAPs with each other and web services into
integrated systems. This approach combines a nonstandard
use of accessibility technologies for composing GAPs written
in different languages and running on different platforms in
a uniform way with a visualization mechanism that enables
nonprogrammers to compose integrated systems by perform-
ing point-and-click, drag-and-drop operations against closed
and monolithic GAPs and web services. Since accessibility
technologies are present on major computing platforms to
allow disabled users to access applications, we utilize these
technologies in our uniform mechanism of composing GAPs
with each other.

We built a tool based on our approach, and we used this tool
to compose two closed and monolithic commercial GAPs with
web services into an integrated system. We describe our ex-
perience with this tool, and measure and analyze performance
characteristics of the created integrated systems. The results
suggest that our approach is efficient and effective.

II. A MOTIVATING EXAMPLE

E-procurement systems (EPS) are critical since they can
influence all areas of an organization’s performance [7]. Busi-
nesses employ elaborate EPSes that often consist of different
GAPs assisting different steps of the purchasing process. In
EPSes, the rule of separation of duty requires that operations
be separated into different steps that must be done by indepen-
dent persons (agents) in order to maintain integrity. With the
separation of duty rule in place, no person can cause a problem
that will go unnoticed, since a person who creates or certifies a
transaction may not execute it. Implementing this rule results



in agents using different GAPs that provide different services
for different steps of the purchasing process.

Consider a typical e-procurement scenario. Employees order
items using an electronic shopping cart service of the web-
based application OfficeDepot (OD). Department managers
review selected items in the shopping cart, approve and order
them, and enter the ordered items into Quicken Expensable 98
(QE), a third-party closed and monolithic Windows GAP that
the company uses internally to keep track of purchases.

The OD service sends a notification to a company accoun-
tant, who uses a closed and monolithic GAP called ProVenture
Invoices and Estimates (PIE) to create invoices for ordered
goods. When the ordered goods are received from OD, a
receiving agent compares them with the entries in QE. The
accountant can view but cannot modify records in QE, and
likewise, no other agent but the accountant can insert and
modify data in PIE. If the received goods correspond to
the records in QE, the receiving agent marks the entries for
the received goods in QE and notifies the accountant. After
comparing the invoices in PIE with the marked entries in QE
and determining that they match, the accountant authorizes
payments.

In this example, each procurement agent uses different
GAPs to accomplish different goals. Sometimes, several GAPs
can be used to accomplish a single goal, and agents have
to transfer data between these GAPs and perform other
operations manually. Clearly, automating these activities is
important in order to improve the quality and the efficiency of
business services.

Consolidating disparate components into integrated EPSes
enables enterprises to achieve a high degree of automation
of their purchasing processes [8]. One supporting function of
an integrated system is to extract information about ordered
items from the service OD and create and enter invoices into
PIE using this information. Once the payments are processed,
the user marks invoices in PIE as paid, and the information
about these invoices should be extracted from PIE and entered
as expenses into QE. There are many other functions of the
integrated EPS that involve interoperating GAPs with each
other and web services.

An important function of an integrated EPS is to extend
the functionalities of GAPs with web services. It means that
users can continue to work with legacy GAPs, however, certain
new functions will be delegated to web services. For example,
when users modify expenses using QE, they may be required
to submit the information about modified expenses to a web
service that verifies these expenses using some business rules.
These and many other functions reflect the need to compose
GAPs with each other and web services in integrated systems.

III. HOW OUR APPROACH WORKS

We present a birds-eye view of how our approach works by
giving examples of composing GAPs with each other and web
services to create integrated systems. First, we describe how
to compose a simple integrated EPS from QE, PIE, and a web

service, and then we show how to extend the functionality of
QE with a web service.

A. Composing GAPs with Each Other And a Web Service
We have built a tool called COmposer of INtegrated Systems

(Coins) that enables users to create intergrated systems by
composing GAPs with each other and web services. Coins out-
puts integrated systems as composite web services that control
and manipulate GAPs and other web services thereby making
these components interoperate with one another. Specifically,
we show how to compose an integrated system that extracts
information about ordered items from the service OD and
creates and enters invoices into PIE using this information.
After these invoices are paid, the information about them is
extracted from PIE and entered as expenses into QE.

The front end of Coins is shown in Figure 1. Using Coins,
a user enters the name of the composite web service and the
name of the exported method of this service (the defaults are
Service1 and operation1) respectively. The user also
specifies that the service controls GAPs QE and PIE and the
web service OD by providing information about them (i.e.,
their locations and Web Service Definition Language (WSDL)
data). This information is shown in the leftmost tab (i.e.,
Service Explorer) of Coins.

Next, the user enter an expense and an invoice into the GAPs
QE and PIE correspondingly. Specifically, the user selects an
expense envelope on the first screen of QE, and then double
clicks on the entry in the envelope list box. These actions
cause QE to switch to the expense entry screen. This and other
screens of the GAP are captured and shown in the rightmost
tab (i.e., Screen View) of Coins.

The purpose of interacting with GAPs is to allow Coins
to record the structures of the screens and user actions on
the GAPs and then transcode these actions into programming
instructions that the resulting composite web service will
execute. To do that, Coins intercepts selected user-level events
using the accessibility layer1. These events allow Coins to
record the sequence of screens that the user goes through as
well as the actions that the user performs on GUI elements.

When recording the sequence of screens, Coins obtains
information about the structure of the GUI and all properties of
individual elements using the accessibility-enabled interfaces.
This information allows the composite web service to locate
GUI elements in order to set or retrieve their values or to
perform actions on them in response to requests from its
clients.

At the design time, the user should specify how to exchange
data between components. Specifically, the user determines
what GUI elements will receive the values of the properties
of the web service OD and the values of GUI elements of
other GAPs. For example, the value of the property Item of
the service OD should be put into the GUI element labeled
Description of the invoice screen of PIE, which in turn
should be put into the GUI element labeled (optional) of
the expense screen of QE.

1We discuss accessibility technologies in Section IV-A.



OD Web Service

Item

Date

Amount

COINS

Fig. 1. The front-end of Coins.

To create mappings between these properties and GUI
elements, the user moves the cursor over some GUI element
of a GAP, and Coins uses the accessibility Application Pro-
gramming Interface (API) calls to obtain information about
this element. To confirm the selection, a frame is drawn around
the element with the tooltip window displaying the information
about the selected element. Then, the user clicks the mouse
button and drags this element (or rather its image) onto the
Coins’ middle tab labeled with the name of the exported
method (i.e., operation1) of the composite web service.
After releasing the mouse button, the dragged element is
dropped onto the Coins’ dataflow palette under the label of
the corresponding component.

Once the user has dragged-and-dropped all required GUI
elements and loaded the description of web services from their
WSDL files, it is time to connect these elements and properties
of the loaded services with arrows that specify the directions
of data exchanges. For example, by drawing an arrow between
the element Amount of the PIE and the element (Amount)
of QE, the user specifies that the data from the corresponding
GUI element of PIE will be transfered to the GUI element of
QE. While it is possible to specify how to transform the data
during exchange, we do not consider these modifications in
this paper for simplicity.

In addition, the user specifies what action(s) should be
performed on GUI elements and what methods of the web
services to call to initiate data exchange. For example, clicking
on the tab Invoice in PIE initiates the procedure for
extracting invoices. These actions are recorded as part of

the workflow which can be exported as a Business Process
Execution Language (BPEL) program.

The resulting composite service is published by clicking
on the button Publish as Web Service on the
Coins’ toolbar. Coins uses the information captured for
each screen and input elements to generate Java code
for the composite web service and deploy it to a web
services platform such as Apache Axis. When this service
is called from a client, the method operation1 uses
the accessibility interfaces to control and manipulate the
GAPs and the web service to exchange information. A short
movie demonstrating how Coins works is available at our
website [www.markgrechanik.com]. It can be viewed inside
a browser [http://www.markgrechanik.com/Coins.html]
or downloaded and played as an AVI file
[http://www.markgrechanik.com/Coins.avi].

B. Extending GAPs With Web Services

Legacy GAPs may be required to support new business
processes. For example, a new business procedure may require
that users submit the information about entered and modified
expenses to a web service that verifies these expenses using
some business rules before saving these expenses in QE. Since
QE has been used for many years, integrating it with the new
service allows the business to achieve new functionality at a
low cost.

Coins allows users to extend the functionality of GAPs by
integrating them with web services. The user connects GUI
elements of QE with properties of the web service in the
middle pane of Coins with arrows from the palette toolbox



thereby specifying how data is transferred from the GAP to
the service. Then, the user selects a method of the web service
and determines how to invoke it. This method is invoked when
a user performs some action on a GUI element (e.g., clicks a
button). The values of GUI elements are passed as parameters
to the invoked method, or they are used to set properties of
the web service before the method is invoked.

In addition, the user specifies how to use the return values
of the invoked method. They can be put in the selected GUI
elements of the GAPs, or they can be displayed in message
dialogs. The user can select an action in response to certain
return values of the invoked method. Examples of these actions
are terminating the GAP or going to the previous screen of
the GAP whenever the latter action is possible.

IV. ELEMENTS OF OUR SOLUTION

A key solution is to use GAPs as programming objects
and GUI elements of these GAPs as fields of these objects,
and to perform actions on these GUI elements by invoking
methods on the objects that represent these GAPs. Unfortu-
nately, services cannot access and manipulate GUI elements
of GAPs as pure programming objects because GUI elements
only support user-level interactions. Accessibility technologies
overcome this limitation by exposing a special interface whose
methods can be invoked and the values of whose fields can
be set and retrieved thereby controlling GUI elements that
have this interface. We give an overview of the accessibility
technologies in the next Section IV-A.

A. Accessibility Technologies

Accessibility technologies provide different aids to disabled
computer users [4]. Specific aids include screen readers for
the visually impaired, visual indicators or captions for users
with hearing loss, and software to compensate for motion
disabilities. Most computing platforms include accessibil-
ity technologies since electronic and information technology
products and services are required to meet the Electronic
and Information Accessibility Standards [4]. For example,
Microsoft Active Accessibility (MSAA) technology is designed
to improve the way accessibility aids work with applications
running on Windows, and Sun Microsystems Accessibility
technology assists disabled users who run software on top of
Java Virtual Machine (JVM). Accessibility technologies are
incorporated into these and other computing platforms as well
as libraries and applications in order to expose information
about user interface elements.

Accessibility technologies provide a wealth of sophisticated
services required to retrieve attributes of GUI elements, set
and retrieve their values, and generate and intercept different
events. In this paper, we use MSAA for Windows, however,
using a different accessibility technology will yield similar
results. Even though there is no standard for accessibility API
calls, different technologies offer similar API calls, suggesting
slow convergence towards a common programming standard
for accessibility technologies.

The main idea of most implementations of accessibility
technologies is that GUI elements expose a well-known inter-
face that exports methods for accessing and manipulating the
properties and the behavior of these elements. For example, a
Windows GUI element should implement the IAccessible
interface in order to be accessed and controlled using the
MSAA API calls. Programmers may write code to access
and control GUI elements of GAPs as if these elements were
standard programming objects.

B. Hooks

Hooks are user-defined libraries that contain callback func-
tions (or simply callbacks), which are written in accordance
with certain rules dictated by accessibility technologies. Hooks
are important for Coins because they enable users to extend
the functionality of GAPs, specifically to integrate them with
web services without changing GAPs’ source code. Writing
hooks does not require any knowledge about the source code
of GAPs.

In our approach, a hook library is generic for all GAPs, and
its goal is to listen to events generated by the GAP into which
this hook is injected as well as to execute instructions received
from integrated systems. An example of an instruction is to
disable a button until certain event occurs. The power of hook
libraries is in changing the functionalities of existing GAPs
without modifying their source code.

Main functions of the generic hook are to receive commands
to perform actions on GUI elements, to report events that occur
within GAPs, and to invoke predefined functions in response
to certain commands and events. Since accessibility layers are
supported by their respective vendors and hooks are technical
instruments which are parts of accessiblity layers, using hooks
is legitimate and accepted to control and manipulate GAPs. In
addition, writing and using hooks is easy since programmers
use high-level accessibility API calls, and they do not have
to deal with the complexity of low-level binary rewriting
techniques.

When a target GAP is started, the accessibility layer loads
predefined hook libraries in the process space of this appli-
cations and registers addresses of callbacks that should be
invoked in response to specified events. Since hooks “live” in
the process spaces of GAPs, their callbacks can affect every
aspect of execution of these GAPs.

V. ARCHITECTURE

The architecture of Coins is shown in Figure 2. Solid arrows
show command and data flows between components, and
numbers in circles indicate the sequence of operations in the
workflow.

This choice of the architecture is influenced by the fact that
in enterprise environments GAPs and web services are often
located on different computers. Some GAPs are located on
the same computer, but they may not be started at the same
time due to certain constraints. For example, two instances of
the same application cannot bind their sockets to the same
port on the same computer, and subsequently, they cannot



Dispatcher

Hook

Hook

Proxy

Operating System

Accessibility
Layer

Computer

Proxy

Operating System

Accessibility
Layer

Computer

Platform for Deployment
of Web Services

Client
Program

1 2

4

5

3

1

Web
Service

3

4

5

Fig. 2. The architecture of Coins.

run simultaneously. This and some other conditions force
administrators to distribute GAPs and web services across
computers in enterprise environments.

Accessibility technologies cannot control distributed appli-
cations. If an integrated system (e.g., a composite web service)
and the GAPs it controls are located on different computers,
then the service cannot use any accessibility technology to
control these GAPs. A solution to this problem is to use
proxies to control GAPs by sending commands to them from
integrated systems. A Proxy is a generic program that receives
requests from integrated systems, extracts data from GAPs in
response to these requests, and sends the extracted data back
to these integrated systems. Proxies use the accessibility layer
to control and manipulate GAPs.

The Dispatcher is the central point for coordinating proxies
in the distributed environment. It is a daemon program that
collects information from proxies and makes decisions to
which proxy to forward requests from composite web services
that represent integrated systems. For example, if copies of the
same GAP are installed on different computers, the Dispatcher
assign the instances of this GAP to different requesting clients
thereby enabling their execution in parallel.

Since web services and GAPs may be moved around the
enterprise computers for different reasons (e.g., to improve
business processes or the performance of applications), the
Dispatcher provides migration and location transparency for
web services and GAPs. Proxies register with the Dispatcher
under unique names, collect information about GAPs located
on their computers, and send this information to the Dis-
patcher. The Dispatcher receives tables of GAPs from proxies
on a regular basis, and it uses this information to direct
requests from web services to appropriate GAPs.

When a method of the composite web service, which
represents the integrated system is invoked for the first time
by its client (1), the service connects to the Dispatcher
and sends a registration request (2). From this request the
Dispatcher determines what GAPs are required to run the web

service. The Dispatcher looks up the GAP tables received from
connected proxies, and once it finds the required GAPs, it
sends requests to the corresponding proxies to reserve these
GAPs for the web service (3).

After the Proxy starts the GAP, it uses the accessibility
layer to inject the hook library into the GAP (4). The
hook spawns a thread within the GAP’s process in order to
establish a communication channel with the corresponding
Proxy. Using this channel, the Proxy can send commands and
receive notifications of the events that occur within the GAP
and for which callbacks from the hook are registered (5).
Thus the generic hook can be viewed as a virtual machine
that can be used to control and manipulate GAPs.

VI. CODE GENERATION

Coins generates code for the resulting integrated system
(i.e., a composite web service). The structure of the code re-
flects dependencies between GUI elements in GAPs. In event-
based windowing systems (e.g., Windows), each GAP has a
main window (which may be invisible), which is associated
with the event processing loop. Closing this window causes
the application to exit by terminating the loop. The main
window contains other GUI elements of the GAP. A GAP
can be represented as a tree, where nodes are GUI elements
and edges specify children elements that are contained inside
their parents. The root of the tree is the main window, the
nodes are container elements, and the leaves of the tree are
basic elements (e.g., buttons or edit boxes).

GAPs are state machines whose states are defined as collec-
tions of GUI elements, their properties (e.g., style, read-only
status, etc.), and their values. When users perform actions they
change the state of the GAP. In a new state, GUI elements may
remain the same, but their values and some of their properties
change.

Coins takes inputs describing the states of the GAPs and
generates classes whose methods control GAPs by setting and
getting values of their GUI elements and causing actions that
enable GAPs to switch to different states. When the user
switches the GAP to some state, Coins records this state
by traversing the GUI tree of the GAP post-order using the
accessibility technology. For each node of the tree (i.e., a GUI
element), Coins emits code for classes are linked to these GUI
elements, and these classes contain methods for setting and
getting values and performing actions on these elements. Coins
also emits the code that handles exceptions that may be thrown
when web services control GAPs.

VII. PROTOTYPE IMPLEMENTATION

We implemented Coins in Windows using C++ and Java.
The prototype implementation is based on the MSAA toolkit
version 2.0 and an MS XML parser, as all communications
between the components of Coins are in XML format. Our
prototype implementation included the front end, the Dis-
patcher, the composite service code generator, the Proxy, and
the hook. We wrote the front end and the generator in Java and
the rest of components of Coins in C++. We used sockets as an



interprocess communication mechanism. For our prototype we
used Apache Axis 2, which is a platform for development and
deployment of web services [http://ws.apache.org/axis2]. For a
full-scale deployment of web services using the Web Services
Deployment Descriptor under Axis we refer the reader to the
Axis documentation [2]. Our implementation contains close to
12,800 lines of code.

VIII. EXPERIMENTAL EVALUATION

In this section we describe the methodology and provide the
results of experimental evaluation of Coins. We describe case
studies in which we successfully integrate two commercial
closed and monolithic GAPs and a web service in an instance
of the EPS which is described in Section II; we demonstrate
how batch data exchanges result in significant performance
gain using our approach; and we conduct experiments to
analyze the performance penalty when using GUIs to access
GAP services in integrated systems versus invoking methods
of pure programmatic web services. We show how to use our
approach so that performance penalty incurred by communi-
cating with GAPs through their GUI elements stays below
some acceptable limit.

A. Case Study

To demonstate our approach, we created an E-procurement
system (EPS) from QE and PIE, as we described in Section II.
Recall that QE and PIE are closed and monolithic commercial
GAPs that run on Windows. QE allows users to enter and track
expenses, and PIE allows users to create and print invoices,
estimates, and statements, and to track customer payments and
unpaid invoices.

Our experience confirms the benefits of our approach. We
created an integrated EPS from both QE and PIE and a web
service without writing any additional code, modifying the
applications, or accessing their proprietary data stores (see
Section III). We carried out experiments using Windows XP
Pro that ran on a computer with Intel Pentium IV 3.2GHz
CPU and 2GB of RAM.

In our case study, we compared the effort required to create
an integrated EPS using Coins with the programming effort to
create the same service by using the source code of GAPs. We
created applications similar in functionalities to QE and PIE
respectively. It took us approximately fourteen hours to create
and test our imitations of QE and PIE which we call IQE and
IPIE respectively. Then, we created an integrated EPS. It took
us approximately three and half hours to extract the code from
the IQE and IPIE, move it to the integrated system project, and
compile and debug it. Compared to that, it took us less than
fifteen minutes to generate an integrated system using Coins.

B. Performance Considerations

Calling methods directly is more efficient than invoking
services of GAPs through their GUI elements. The addi-
tional overhead cost, OC, consists of the GAP startup time,
the initialization time for the internal structures representing
GUI elements, screen switching time, and communicating

time between Proxies and GAPs. Common delay, CD, for
both programmatic and GAP-based integrated systems con-
sists of network latency time of transmitting method call
requests between components and delivering results back
and the method execution time. The GUI computation
overhead (GCO) ratio in percent, GCO=OC

CD · 100, shows
what percentage of the execution time is dedicated to handling
GAPs and their GUI elements.

C. Performance Evaluation

The goal of the performance experiment is to evaluate how
much performance penalty GAP-based integrated incur versus
pure programmatic ones. In addition, we show that using batch
data exchanges results in significant performance gain.

1) Performance Stress Test: We designed the performance
test to measure the reliability and sustainability of transaction
processing throughput of our implementation of the EPS
system. The test script simulated users who individually order
100 items from the web service OD. For each invoice entered
in IPIE, the process included extracting this invoice and
creating a corresponding expense in IQE, with the last step
in this process being either the return to the initial screen of
the GAP, or the termination of the GAPs. Each virtual user
therefore completes 100 individual transactions during a user
session. The test was run at a user load for duration of 24
hours in order to minimize various effects of other applications
and services running on the same computer as well as network
irregularities over the extended period of time.

We repeated this test four times for our implementations
of IQE and IPIE to collect more data. The first test was run
with the IQE and IPIE implemented as purely programmatic
components (libraries) with no GUI interfaces used to transfer
data. The second test was run against IQE and IPIE whose
screens were reused by returning to original screens, not
restarting the GAPs. The third test was run against the IQE and
IPIE which were restarted after each transaction. The last test
was run with IQE and IPIE whose GUIs contained different
multimedia elements (e.g., animations and bitmaps). We report
an average time per transaction for each test.

Experimental results from evaluating how much perfor-
mance penalty these GAP-based data transfers incur versus
pure programmatic ones are shown in Figure 3. The vertical
axis shows the average time in seconds per data exchange
transaction, and the bars correspond to the tests. The fastest
transaction takes on average 0.8 seconds when no GAPs
are used, that is the data is passed purely programmatically
between IQE and IPIE libraries. The performance drops when
GUI elements of IQE are used to encapsulate the functionality
required to transfer the data. The average time per transaction
increases to 2.2 seconds from 0.8 seconds, a 175% increase.
The difference between these average transaction times is
1.4 second, which we attribute to the overhead of the GUI
computations.

The situation worsens for the third test when the GAP is
required to restart every time the data exchange is performed.
The overhead associated with restarting of the GAP increases



the average time per transaction to 4.6 seconds. Finally,
when the GAP uses multimedia images and animations, the
performance becomes worse, taking on the average time per
transaction 7.2 seconds.

2) Batch Data Exchanges: Coins enables users to spec-
ify batch data exchanges between components of integrated
systems. Sending messages between components is delayed
in batch message transfers until a batch message containing
many smaller messages is formed and transmitted at once.
The combined overhead associated with sending many small
messages is higher than the overhead of sending one larger
message that contains these small messages. Sending separate
small messages involves adding control information in headers
that specify additional information for message transfer, invok-
ing functions that create and parse these messages, and often
having to perform additional extraction operations on GUIs.
Extracting all data from GUI elements and sending them to the
destination in one single message enables users to amortize a
one-time overhead over many data items in the message.

In addition, since the network latency time is one of the
major contributors to the overhead, sending fewer messages
may result in the reduction of this overhead. Specifically,
sending one large message instead of many small messages
reduces the communication overhead between the Dispatcher
and Proxies. Also, when sending many messages, next mes-
sage is usually sent when the receipt of the previous message
is acknowledged by a special response message. Sending and
waiting for these acknowledgement messages adds unneces-
sary computation and communication overhead, which can be
significantly reduced using batch transfers.

The goal our experiment is to show that exchanging mes-
sages in batches yields better performance of the integrated
system. The graph showing the dependency of transfer time
per item from the number of items transferred between GAPs
is shown in Figure 4. The horizontal axis shows the number of
data items transferred per transaction. An average size of the
data item is approximately 360 bytes. The vertical axis shows
the time it takes to transfer an item from IPIE to IQE. For a
single item it takes approximately 2.1 seconds to transfer a
data item considering the GAP computational overhead.

As data items are transferred in batches, the amount of time

0.8

2.2

4.6

7.2

0

1

2

3

4

5

6

7

8

Programmatic
components

GAPs, screens
reused

GAPs, restarted GAPs, restarted with
multimedia

S
ec

o
n

d
s 

p
er

 tr
an

sa
ct

io
n

Fig. 3. Transaction throughput for web services.

it takes to transfer an item drops approximately 14 times to
close to 0.15 second as the number of the items in a batch
grows to 500. Correspondingly, the size of the XML message
containing these data items grows from 1.5Kb to 130Kb.
However, transferring 1,000 items instead of 500 reduces
the transfer time per item by only 1.9 times. Our explanation
is that it takes longer to create and parse large messages as
well as to transfer them, and this additional overhead dwarfs
the reduction of the transfer time per message. Still, the
our experiment shows that it is possible to gain significant
performance by performing batch transfers between GAPs.

D. Recommendations

Choosing Coins versus writing programmatic integrated
systems is a matter of trade-offs between the development
effort and the resulting performance. If the performance of
the integrated system is a critical issue, then developing a
programmatic application is the right choice. However, if
minimizing cost is important, using Coins allows users to
reduce development cost significantly while keeping perfor-
mance overhead within acceptable limits.

Recall that the GUI overhead GCO is inversely proportional
to the common delays CD, such as network latency and GAP
backend computations. At one extreme, CD is much smaller
than the OC, and the GCO is high. For example, if the OC is
one second and the CD is one tenth of a second, then the GCO
is 1,000%. Since the GCO is high, users should consider
developing a programmatic integrated system. At the other
extreme, CD is much higher than the OC, and the GCO is small.
For example, if the OC is one second and the CD is 20 seconds,
then the GCO is 5%.

Based on our conversations with many professionals who
build, deploy, and maintain integrated systems, these profes-
sionals are willing to consider up to a 10% performance
penalty if they can reduce development efforts. We observed
that for many commercial applications backend computations
take from five to fifteen seconds. It means that for the GCO to
be less than 10%, its absolute value should be between 0.5
to 1.5 seconds, which is consistent with the GCO of 1.4

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

Number of Items

T
ra

n
sf

er
 ti

m
e 

p
er

 it
em

, s
ec

1

Fig. 4. Dependency of transfer time per item from the number of items
transferred between GAPs using the batch exchange.



seconds which we measured in our performance experiment
with the data transfer between IQE and IPIE.

Since GAPs consume significant CPU time for GUI painting
when images and animations are included, using these appli-
cations for integrated systems may not be possible for perfor-
mance reasons. In practice, clients use composite web services
as integrated systems via the Internet, and these services use
GAPs via the LAN. From this perspective the performance
penalty incurred by using GAPs is minimal since the low-level
communication mechanisms such as transmission, marshaling
and unmarshaling network data have the largest overhead
common to all solutions.

E. Limitations
In general, Coins may not work well with GAPs whose

GUIs are frequently modified since it would require users
to regenerate integrated systems to adjust for new GUIs.
However, the number of such GAPs is small, and most GUIs
are stable and may have small changes between releases,
which happen infrequently. It is a bigger problem with web-
based applications whose GUIs change relatively frequently.

In general, managing many instances of the same GAP
is difficult. For example, when running web-based applica-
tions, they open many popup windows. These windows and
processes that control them are not linked explicitly to the
application that opened them. Thus, when two or more web-
based applications ran on the same computer simultaneously,
data from these applications may be mixed. We are currently
working on solving this problem.

IX. RELATED WORK

UniFrame is a framework for building integrated systems
by assembling pre-developed heterogeneous and distributed
software components [15]. The glue/wrapper code that realizes
the interoperation among the distributed and heterogeneous
software components can be generated from the a descriptive
model. Unlike UniFrame, Coins does not require users to write
code for models, and it does not require the knowledge of the
source code of components.

A web browser-shell integrates a command interpreter into
the browser’s location box to automate HTML interfaces
[13]. A browser-shell wraps legacy CLPs with an HTML/CGI
graphical interface. This approach is heavily dependent upon
parsing HTML and extracting data from the command line
input/output, and in that way it is significantly different from
our approach which does not need to parse any source code.

Code patching [6] and binary rewriting [11] techniques
modify the binary code of executable programs in order to
control and manipulate them when integrating these programs
into composite systems [10]. However, these techniques are
platform-dependent, and programmers are required to write
complicated code to change program executables. Using these
techniques is difficult and error prone, and often causes
applications to become unstable and crash.

When it comes to extracting information from GAPs and
their GUI elements, the term screen-scraping summarily de-
scribes various techniques for automating user interfaces [14]

[3]. Macro recorders use this technique by recording the users
mouse movements and keystrokes, then playing them back by
inserting simulated mouse and keyboard events in the system
queue [12]. Our approach differs fundamentally from other
screen-scraping techniques since it modifies GAPs to extend
their functionalities while, by definition screen scrapers only
deliver information describing GUIs. In addition, Coins does
not depend on parsing a scripting language that describes the
GUI, and therefore it is more generic and uniform.

X. CONCLUSION

We proposed a novel generic approach for creating in-
tegrated systems by composing GAPs with each other and
web services efficiently and non-invasively. This approach
combines a nonstandard use of accessibility technologies
for accessing and controlling GAPs in a uniform way with
a visualization mechanism that enables nonprogrammers to
create web services by performing point-and-click, drag-and-
drop operations.

We built a tool based on our approach, and we used this
tool to compose an integrated system from two closed and
monolithic commercial GAPs and web services. Our case
study showed that a key advantage of Coins is that it involves
minimal development efforts. Our evaluation suggests that our
approach is effective and it can be used to create integrated
systems from nontrivial legacy GAPs and web services.

REFERENCES

[1] Building software that is interoperable by design.
http://www.microsoft.com/mscorp/execmail/2005/02-03interoperability-
print.asp.

[2] Documentation for Apache Axis 1.2.
http://ws.apache.org/axis/java/index.html.

[3] Screen-scraping entry in Wikipedia.
http://en.wikipedia.org/wiki/Screen scraping.

[4] Section 508 of the Rehabilitation Act. http://www.access-
board.gov/508.htm.

[5] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. Institute of Electrical and Electronics Engineers,
January 1991.

[6] B. Buck and J. K. Hollingsworth. An API for runtime code patching.
Int. J. High Perform. Comput. Appl., 14(4):317–329, 2000.

[7] D. Burt, D. Dobler, and S. Starling. World Class Supply Management:
The Key to Supply Chain Management. McGraw-Hill Irwin, July 2002.

[8] A. N. K. Chen and B. B. M. Shao. Web services enabled procurement
in the extended enterprise: An architectural design and implementation.
J. Electron. Commerce Res., 4(4):140–155, 2003.

[9] C. Ferris and J. A. Farrell. What are web services? Commun. ACM,
46(6):31, 2003.

[10] M. Grechanik, D. S. Batory, and D. E. Perry. Integrating and reusing
GUI-driven applications. In ICSR, pages 1–16, 2002.

[11] J. R. Larus and E. Schnarr. EEL: Machine-independent executable
editing. In PLDI, pages 291–300, 1995.

[12] R. C. Miller. End-user programming for web users. In End User
Development Workshop, Conference on Human Factors in Computer
Systems, 2003.

[13] R. C. Miller and B. A. Myers. Integrating a command shell into a
web browser. In USENIX Annual Technical Conference, General Track,
pages 171–182, 2000.

[14] B. A. Myers. User interface software technology. ACM Comput. Surv.,
28(1):189–191, 1996.

[15] W. Zhao, B. R. Bryant, C. C. Burt, R. R. Raje, A. M. Olson, and
M. Auguston. Automated glue/wrapper code generation in integration
of distributed and heterogeneous software components. In EDOC, pages
275–285, 2004.


