No Silver Bullet: Essence and Accidents of

Software Engineering
Frederick P. Brooks

f all the monsters that fill the
0 nightmares of our folklore, none
terrify more than werewolves,
because they transform unexpectedly
from the familiar into horrors. For these,

one seeks bullets of silver that can magic-
ally lay them to rest.



The first step toward the management

of disease was replacement of demon
theories and humours theories by the germ
theory, That very step, the beginning of
hope, in itself dashed all hopes of magical
solutions. It told workers that progress
would be made stepwise, at great effort,
and that a persistent, unremitting care
would have to be paid to a discipline of
cleanliness. So it is with software engi-
neering today.



Proposed Silver Bullets

» Structured programming

* Modularity

* Data Abstraction

» Software Verification

* Object oriented

 Agile or Xtreme programming
* Aspect oriented programming



Complexity. Software entities are more
complex for their size than perhaps any
other human construct because no two
parts are alike (at least above the statement
level). If they are, we make the two similar
parts mnto a subroutine—open or closed,
In this respect, software systems differ
profoundly from computers, buildings, or
automobiles, where repeated elements
abound.



Requirements refinement and rapid
prototyping. The hardest single part of
building a software system 15 deciding
precisely what to build. No other part of
the conceptual work is as difficult as
establishing the detailed technical re-
quirements, including all the interfaces to
people, to machines, and to other software
systems. Mo other part of the work so crip-
ples the resulting system if done wrong.
Mo other part 15 more ditbicult to rectily
later.



Some yvears ago Harlan Mills proposed
that any software system should be grown
by incremental dewvelopment.'? That is,
the system should first be made to run,
cven 1f it does nothing useful except call
the proper set of dummy subprograms.
Then, bit by bit, it should be fleshed out,
with the subprograms in turn being devel-
oped—into actions or calls to empty stubs
in the level below,

Advocates:
- Incremental development
- Mentor and grow great designers



High-level Goals of Software Engineering

* improve productivity

e reduce resources
e.g., time, cost, personnel

 improve predictability
 improve maintainability
* improve quality

* improve security

* Most security problems would be eliminated by
using good SE practices



What do we need?

« Scientific basis for exploration and evaluation
» Organized discipline

* Trained professionals

» Technology transfer strategies

* Quality control

* Model for s/w engineering

* Based on accumulated experimental evaluations,
recommended best practices

e Evidence-based or Evaluation-based SE



	No Silver Bullet: Essence and Accidents of Software EngineeringFrederick P. Brooks
	Proposed Silver Bullets
	High-level Goals of Software Engineering
	What do we need?

