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Reference material

• Introduction to dynamic analysis
• Zhu, Hong, Patrick A. V. Hall, and John H. R. 
May, "Software Unit Test Coverage and 
Adequacy," ACM Computing Surveys, vol. 29, 
no.4, pp. 366-427, December, 1997



Common Definitions

• Failure-- result that deviates from the expected or specified intent
• Fault/defect-- a flaw that could cause a failure  
• Error -- erroneous belief that might have led to a flaw that could 

result in a failure
• Static Analysis -- the static examination of a product or a 

representation of the product for the purpose of inferring properties 
or characteristics

• Dynamic Analysis -- the execution of a product or representation of a 
product for the purpose of inferring properties or characteristics

• Testing -- the (systematic) selection and subsequent "execution" of 
sample inputs from a product's input space in order to infer 
information about the product's behavior. 

• usually trying to uncover failures
• the most common form of dynamic analysis

• Debugging -- the search for the cause of a failure and subsequent 
repair



Validation and Verification:       V&V

• Validation -- techniques for assessing the quality of 
a software product

• Verification -- the use of analytic inference to 
(formally) prove that a product is consistent with a 
specification of its intent 

• the specification could be a selected property of interest or 
it could be a specification of all expected behaviors and 
qualities

e.g., all deposit transactions for an individual will be 
completed  before any withdrawal transaction will be 
initiated

• a form of validation
• usually achieved via some form of static analysis 



Correctness

• a product is correct if it satisfies all the 
requirement specifications
• correctness is a mathematical property
• requires a specification of intent
• specifications are rarely complete
• difficult to prove poorly-quantified qualities such 
as user-friendly

• a product is behaviorally or functionally
correct if it satisfies all the specified 
behavioral requirements



Reliability

• measures the dependability of a product
• the probability that a product will perform as 
expected

• sometimes stated as a property of time
e.g., mean time to failure

• Reliability vs. Correctness
• reliability is relative, while correctness is absolute
(but only wrt a specification)
• given a "correct" specification, a correct product 
is reliable, but not necessarily vice versa



Robustness

• behaves "reasonably" even in circumstances 
that were not expected
• making a system robust more than doubles 
development costs

• a system that is correct may not be robust, and 
vice versa



Approaches

• Dynamic Analysis
• Assertions
• Error seeding, 
mutation testing

• Coverage criteria
• Fault-based testing
• Specification-based 
testing

• Object oriented 
testing

• Regression testing

• Static Analysis
• Inspections
• Software metrics
• Symbolic execution
• Dependence Analysis
• Data flow analysis
• Software Verification



Types of Testing--what is tested 
• Unit testing-exercise a single simple component

• Procedure
• Class

• Integration testing-exercise a collection of inter-
dependent components

• Focus on interfaces between components
• System testing-exercise a complete, stand-alone 

system
• Acceptance testing-customer’s evaluation of a 

system
• Usually a form of system testing

• Regression testing-exercise a changed system
• Focus on modifications or their impact



Test planning
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Approaches to testing

• Black Box/Functional/Requirements based

• White Box/Structural/Implementation based



White box testing process
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Black box testing process
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Why black AND white box?

• Black box
• May not have access to the source code
• Often do not care how s/w is implemented, only 
how it performs

• White box
• Want to take advantage of all the information
• Looking inside indicates structure=> helps 
determine weaknesses 



Paths

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z
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Z := Z + 10 Z := Z + 20

•Paths:
–1, 2, 4, 5, 7
–1, 2, 4, 6, 7
–1, 3, 4, 5, 7
–1, 3, 4, 6, 7



Paths can be identified by predicate outcomes

•outcomes
–t, t
–t, f
–f, t
–f, f
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Paths can be identified by domains

•domains
–{ X, Y |  X > 0 and X * Y > 0}
–{ X, Y |  X > 0 and X *  Y < = 0 }
–{ X, Y |  X < = 0 and X *  Y > 0}
–{ X, Y |  X < = 0 and X *  Y < = 0}
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Z := 1 Z := 5

X * Y > 0

X := Y + Z
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Z := Z + 10 Z := Z + 20



Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z  := 10 Z := 20

X := Y + Z
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Y := X / 2



Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z  := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < =  0, Y = 5

X > 0

X > 0, Y > 0



Example Paths

• Feasible path: 1, 2, 4, 5, 7
• Infeasible path: 1, 3, 4, 5,7
• Determining if a path is feasible or 
not requires additional semantic 
information
• In general, unsolveable
• In practice, intractable



Another example of an infeasible path

For i :=1 to 5 do
x ( i ) := x ( i +1 ) + 1;
end for:

i :=1

x ( i ) := x ( i +1 ) +1

i := i + 1

i <= 5

true

false
Note, implicit 
instructions are 
explicitly represented



Infeasible paths vs. unreachable code and dead code

unreachable code
X := X + 1;
Goto loop;
Y := Y + 5;

dead code
X := X + 1;
X := 7;
X := X + Y;

Never executed

‘Executed’, but 
irrelevant 



Test Selection Criteria

• How do we determine what are good test 
cases?

• How do we know when to stop testing?

Test Adequacy



Test Selection Criteria

• A test set T is a finite set of inputs (test cases) to 
an executable component

• Let D( S ) be the domain of execution for 
program/component/system S

• Let S(T) be the results of executing S on T
• A test selection criterion C(T,S) is a predicate that 

specifies whether a test set T satisfies some 
selection criterion for an executable component S.

• Thus, the test set T that satisfies the Criterion C 
is defined as:

{ tєT | T⊆ D(S) and C( T, S ) }



Ideal Test Criterion

• A  test criterion is ideal if for any 
executable system S and every 
T ⊆ D( S ) such that C( T, S ), 
if S (T) is correct, then S is correct

• of course we want T<< D( S )
• In general, T= D( S ) is the only test 
criterion that satisfies ideal



In general, there is no ideal test criterion 

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

• Dijkstra was arguing that verification was better 
than testing 

• But verification has similar problems
• can't prove an arbitrary program is correct

• can't solve the halting problem
• can't determine if the specification is complete

• Need to use dynamic and static techniques that 
compliment each another 



Effectiveness a more reasonable goal

• A  test criterion C is effective if for any 
executable system S and every 
T ⊆ D (S ) such that C(T, S),   

⇒if S (T) is correct, then S is highly reliable
OR
⇒ if S (T) is correct, then S is guaranteed (or is 
highly likely) not to contain any faults of a 
particular type

• Currently can not do either of these very well
• Some techniques (static and dynamic) can provide some 

guarantees  



Two Uses for Testing Criteria

• Stopping rule--when has a system been 
tested enough

• Test data evaluation rule--evaluates the 
quality of the selected test data

• May use more than one criterion
• May use different criteria for different types of 
testing

• regression testing versus acceptance testing



Black Box/Functional Test Data Selection 

• Typical cases
• Boundary conditions/values
• Exceptional conditions
• Illegal conditions (if robust)
• Fault-revealing cases 

• based on intuition about what is likely to 
break the system

• Other special cases



Functional Test Data Selection 

• Stress testing
• large amounts of data
• worse case operating conditions

• Performance testing
• Combinations of events

• select those cases that appear to be 
more error-prone

• Select 1 way, 2 way, … n way 
combinations



Sequences of events

• Common representations for 
selecting sequences of events
• Decision tables
• Usage scenarios



Decision Table

events t1 t2 t3 t5 t6 t7 ...
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Usage Scenarios



Overview of Dynamic Analysis Techniques

• Testing Processes
• Unit, Integration, System, Acceptance, 
Regression, Stress

• Testing Approaches
• Black Box versus White Box

• Black Box Strategies
• Test case selection criteria
• Representations for considering combinations of 
events/states



White Box/Structural Test Data Selection

• Coverage based
• Fault-based 

• e.g., mutation testing, RELAY
• Failure-based

• domain and computation based 
• use representations created by symbolic 
execution



Coverage Criteria

• control-flow adequacy criteria
• G = (N, E, s, f) where

• the nodes N represent executable instructions 
(statement or statement fragment) 

• the edges E represent the potential transfer of 
control

• s є N is a designated start node
• f є N is a designated final node 
• E = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}



Control-Flow-Graph-Based Coverage Criteria 

• Statement Coverage 
• Branch Coverage
• Path Coverage
• Hidden Paths
• Loop Guidelines

• General
• Boundary - Interior



Statement Coverage

• requires that each statement in a program 
be executed at least once

• formally:
• a set P of paths in the CFG satisfies the 
statement coverage criterion iff for 
each ni є N, ∃ p є  P such that ni is on 
path p
• defined in terms of paths



Statement Coverage
• only about 1/3 of NASA statements were 
executed before software was released 
(Stucki 1973)

• usually can achieve 85% coverage easily, 
but why not 100%? 

• unreachable code
• complex sequence (should be tested!)

• Microsoft reports 80-90% code coverage



How does OO affect coverage?

• Often only parts of a reused component are 
actually executed by a system
• Would expect good coverage for unit testing
• More restricted coverage for integration testing



Coincidental Correctness

• Executing a statement does not 
guarantee that a fault on that path will 
be revealed

• Example:
Y : = X * 2
Y : = X * * 2

If x = 2 then the
fault is not exposed



Branch Coverage

• Requires that each branch in a 
program (each edge in a control flow 
graph) be executed at least once
• e.g., Each predicate must evaluate to 
each of its possible outcomes

• Branch coverage is stronger than 
statement coverage



Branch Coverage

3

1

2

STATEMENT COVERAGE: PATH 1, 2, 3

BRANCH COVERAGE: PATH 1, 2, 1, 2, 3



Hidden Path (branch) Coverage
• Requires that each condition in a compound 
predicate be tested
Example:

( X > 1 ) ∨ ( Y < 2 )
Test Data:

X = 2, Y = 5 ->T
X = 1, Y = 5 ->F

but, true  branch is never tested for data where Y < 2.

( X > 1 ) ( Y < 2 )
T F
F T
T T
F F

X > 1

Y < 2

T

F

F

T



Path Coverage
• Requires that every executable path in the program 

be executed at least once
• In most programs, path coverage is impossible

• Example:
read N;
SUM :=  0;
for I = 1 to N do

read X;
SUM := SUM + X;

endfor
• How do we choose a set of paths?



Loop Coverage

• Path 1, 2, 1, 2, 3  executes all branches 
(and all statements) but does not execute 
the loop well.

1

3

2



Typical Guidelines for loop coverage

• fall through case
• minimum number of iterations
• minimum +1 number of iterations
• maximum number of iterations

3

2

1 1, 3
1,2,3
1,2,1,2,3
(1, 2,)n 3



Boundary - Interior Criteria

• boundary test of a  loop causes the loop to 
be entered but not iterated

• interior test of a loop causes a loop to be 
entered and then iterated at least once

• both boundary and interior tests are to be 
selected for each unique path through the 
the loop



Example

2
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Paths for Example

2

1

43

5 6

7

8

Boundary paths
1,2,3,5,7          a
1,2,3,6,7          b
1,2,4,5,7          c
1,2,4,6,7          d

Interior paths 
(for 2 executions of the loop)

a,a
a,b
a,c
a,d
b,a
b,b
...
x,y for x,y = a, b, c, d



Selecting paths that satisfy these criteria

• static selection
• some of the associated paths may be 
infeasible

• dynamic selection
• monitors coverage and displays areas that 
have not been satisfactorily covered



Problem with coverage criteria:

• Fault detection may depend upon
• Specific combinations of statements, not 
just coverage of those statements

• Astutely selected test data that reveals 
the fault, not just test data that 
executes the statement/branch/path

• Will look at semantically richer models
• First look at some axioms about testing 
criteria



Example program (symbolic evaluation)

procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmt PV PC

1      X← x true
Y ← y

2,3    Z ← x+y    true ∧ x≥3 = x≥3

5,6    Y ← y+5     x≥3 ∧ y>0

7,9   x≥3 ∧ y>0 ∧ x-(y+5)≥0  
= x≥3 ∧ y>0 ∧ (x-y)≥5



procedure Contrived is
X, Y, Z  : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end Contrived

Statements PV PC

1 X← x true
Y ← y

2,3                Z ← x+y true ∧ x≥3 = x≥3

5,6                Y ← y+5 x≥3 ∧ y>0

7,9   x≥3 ∧ y>0 ∧ x-(y+5)≥0 =    
x≥3 ∧ y>0 ∧ (x-y)≥5

Presenting the results

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y) | x≥3 ∧ y>0 ∧ x-y≥5}
C[P] = PV.Y = y +5



Results (feasible path)

y

y>0

x≥3 (x-y) ≥ 5

x

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y)|x≥3∧y>0∧x-y≥5}
C[P] = PV.Y = y +5



Evaluating another path
procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmts PV PC

1 X← x true
Y ← y

2,3     Z ← x+y    true ∧ x≥3 = x≥3

5,7                       x≥3 ∧ y≤0

7,8   x≥3 ∧ y≤0 ∧ x-y < 0 



Stmts PV         PC

1 X← x true
Y ← y

2,3        Z ← x+y        true ∧ x≥3 = x≥3

5,7                  x≥3 ∧ y≤0

7,8   x≥3 ∧ y≤0 ∧ x-y < 0 

procedure EXAMPLE is
X, Y, Z  : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end EXAMPLE

P = 1, 2, 3, 5, 7, 8
D[P] = { (x,y) | x≥3 ∧ y≤0  ∧ x-y<0}

infeasible path!



Results (infeasible path)

y

y ≤ 0

x ≥ 3 (x-y) < 0

x
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