Relay Model

- Selective semantic information + syntactic dependency information
 - origination of a fault
 - computational transfer of a fault
 - propagation of a fault (based on data and control flow)
- Define necessary and sufficient conditions for detecting certain classes of faults
Overview of Relay Model

- **origination**
 - introduction of potential failure at smallest (valued) subexpression containing fault

- **transfer**
 - “movement” of potential failure in program
 - Within the originating statement
 - computational transfer
 - From one statement to the next
 - data dependence transfer
 - control dependence transfer
Relay Model

```
observable
failure :=
```

```
faulttransfer := transfer
```

```
transfer
```

```
“observable”
failure :=
```

```
transfer
```
Example

Correct:

1. input B, C
2. \(A = C \times (B + 1)^2 \)
3. \(D = (A \times B) + C \)
4. \(X = B \times C \)
5. \(D < X - 5 \)
6. \(Y = (X \times 2) + C \)
7. \(Y = (2 \times X) + C \)

What test data would reveal this fault?
Example

1. input B, C
2. A: = C * (B + 1)
3. D: = (A * B) + C
4. X: = B * C
5. D < X - 5
6. Y: = (X ** 2) + C
7. Y: = (2 * X) + C

Module t. c. exp a d x d < x - 5 y output
B+C
faulty 1 1 2 2 3 1 F 2 2
B+1 correct 1 1 2 2 3 1 F 2 2

NO ORIGINATION OF POTENTIAL FAILURE AT NODE 2
Example

1. input B, C
2. \(A := C \times (B + 1) \)
3. \(D := (A \times B) + C \)
4. \(X := B \times C \)
5. \(D < X - 5 \)
6. \(Y := (X \times 2) + C \)
7. \(Y := (2 \times X) + C \)

<table>
<thead>
<tr>
<th>module</th>
<th>t. c.</th>
<th>exp</th>
<th>a</th>
<th>d</th>
<th>x</th>
<th>d < x - 5</th>
<th>y</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+C</td>
<td>faulty</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>B+1</td>
<td>correct</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>F</td>
<td>0</td>
</tr>
</tbody>
</table>

ORIGINATION (NODE 2), NO COMPUTATIONAL TRANSFER AT NODE 2
Example

1. input B, C
2. A: = C * (B + 1)
3. D: = (A * B) + C
4. X: = B * C
5. D < X - 5
6. Y: = (X ** 2) + C
7. Y: = (2 * X) + C

<table>
<thead>
<tr>
<th>module</th>
<th>t. c.</th>
<th>exp</th>
<th>a</th>
<th>d</th>
<th>x</th>
<th>d < x - 5</th>
<th>y</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+C</td>
<td>faulty</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>correct</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

ORIGINATION, COMP. TRANSFER (NODE 2)
NO DATA DEPENDENCE TRANSFER AT NODE 3
Example

1. input B, C
2. A: = C * (B + C)
3. D: = (A * B) + C
4. X: = B * C
5. D < X - 5

FALSE
6. Y: = (X ** 2) + C

TRUE
7. Y: = (2 * X) + C

output Y

<table>
<thead>
<tr>
<th>module</th>
<th>t. c.</th>
<th>exp</th>
<th>a</th>
<th>d</th>
<th>x</th>
<th>d < x - 5</th>
<th>y</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+C</td>
<td>b</td>
<td>c</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>15</td>
<td>33</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>faulty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B+1</td>
<td>b</td>
<td>c</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>correct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODE 3)
NO DATA DEPENDENCE TRANSFER AT NODE 5
Example

1. input B, C
2. \(A = C \times (B + 1) \)
3. \(D = (A \times B) + C \)
4. \(X = B \times C \)
5. \(D < X - 5 \)
6. \(Y = (X \times 2) + C \)
7. \(Y = (2 \times X) + C \)

FALSE \quad I \quad TRUE

FAULTY

CORRECT

Module	t. c.	exp	a	d	x	d < x - 5	y	Output
B+C | faulty | -2 | -1 | -3 | 3 | -7 | 2 | T | 3 | 3
B+C | correct | -2 | -1 | -1 | 1 | -3 | 2 | F | 3 | 3

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODES 3, 5)
NO CONTROL DEPENDENCE TRANSFER AT NODE 7 and 6
Example

1. input B, C
2. A: = C * (B + 1)
3. D: = (A * B) + C
4. X: = B * C
5. D < X - 5

FALSE

6. Y: = (X ** 2) + C

TRUE

7. Y: = (2 * X) + C

output Y

<table>
<thead>
<tr>
<th>module</th>
<th>t. c.</th>
<th>exp</th>
<th>a</th>
<th>d</th>
<th>x</th>
<th>d < x - 5</th>
<th>y</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>B+C</td>
<td>faulty</td>
<td>1</td>
<td>-3</td>
<td>-2</td>
<td>6</td>
<td>3</td>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>B+1</td>
<td>correct</td>
<td>1</td>
<td>-3</td>
<td>2</td>
<td>-6</td>
<td>-9</td>
<td>T</td>
<td>-9</td>
</tr>
</tbody>
</table>

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODES 3, 5)
CONTROL DEPENDENCE TRANSFER (NODE 6)
FAILURE AT NODE 8
To Guarantee Detection

Step 1: guarantee introduction of potential failure at statement containing hypothetical fault
 • origination condition
 • computational transfer conditions at statement
 • called original state potential failure condition

Step 2: guarantee transfer of potential failure along information flow to some output
 • called transfer set condition
Step 1a

• origination condition
 • guarantees introduction of potential failure in smallest subexpression
 • \(\exp \neq \exp^* \)
 • defined for fault
 • suppose \(c^*(b+1) \) instead of \(c^*(b+c) \)
 \[\Rightarrow c \neq 1 \]
Step 1b

- computational transfer condition for a statement
 - $\text{exp1} \ <\text{op}> \ \text{exp2} \neq \text{exp1}' \ <\text{op}> \ \text{exp2}$
 - defined for operator and fault
 - e.g., $(b + c) \neq (b + 1) \Rightarrow c \neq 1$
 - many are fault independent
 - $c \ast (\text{exp}) \neq c \ast (\text{exp}')$
 - $\Rightarrow c \neq 0$
Step 2

- Information flow transfer
 - combines data dependence and control dependence transfer
 - occurs along information flow chains
 - to guarantee transfer from (hypothetically) faulty node to output must guarantee transfer along transfer set
 - collection of information flow chains that can be executed together
Simpler Example

1. **input** X, Y, Z

2. $A := X + Y$

3. $B := A \times X$

4. $C := A \times Y$

5. $D := B \times C$

6. **output** D

条件:
- $Y \neq Z$
- $X \neq 0$
- $C \neq 0 \Rightarrow A \times Y \neq 0 \Rightarrow Y \neq 0 \land A \neq 0$
- $Y \neq 0 \land X + Y \neq 0 \Rightarrow Y \neq 0 \land X \neq -Y$
- $B \neq 0 \Rightarrow A \times X \neq 0 \Rightarrow$
Necessary but not sufficient?

1. input X, Y, Z
2. A := X + Y
3. B := A * X
4. C := A * Y
5. D := B * C
6. output D

Y ≠ Z
X ≠ 0
C ≠ 0 ⇒
A * Y ≠ 0 ⇒
Y ≠ 0 ∧ A ≠ 0 ⇒
Y ≠ 0 ∧ X + Y ≠ 0 ⇒
Y ≠ 0 ∧ X ≠ −Y
B ≠ 0 ⇒
A * X ≠ 0 ⇒
X ≠ 0 ∧ A ≠ 0 ⇒
X ≠ 0 ∧ X + Y ≠ 0 ⇒
X ≠ 0 ∧ X ≠ −Y

<table>
<thead>
<tr>
<th>module</th>
<th>test case</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>x+y</td>
<td>faulty</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>x+z</td>
<td>correct</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

[Image of the diagram]
input X, Y, Z

2* A: = X + Z

Y ≠ Z

module test case	a	b	c	d	output
x+y | x | y | z | | |
1 | faulty | 1 | -3 | 1 | -2 | -2 | 6 | -12 | -12
2 | correct | 1 | -3 | 1 | 2 | 2 | -6 | -12 | -12
x+z | | | | | | | | |
x+y | | | | | | | | |
2 | faulty | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0
x+z | correct | 1 | -1 | 1 | 2 | 2 | -2 | -4 | -4
Transfer Condition

- condition that guarantees transfer
 - must know points of interaction
 - places where two or more potential failures come together

- Transfer set defines locations of potential interaction
 - Notation: \((U_n, V_m)\) means faulty value for variable \(U\) at node \(n\) transfers to variable \(V\) at node \(m\)

- Transfer route defines chains of transfer set elements that can be combined to form a path
Example

- Transfer Set =
 \{(A_2, B_3), (B_3, D_5), (D_5, \text{out}_6), (A_2, C_4) (C_4, D_5) \}

Notation: \((U_n, V_m)\) means faulty value for variable \(U\) at node \(n\) transfers to variable \(V\) at node \(m\)
Construction of Transfer Route

- different ways to transfer along same set, depending on which portions of chains transfer and which do not

- a transfer route is a subset of the nodes in a transfer set where transfer does and does not occur

- a transfer route defines where actual interactions occur
Example

• Transfer Set =
 \{ (A_2, B_3), (B_3, D_5), (D_5, \text{out}_6), (A_2, C_4), (C_4, D_5) \}

• Transfer Routes
 1. (A transfers to B at 3) and
 (A does not transfer to C at 4)
 and (B transfers to D at 5)
 2. (A does not transfer to B at 3)
 and (A transfers to C at 4)
 and (C transfers to D at 5)
 3. (A transfers to B at 3) and
 (A transfers to C at 4) and
 (B and C transfer to D at 5)
Transfer Condition

1. Path Condition
 - guarantees execution of a particular transfer route
 - must guarantee execution of nodes in chain as well as def-clear paths between nodes

2. Transfer Route Condition
 - guarantees transfer for particular transfer route
 - computational transfer conditions at nodes in transfer route where transfer does occur
 - complement of computational transfer conditions at nodes where transfer does not occur
Transfer Routes for Example

1. (A transfers to B at 3) and
 (A does not transfer to C at 4) and
 (B transfers to D at 5)
2. (A does not transfer to B at 3) and
 (A transfers to C at 4) and
 (C transfers to D at 5)
3. (A transfers to B at 3) and
 (A transfers to C at 4) and
 (B and C transfer to D at 5)
Condition for First Transfer Route

(A transfers to B at 3) and
(A does not transfer to C at 4) and
(B transfers to D at 5)

- **Transfer Route Conditions:**
 \[x \neq 0 \land y = 0 \land c \neq 0 \Rightarrow \]
 \[x \neq 0 \land y = 0 \land a \cdot y \neq 0 \Rightarrow \text{false} \]

```
2* A := X + Z
```

```
1 input X, Y, Z
2 A := X + Y
3 B := A * X
4 C := A * Y
5 D := B * C
output D
```
Condition for Second Transfer Route

(A does not transfer to B at 3) and
(A transfers to C at 4) and
(C transfers to D at 5)

• Transfer Route Conditions:
 \(x = 0 \land y \neq 0 \land b \neq 0 \Rightarrow \)
 \(x = 0 \land y \neq 0 \land a \times x \neq 0 \Rightarrow \text{false} \)
Condition for Third Transfer Route

(A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

• Transfer Route Conditions:

\[x \neq 0 \land y \neq 0 \land b \ast c \neq b' \ast c' \Rightarrow \]
\[x \neq 0 \land y \neq 0 \land (a \ast x)(a \ast y) \neq (a' \ast x)(a' \ast y) \Rightarrow \]
\[x \neq 0 \land y \neq 0 \land (x+y)x(x+y)y \neq (x+z)x(x+z)y \Rightarrow \]
\[x \neq 0 \land y \neq 0 \land (x+y)^2 \neq (x+z)^2 \Rightarrow \]
\[x \neq 0 \land y \neq 0 \land y \neq z \]

test case: \(x=1, y=1, z=2\) satisfies the conditions and causes the fault to be revealed
Example

1. input X, Y, Z

2. A := X + Y

3. B := A * X

4. C := A * Y

5. D := B * C

6. output D

2* A: = X + Z

A= 2
B= 2
C= 4
D= 8

A= 3
B= 3
C= 3
D= 9

test case: x=1, y= 1, z=2 satisfies the conditions x \neq 0 \land y \neq 0 \land y \neq z
and causes the fault to be revealed
Failure condition

failure condition =

original state potential failure condition and transfer condition

if test data satisfies failure condition (fc) and failure \rightarrow fault
if test data satisfies fc and no failure \rightarrow no fault
if can't satisfy fc \rightarrow try another transfer set
if can't satisfy fc for all transfer sets \rightarrow no fault
Relay Fault Based Approach

- recognizes what is needed to transfer to output
- other fault based techniques:
 - do not deal with how to select test data that transfers
 - may recognize need to transfer but provide no guidance in test data selection (assume transfer “usually” occurs)
 - do not consider control dependence
 - none discuss interactions for a single fault/multiple faults -- they assume that there is a single fault or if there is more than one that there is no interaction
Relay Fault Based Approach

- defines what is needed to reveal a fault at a statement
 - a general procedure that could be applied to any "atomic" fault
- defines what is needed to propagate erroneous values to output
 - a very negative result!
 - if interaction is not accounted for, then the constraints are neither necessary nor sufficient
 - assumptions about single faults are now very questionable
 - can not assume constraints are necessary