

A Program For Computing a Factorial
Factorial(x) {

$$y = 1;$$

 $z = 0;$ $0! \triangleq 1$
while($z != x$) {
 $z = z + 1;$ $(n+1)! \triangleq (n+1) \cdot n!$
 $y = y * z;$
}

Assignment: Exercises

$$\frac{x+1=2}{x=x+1\{x=2\}}$$

$$\frac{x+1=y}{x=x+1\{x=y\}}$$

$$\frac{x+1>0 \land y>0}{x=x+1\{x>0 \land y>0\}}$$

Proof

$$(x=a \cdot y+b \wedge b \ge 0 \wedge b \ge y) \rightarrow (x=(a+1) \cdot y+b-y \wedge b-y \ge 0)$$

$$\{x=a \cdot y+b \wedge b \ge 0 \wedge b \ge y\} b=b-y; a=a+1$$

$$\{x=a \cdot y+b \wedge b \ge 0\}$$
consequence, 6, 7
$$\{x=a \cdot y+b \wedge b \ge 0\}$$
 while $(b \ge y)$ {
 $b=b-y; a=a+1$
 $\{x=a \cdot y+b \wedge b \ge 0 \wedge b < y\}$
while, 8

