
Introduction to Dynamic Analysis

Reference material

• Introduction to dynamic analysis
• Zhu, Hong, Patrick A. V. Hall, and John H. R.
May, "Software Unit Test Coverage and
Adequacy," ACM Computing Surveys, vol. 29,
no.4, pp. 366-427, December, 1997

Common Definitions

• Failure-- result that deviates from the expected or specified intent
• Fault/defect-- a flaw that could cause a failure
• Error -- erroneous belief that might have led to a flaw that could

result in a failure
• Static Analysis -- the static examination of a product or a

representation of the product for the purpose of inferring properties
or characteristics

• Dynamic Analysis -- the execution of a product or representation of a
product for the purpose of inferring properties or characteristics

• Testing -- the (systematic) selection and subsequent "execution" of
sample inputs from a product's input space in order to infer
information about the product's behavior.

• usually trying to uncover failures
• the most common form of dynamic analysis

• Debugging -- the search for the cause of a failure and subsequent
repair

Validation and Verification: V&V

• Validation -- techniques for assessing the quality of
a software product

• Verification -- the use of analytic inference to
(formally) prove that a product is consistent with a
specification of its intent

• the specification could be a selected property of interest or
it could be a specification of all expected behaviors and
qualities

e.g., all deposit transactions for an individual will be
completed before any withdrawal transaction will be
initiated

• a form of validation
• usually achieved via some form of static analysis

Correctness

• a product is correct if it satisfies all the
requirement specifications
• correctness is a mathematical property
• requires a specification of intent
• specifications are rarely complete
• difficult to prove poorly-quantified qualities such
as user-friendly

• a product is behaviorally or functionally
correct if it satisfies all the specified
behavioral requirements

Reliability

• measures the dependability of a product
• the probability that a product will perform as
expected

• sometimes stated as a property of time
e.g., mean time to failure

• Reliability vs. Correctness
• reliability is relative, while correctness is absolute
(but only wrt a specification)
• given a "correct" specification, a correct product
is reliable, but not necessarily vice versa

Robustness

• behaves "reasonably" even in circumstances
that were not expected
• making a system robust more than doubles
development costs

• a system that is correct may not be robust, and
vice versa

Approaches

• Dynamic Analysis
• Assertions
• Error seeding,
mutation testing

• Coverage criteria
• Fault-based testing
• Specification-based
testing

• Object oriented
testing

• Regression testing

• Static Analysis
• Inspections
• Software metrics
• Symbolic execution
• Dependence Analysis
• Data flow analysis
• Software Verification

Types of Testing--what is tested
• Unit testing-exercise a single simple component

• Procedure
• Class

• Integration testing-exercise a collection of inter-
dependent components

• Focus on interfaces between components
• System testing-exercise a complete, stand-alone

system
• Acceptance testing-customer’s evaluation of a

system
• Usually a form of system testing

• Regression testing-exercise a changed system
• Focus on modifications or their impact

Test planning

Requirements
Specification

Architecting Implementation
Designing

Coding

System
Testing

Integration
Testing Unit Testing

System Test
Plan

Integration
Test Plan

Unit
Test
Plan

Software
Sys Testing

Software Sys.
Test Plan

Approaches to testing

• Black Box/Functional/Requirements based

• White Box/Structural/Implementation based

White box testing process

test cases

evaluation

execution results

oracle
Requirements
or specifications testing report

test data selection
criteria

executable
component

(textual rep) executable
component
(obj code)

Black box testing process

test cases

evaluation

execution results

oracle
Requirements
or specifications testing report

test data selection
criteria

executable
component

(textual rep) executable
component
(obj code)

Why black AND white box?

• Black box
• May not have access to the source code
• Often do not care how s/w is implemented, only
how it performs

• White box
• Want to take advantage of all the information
• Looking inside indicates structure=> helps
determine weaknesses

Paths

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

•Paths:
–1, 2, 4, 5, 7
–1, 2, 4, 6, 7
–1, 3, 4, 5, 7
–1, 3, 4, 6, 7

Paths can be identified by predicate outcomes

•outcomes
–t, t
–t, f
–f, t
–f, f

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

Paths can be identified by domains

•domains
–{ X, Y | X > 0 and X * Y > 0}
–{ X, Y | X > 0 and X * Y < = 0 }
–{ X, Y | X < = 0 and X * Y > 0}
–{ X, Y | X < = 0 and X * Y < = 0}

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < = 0, Y = 5

X > 0

X > 0, Y > 0

Example Paths

• Feasible path: 1, 2, 4, 5, 7
• Infeasible path: 1, 3, 4, 5,7
• Determining if a path is feasible or
not requires additional semantic
information
• In general, unsolveable
• In practice, intractable

Another example of an infeasible path

For i :=1 to 5 do
x (i) := x (i +1) + 1;
end for:

i :=1

x (i) := x (i +1) +1

i := i + 1

i <= 5

true

false
Note, implicit
instructions are
explicitly represented

Infeasible paths vs. unreachable code and dead code

unreachable code
X := X + 1;
Goto loop;
Y := Y + 5;

dead code
X := X + 1;
X := 7;
X := X + Y;

Never executed

‘Executed’, but
irrelevant

Test Selection Criteria

• How do we determine what are good test
cases?

• How do we know when to stop testing?

Test Adequacy

Test Selection Criteria

• A test set T is a finite set of inputs (test cases) to
an executable component

• Let D(S) be the domain of execution for
program/component/system S

• Let S(T) be the results of executing S on T
• A test selection criterion C(T,S) is a predicate that

specifies whether a test set T satisfies some
selection criterion for an executable component S.

• Thus, the test set T that satisfies the Criterion C
is defined as:

{ tєT | T⊆ D(S) and C(T, S) }

Ideal Test Criterion

• A test criterion is ideal if for any
executable system S and every
T ⊆ D(S) such that C(T, S),
if S (T) is correct, then S is correct

• of course we want T<< D(S)
• In general, T= D(S) is the only test
criterion that satisfies ideal

In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

• Dijkstra was arguing that verification was better
than testing

• But verification has similar problems
• can't prove an arbitrary program is correct

• can't solve the halting problem
• can't determine if the specification is complete

• Need to use dynamic and static techniques that
compliment each another

Effectiveness a more reasonable goal

• A test criterion C is effective if for any
executable system S and every
T ⊆ D (S) such that C(T, S),

⇒if S (T) is correct, then S is highly reliable
OR
⇒ if S (T) is correct, then S is guaranteed (or is
highly likely) not to contain any faults of a
particular type

• Currently can not do either of these very well
• Some techniques (static and dynamic) can provide some

guarantees

Two Uses for Testing Criteria

• Stopping rule--when has a system been
tested enough

• Test data evaluation rule--evaluates the
quality of the selected test data

• May use more than one criterion
• May use different criteria for different types of
testing

• regression testing versus acceptance testing

Black Box/Functional Test Data Selection

• Typical cases
• Boundary conditions/values
• Exceptional conditions
• Illegal conditions (if robust)
• Fault-revealing cases

• based on intuition about what is likely to
break the system

• Other special cases

Functional Test Data Selection

• Stress testing
• large amounts of data
• worse case operating conditions

• Performance testing
• Combinations of events

• select those cases that appear to be
more error-prone

• Select 1 way, 2 way, … n way
combinations

Sequences of events

• Common representations for
selecting sequences of events
• Decision tables
• Usage scenarios

Decision Table

events t1 t2 t3 t5 t6 t7 ...

e1

e2
e3

e4
...

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x-

-

-

Usage Scenarios

Overview of Dynamic Analysis Techniques

• Testing Processes
• Unit, Integration, System, Acceptance,
Regression, Stress

• Testing Approaches
• Black Box versus White Box

• Black Box Strategies
• Test case selection criteria
• Representations for considering combinations of
events/states

White Box/Structural Test Data Selection

• Coverage based
• Fault-based

• e.g., mutation testing, RELAY
• Failure-based

• domain and computation based
• use representations created by symbolic
execution

Coverage Criteria

• control-flow adequacy criteria
• G = (N, E, s, f) where

• the nodes N represent executable instructions
(statement or statement fragment)

• the edges E represent the potential transfer of
control

• s є N is a designated start node
• f є N is a designated final node
• E = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}

Control-Flow-Graph-Based Coverage Criteria

• Statement Coverage
• Branch Coverage
• Path Coverage
• Hidden Paths
• Loop Guidelines

• General
• Boundary - Interior

Statement Coverage

• requires that each statement in a program
be executed at least once

• formally:
• a set P of paths in the CFG satisfies the
statement coverage criterion iff for
each ni є N, ∃ p є P such that ni is on
path p
• defined in terms of paths

Statement Coverage
• only about 1/3 of NASA statements were
executed before software was released
(Stucki 1973)

• usually can achieve 85% coverage easily,
but why not 100%?

• unreachable code
• complex sequence (should be tested!)

• Microsoft reports 80-90% code coverage

How does OO affect coverage?

• Often only parts of a reused component are
actually executed by a system
• Would expect good coverage for unit testing
• More restricted coverage for integration testing

Coincidental Correctness

• Executing a statement does not
guarantee that a fault on that path will
be revealed

• Example:
Y : = X * 2
Y : = X * * 2

If x = 2 then the
fault is not exposed

Branch Coverage

• Requires that each branch in a
program (each edge in a control flow
graph) be executed at least once
• e.g., Each predicate must evaluate to
each of its possible outcomes

• Branch coverage is stronger than
statement coverage

Branch Coverage

3

1

2

STATEMENT COVERAGE: PATH 1, 2, 3

BRANCH COVERAGE: PATH 1, 2, 1, 2, 3

Hidden Path (branch) Coverage
• Requires that each condition in a compound
predicate be tested
Example:

(X > 1) ∨ (Y < 2)
Test Data:

X = 2, Y = 5 ->T
X = 1, Y = 5 ->F

but, true branch is never tested for data where Y < 2.

(X > 1) (Y < 2)
T F
F T
T T
F F

X > 1

Y < 2

T

F

F

T

Path Coverage
• Requires that every executable path in the program

be executed at least once
• In most programs, path coverage is impossible

• Example:
read N;
SUM := 0;
for I = 1 to N do

read X;
SUM := SUM + X;

endfor
• How do we choose a set of paths?

Loop Coverage

• Path 1, 2, 1, 2, 3 executes all branches
(and all statements) but does not execute
the loop well.

1

3

2

Typical Guidelines for loop coverage

• fall through case
• minimum number of iterations
• minimum +1 number of iterations
• maximum number of iterations

3

2

1 1, 3
1,2,3
1,2,1,2,3
(1, 2,)n 3

Boundary - Interior Criteria

• boundary test of a loop causes the loop to
be entered but not iterated

• interior test of a loop causes a loop to be
entered and then iterated at least once

• both boundary and interior tests are to be
selected for each unique path through the
the loop

Example

2

1

43

5 6

7

8

Paths for Example

2

1

43

5 6

7

8

Boundary paths
1,2,3,5,7 a
1,2,3,6,7 b
1,2,4,5,7 c
1,2,4,6,7 d

Interior paths
(for 2 executions of the loop)

a,a
a,b
a,c
a,d
b,a
b,b
...
x,y for x,y = a, b, c, d

Selecting paths that satisfy these criteria

• static selection
• some of the associated paths may be
infeasible

• dynamic selection
• monitors coverage and displays areas that
have not been satisfactorily covered

Problem with coverage criteria:

• Fault detection may depend upon
• Specific combinations of statements, not
just coverage of those statements

• Astutely selected test data that reveals
the fault, not just test data that
executes the statement/branch/path

• Will look at semantically richer models
• First look at some axioms about testing
criteria

Example program (symbolic evaluation)

procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmt PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,6 Y ← y+5 x≥3 ∧ y>0

7,9 x≥3 ∧ y>0 ∧ x-(y+5)≥0
= x≥3 ∧ y>0 ∧ (x-y)≥5

procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end Contrived

Statements PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,6 Y ← y+5 x≥3 ∧ y>0

7,9 x≥3 ∧ y>0 ∧ x-(y+5)≥0 =
x≥3 ∧ y>0 ∧ (x-y)≥5

Presenting the results

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y) | x≥3 ∧ y>0 ∧ x-y≥5}
C[P] = PV.Y = y +5

Results (feasible path)

y

y>0

x≥3 (x-y) ≥ 5

x

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y)|x≥3∧y>0∧x-y≥5}
C[P] = PV.Y = y +5

Evaluating another path
procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmts PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,7 x≥3 ∧ y≤0

7,8 x≥3 ∧ y≤0 ∧ x-y < 0

Stmts PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,7 x≥3 ∧ y≤0

7,8 x≥3 ∧ y≤0 ∧ x-y < 0

procedure EXAMPLE is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end EXAMPLE

P = 1, 2, 3, 5, 7, 8
D[P] = { (x,y) | x≥3 ∧ y≤0 ∧ x-y<0}

infeasible path!

Results (infeasible path)

y

y ≤ 0

x ≥ 3 (x-y) < 0

x

	Introduction to Dynamic Analysis
	Reference material
	Common Definitions
	Validation and Verification: V&V
	Correctness
	Reliability
	Robustness
	Approaches
	Types of Testing--what is tested
	Test planning
	Approaches to testing
	White box testing process
	Black box testing process
	Why black AND white box?
	Paths
	Paths can be identified by predicate outcomes
	Paths can be identified by domains
	Example with an infeasible path
	Example with an infeasible path
	Example Paths
	Another example of an infeasible path
	Infeasible paths vs. unreachable code and dead code
	Test Selection Criteria
	Test Selection Criteria
	Ideal Test Criterion
	In general, there is no ideal test criterion
	Effectiveness a more reasonable goal
	Two Uses for Testing Criteria
	Black Box/Functional Test Data Selection
	Functional Test Data Selection
	Sequences of events
	Decision Table
	Usage Scenarios
	Overview of Dynamic Analysis Techniques
	White Box/Structural Test Data Selection
	Coverage Criteria
	Control-Flow-Graph-Based Coverage Criteria
	Statement Coverage
	Statement Coverage
	How does OO affect coverage?
	Coincidental Correctness
	Branch Coverage
	Branch Coverage
	Hidden Path (branch) Coverage
	Path Coverage
	Loop Coverage
	Typical Guidelines for loop coverage
	Boundary - Interior Criteria
	Example
	Paths for Example
	Selecting paths that satisfy these criteria
	Problem with coverage criteria:
	Example program (symbolic evaluation)
	Presenting the results
	Results (feasible path)
	Evaluating another path
	Results (infeasible path)

