
2

3

Last Time
When program S executes it switches to a 
different state
We need to express assertions on the states 
of the program S before and after its 
execution
We can do it using a Hoare triple written as 
{P}S{Q}, where P is a precondition, S is a 
program, and Q is a postcondition
We used flowchart diagrams to prove partial 
correctness and termination of two programs

4

Inference Rules

An inference rule maps one or more wffs, called premises, to 
a single wff, called the conclusion

,  modus ponens (MP)A A B
B
→

∴

,  modus tollens (MT)B A B
A

¬ →
∴¬

,  conjunction intro (CI)A B
A B∴ ∧

 disjunction intro (DI)A
A B∴ ∨

, disjunctive syllogism (DS)A B A
B

∨ ¬
∴

, hypothetical syllogism (HS)A B B C
A C

→ →
∴ →

, , constructive dilemma (CD)A B A C B D
C D

∨ → →
∴ ∨

, , destructive dilemma (DD)C D A C B D
A B

¬ ∨ ¬ → →
∴¬ ∨ ¬
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Proofs

A proof is a finite sequence of wffs s.t. each wff in the sequence is either an 
axiom or a premise or can be inferred from previous wffs in the sequence
A formal reasoning system is also called a formal theory
If a formal theory enables the proof of both wffs P and ¬P, then this theory 
is inconsistent (not sound)
How to build consistent theories?

Choose axioms to be tautologies
Choose inference rules to map tautologies onto tautologies

Examples
Prove (A ∨ B) ∧ (A ∨ C) ∧ ¬A → B ∧ C

1. A ∨ B P
2. A ∨ C P
3. ¬A P
4. B 1,3,DS
5. C 2,3,DS
6. B ∧ C 4,5,CI
7. QED 1,2,3,6

6

Our Strategy

Recall proof calculi for propositional and 
predicate logic

Formula to prove, inference rules, axioms
For example, to prove φ → ϕ we assume φ and 
manage to show ϕ using given inference rules

What if we replace a logic formula with a 
piece of code?
Can we prove fragments of code and these 
small proofs compose a final proof?



4

7

Partial Correctness, Termination, and  
Total Correctness

Partial correctness: if for all states that satisfy the 
precondition, the state resulting from program’s 
execution satisfies the postcondition, provided that 
the program terminates
Termination: if the precondition holds, then the 
program terminates
Total correctness: if for all states in which P is 
executed which satisfy the precondition, P is 
guaranteed to terminate and the resulting state 
satisfies the postcondition

8

Proof Calculus For Partial Correctness

Goes back to R.Floyd and C.A.R. Hoare

Given a language grammar

Given proof rules for each of the grammar 
clauses for commands

We construct our proofs in a form of proof 
tableaux
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A Core Programming Language

S ::= 
x=E |
S;S |
if B {S} else {S} |
while B {S}

B ::= true | false | (!B) | (B&B) | (B||B) | (E<E)
E ::= n | x | (-E) | (E-E) | (E+E) | (E*E)
n is any numeral
x is any variable

10

A Program For Computing a Factorial

Factorial( x ) {
y = 1;
z = 0;
while( z != x) {

z = z + 1;
y = y * z;

}
}

0! 1
( 1)! ( 1) !n n n+ + ⋅
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Composition Rule

S1 and S2 are program fragments
In order to prove {P} S1;S2{R} we need to find 
an appropriate Q
Then we prove {P} S1{Q} and {Q}S2{R} 
separately

{ } { } { } { }
{ } { }

1 2

1 2

        
;

P S Q Q S R
P S S R

12

Assignment

No premises => it is an axiom!
We wish to know that P holds in the state 
after the assignment x = E
P[E/x] means the formula obtained by taking 
P and replacing all occurrences of x with E

P with E in place of x

{ } { }
                                    

EP x E Px
⎡ ⎤ =⎣ ⎦
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Assignment: Flawed Understanding

If P holds in a state in which we perform the 
assignment x = E, then P[E/x] holds in the 
resulting state

We replace x by E
Do we perform this replacement of occurrences of 
x in a condition on the starting state by E?

{ } { }
                                    

EP x E Px
⎡ ⎤ =⎣ ⎦

14

Assignment: Correct Understanding

Do we perform this replacement of occurrences of x 
in a condition on the starting state by E?
No, we need to prove something about the initial 
state in order to prove that P holds in the resulting 
state
Whatever P says about x but applied to E must be 
true in the initial state

{ } { }
                                    

EP x E Px
⎡ ⎤ =⎣ ⎦
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Assignment: Examples

If we want to prove x=2 after the assignment x=2, 
then we must be able to prove that 2=2 before it

{ } { }
                                    

2 2 2 2x x= = =

If we want to prove x=y after the assignment x=2, 
then we must be able to prove that 2=y before it

{ } { }
                                    

2 2y x x y= = =

16

Assignment: Exercises

{ } { }
                                    

1 2 1 2x x x x+ = = + =

{ } { }
                                    

1 1x y x x x y+ = = + =

{ } { }
                                    

1 0 0 1 0 0x y x x x y+ > ∧ > = + > ∧ >
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Assignment

This assignment axiom is best applied backward 
than forward in the verification process
We know Q and wish to find P s.t. {P}x=E {Q} – easy

Set P to be Q[E/x]

If we know P and want to find Q s.t. {P} x=E {Q}  –
very difficult!!!

{ } { }
                                    

EP x E Px
⎡ ⎤ =⎣ ⎦

18

IF-Statement Rule

S1 and S2 are program fragments
Decompose the if rule into two triples
Then we prove these triples separately

{ } { } { } { }
{ } { } { }{ }

1 2

1 2

        
if     else 

P B S Q P B S Q
P B S S Q

∧ ∧ ¬
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WHILE-Statement Rule

S is a program fragment that is executed multiple 
times in the while loop
We don’t know how many times S is gonna be 
executed or whether it terminates at all
P is a loop invariant

{ } { }
{ } { }{ }while  

P B S P
P B S P B

∧
∧ ¬

20

Implied Rule

Implied rule allows the precondition to be 
strengthened

We assume more than we need to
The postcondition may be weakened

We conclude less than we are entitled to

{ } { }
{ } { }

' '

' '

P P        P            Q Q
P

S Q
S Q

→ →-- --l l
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A Program For Computing a Factorial

Factorial( x ) {
y = 1;
z = 0;
while( z != x) {

z = z + 1;
y = y * z;

}
}

0! 1
( 1)! ( 1) !n n n+ + ⋅

Let’s Prove It!!!Let’s Prove It!!!

22

Proof Tableaux

What is good about them?
Tree structure
We think of a program as a sequence of code 
fragments

We interleave the program code with 
intermediate formulae called midconditions
Is it easy to read proof tableaux?
Is there an alternative?
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Division With Remainder Example

{ }

( )

{ }

0 0
0;
;

while   {
     ;
     1;
}

0

x y
a
b x

b y
b b y
a a

x a y b b b y

≥ ∧ ≥

=
=

≥

= −
= +

= ⋅ + ∧ ≥ ∧ <

{ }
Invariant:

0x a y b b= ⋅ + ∧ ≥

DivProg

24

Invariant

How to start the proof?
Heuristics: Find invariant for each loop.

For this example: x=a*y+b ∧ x>=0
Note: total correctness does not hold for 
y=0
Total correctness (with y>0) should be 
proved separately.
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Proof
{ } { }0 0x a y x x b x x a y b b= ⋅ + ∧ ≥ = = ⋅ + ∧ ≥

{ } { }0 0 0 0x y x x a x a y x x= ⋅ + ∧ ≥ = = ⋅ + ∧ ≥

{ } { }0 0 0; 0x y x x a b x x a y b x= ⋅ + ∧ ≥ = = = ⋅ + ∧ ≥

1

2

3

26

Proof
( ){ } { }1 0 1 0x a y b b a a x a y b b= + ⋅ + ∧ ≥ = + = ⋅ + ∧ ≥

( ){ }
( ){ }

1 0

1 0

x a y b y b y b b y

x a y b b

= + ⋅ + − ∧ − ≥ = −

= + ⋅ + ∧ ≥

( ){ }
{ }

1 0 ; 1

0

x a y b y b y b b y a a

x a y b b

= + ⋅ + − ∧ − ≥ = − = +

= ⋅ + ∧ ≥

4

5

6
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Consequence rules
Strengthen a precondition

Weaken a postcondition

{ } { }
{ } { }
        R P P S Q
R S Q

→

{ } { }
{ } { }

        P S Q Q R
P S R

→

28

Proof
( ) ( )( )0 1 0x a y b b b y x a y b y b y= ⋅ + ∧ ≥ ∧ ≥ → = + ⋅ + − ∧ − ≥

{ }
{ }

0 ; 1

0
consequence, 6, 7

x a y b b b y b b y a a

x a y b b

= ⋅ + ∧ ≥ ∧ ≥ = − = +

= ⋅ + ∧ ≥

{ } ( )

{ }

0 while  {
        ; 1

0
while, 8

x a y b b b y
b b y a a

x a y b b b y

= ⋅ + ∧ ≥ ≥

= − = +

= ⋅ + ∧ ≥ ∧ <

7

8

9
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Proof
{ }
{ }

DivPro0 0

0
composition, 3,9

gx y x x

x a y b b b y

= ⋅ + ∧ ≥

= ⋅ + ∧ ≥ ∧ <

( ) ( )0 0 0 0x y x y x x≥ ∧ ≥ → = ⋅ + ∧ ≥

{ }
{ }

DivPro0 0

0
consequenc

g

e

x y x x

x a y b b b y

= ⋅ + ∧ ≥

= ⋅ + ∧ ≥ ∧ <

10

11

12

30

Soundness
Hoare logic is sound in the sense 
that everything that can be proved 
is correct!

This follows from the fact that each 
axiom and proof rule preserves 
soundness
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Completeness
A proof system is called complete if every 
correct assertion can be proved

Propositional logic is complete

No deductive system for the standard 
arithmetic can be complete (Godel)

32

And for Hoare’s logic?

Let S be a program and P its precondition

Then {P} S {⊥} means that S never 
terminates when started from P

This is undecidable
Thus, Hoare’s logic cannot be complete
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General Observations

If we can prove programs then we represent 
them as mathematical objects
Does it mean that computer programmers are 
like mathematicians?
Mathematicians try to improve their 
confidence in the correctness of theorems
They use chain of formal logic statements to 
achieve this goal

34

Is Proof = Program?

By verifying a program we increase our 
confidence in it
So, it is like verifying the correctness of a 
theorem, right?
The critical piece here is a social process that 
governs the acceptance of a theorem
It is completely different between 
mathematical theorems and verified program
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Mathematical Process

Mathematicians publish about 200,000 
theorems each year
Are all of them correct and/or accepted?
Multiple examples of famous mathematicians 
who announced and published proofs of 
theorems that were discredited later

Sometimes after many, many years!
Mathematicians make a lot of mistakes!

36

Who Corrects Those Mistakes?

Examples of contradictory results from 
published complicated proofs are well-known
Only mathematicians can correct their errors, 
but who verifies the correctness of 
corrections?

A proof does not in itself significantly 
raise our confidence in the probable truth 
of the theorem it purports to prove
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What About Algebraic Proof?

Many examples confirm that proofs that 
consist solely of calculations are not 
necessarily correct

It is not the question of “how do theorems get 
believed?”

It is a question of “what is it we believe when 
we believe a theorem?”

38

Long Proofs

Given a proof that occupies 2,000 pages, 
how long would it take to verify its 
correctness?
What is a value of a long and complicated 
proof?
How social process works for 
mathematicians?
What is a fundamental difference between 
mathematicians and computer scientists 
doing proofs?
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Why Do We Need Program 
Verification?

Testing can never show the absence of 
errors, only their presence
Software errors can cause major disasters 
especially in critical systems
Math is used to state program properties and 
to prove program correct for all inputs
However, program verification is expensive 
and has other drawbacks

40

Man and Machines

What parts of program verifications cannot be 
replaced by machines?

How to choose what properties to prove?

How to find errors in specifications?

Is the proof process correct?



21

41

Tool-Assisted Verification

We can use tools that mechanize the 
deduction process
If we have executable specifications then we 
can use tools that assist us in debugging 
these specifications
When doing proof of program correctness we 
can use theorem provers to ensure proof 
correctness

42

Limitations of Program Verification

We have only limited ways to convince 
ourselves that we are given a correct spec
Even with the right specification we can prove 
only the correctness of mathematical 
abstraction, never of the system running in 
the real world
There is a significant cost associated with 
program correctness proofs
Not all systems are equally critical
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Cost and Assurance of Formal Methods

Testing

Executable
Specs

Run-time
verification,
spec-based
certification,

and 
scalable
methods

Search
and

Bounded
model

checking

Model
Checking

Theorem
Proving

Effort

A
ss

ur
an

ce

44

Believing Software

People cannot create perfect mechanisms

Use social processes to create reliable 
structures

This is what most engineers do

Computing structures are not
Perfect
The energy that can be wasted to make them 
perfect, is limited
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Homework

Mandatory
R. De Millo, R. Lipton, and A. Perlis. "Social processes and 
proofs of theorems and programs," Communications of the 
ACM, 22(5):271-280, May 1979
R. Floyd, `Assigning meaning to programs', Proc. Symposium 
on Applied Mathematics, American Mathematical Society, 1967, 
Vol. 1, pp. 19--32.
J. Fetzer. "Program verification: The very Idea," 
Communications of the ACM, Vol. 31. No. 9. pp. 1049-1063.

Downloadable from http://www.swt.edu/~mg43/reading.html

Optional
1. Michael Huth and Mark Ryan, Logic in Computer Science: 

Modelling and Reasoning about Systems, Cambridge University 
Press, November 1999.




