
Software Engineering
• name coined at the NATO Science Committee

Conference, October 1968
• Engineering-- established, scientifically sound

practices that well-trained practitioners follow
• Software Engineering-- the application of scientific

knowledge to the the development and maintenance of
software systems

• Software-- ALL associated artifacts to assist with
the development, operation, validation, and
maintenance of programs/software systems

• e.g., code, documentation, designs, requirements, user
manuals, installation manuals, test cases, test results,
trouble reports, revision history, installation scripts,...

Another definition

• Ghezzi: A field of computer science that
deals with the building of software systems
that:

• are so large & complex to require teams of
developers

• exist in multiple versions
• used for many years
• undergo changes/evolution

Why engineer software?

• Impact on Society
• Economics
• Quality Concerns

Why engineer software? Impact on Society

• If you fly, your life depends on software
• Airbus

• Your bank account depends on software
• New York bank reconciliation failure

• Medical devices are controlled by software
• Therac-25

• … and so on

Why engineer software? Economics

• An important industry
• Software is an important industry
• Worldwide competition
• Global development models

• Significant installed software base
• Well-designed software easier to maintain
• Poorly designed legacy s/w may be a hinderance

Why engineer software? Quality

• Analogy to the automobile
• U.S. automobile industry use to be very complacent about

quality
• Lost a significant amount of market share
• Will complacency about s/w quality lead to the same

result?

• There are many recalls for automobiles
• Some fixed for free

• There are many defects in software
• Some “fixed” for free
• Some fixed in the “the next” release

• With the customer paying for the upgrade

Quality Issues
• Software is now an integral part of every
facet of our societal infrastructure

• Transportation
• Communication
• Financial
• Poor quality software menaces the maintenance of
that infrastructure

• Software is the "Grand Enabler" holding the
key to scientific and engineering challenges

• Human genome project
• Space exploration
• Weather prediction

The nature of software

• Software is a complex, intricately
interconnected data aggregate

• Software Development is the process of
creating such a complex product, while
continuously assuring that it remains
consistent

• Software Engineering combines some of the
approaches of classical engineering with some
of the abstract approaches of mathematics

Hardware versus Software

• Percentage wise, hardware costs are
decreasing and software costs are increasing

• Is hardware development done better than
software development?

• Yes, but...
• s/w systems tend to be more complex
• tend to do new applications in s/w and
well-understood applications in h/w

• despite the use of more rigorous and systematic
processes, hardware systems fail too

Hardware / Software Cost trends for projects

S/w costs

H/w costs

Trends in Software Expansion (Bernstein, 1997)

Expansion
Factor

The ratio
of machine

lines of
code to a
source line
of code

1

10

100

1000

1960 1965 1970 1975 1980 1985 1990 20001995

Order of Magnitude Increase Every Twenty Years

Machine
Instructions

Macro
Assembler

High Level
Language

Database
Manager

On-line

Regression
Testing

Prototyping

4GL

Subsecond
Time

Sharing

Small
Scale
Reuse

Object
Oriented

Programming

Large Scale
Reuse

142113
8175

47
37.530

15

3

475
638

Projection

What is novel about software?

• product is unprecedentedly complex
• application horizons expand very fast--with
human demands/imagination

• construction is human-intensive
• solutions require unusual rigor
• extremely malleable--can modify the product
all too easily

How to improve Software Quality

• Treat software as a PRODUCT produced in a
systematic way according to a well-defined
PROCESS designed to achieve explicit quality
objectives

• Build quality in
• Define software product
• Reason about the product
• Incorporate validation as integral steps in the
process

But what is that process?

• What methods should be used?
• What tools support those methods?
• How do we know that these methods and tools
will lead to a better product?

Based on experimentation, build up a sense of
what are the best practices

Software Lifecycle
requirements

design specs

coding

testing

maintenance

reqts. analysis

validation

validation

revalidation

adequacy

Waterfall Model
• requirements-- a complete,consistent specification of

what is needed
• provides visibility for customers, developers, and

managers
• benchmark for testing and acceptance
• reduces misunderstandings

• requirements analysis
• evaluate completeness and consistency
• evaluate needs and constraints
• evaluate feasibility and costs

• development and maintenance costs
• probability of success

Waterfall Model (continued)

• design specifications--a description of how
the requirements are to be realized

• high-level architectural design
• low-level detailed design

• design validation
• traceability between requirements and design
decisions

• internal consistency

Waterfall Model (continued)

• code--realization of the design in executable
instructions

• code validation
• assure coding and documentation standards have
been maintained

• internal consistency
• e.g., syntactic analysis, semantic analysis, type
checking, interface consistency

• consistency between design/requirements and code

Waterfall Model (continued)

• testing--reveal problems, demonstrate
behavior, assess reliability, evaluate
non-functional requirements
(e.g., performance, ease of use)

• unit testing
• integration testing
• system testing
• acceptance testing
• regression testing

• testing validation
• adequacy of the testcases

Waterfall Model (continued)
• maintenance--the process of modifying existing software

while leaving its primary functionality intact
• corrective maintenance-- fix problems (20%)
• adaptive maintenance-- add new functionality/enhance existing

features (30%)
• perfective maintenance-- improve product (50%)

• e.g., performance, maintainability
• 3 primary steps

• understand existing software
• change existing software
• revalidate existing software

• maintenance involves all the previous phases of the
lifecycle

Is the waterfall model an appropriate
process model?
• recognizes distinct activities
• clearly oversimplifies the process

• wait, wait , wait, surprise model
• actual processes are more complex

• numerous iterations among phases
• not purely top down
• decomposition into subsystems

• many variations of the waterfall model
• prototyping
• re-engineering
• risk reduction
• ...

Software costs

• Development costs
• generally measured in hundreds to thousands of
dollars per delivered LOC

• many artifacts associated with a line of code
• testing and analysis is usually 50% of this cost

• Maintenance costs
• 2-3 times as much as development

Software Costs

code

reqts and design

testing

15%
35%

50%

Development costs

Full lifecycle costs

maintenance

testing

code

reqts/design

Decisions made throughout a project
affect the cost of maintenance

• planning for maintenance increases front end
cost

• Industry is often unwilling to pay these costs
up-front

• Time to market
• Job turn-over

Some interesting numbers

• About 25% of s/w projects fail
• Failure rate increases as the size of the project
increases

• Costs about $100/LOC
• Ranges between $10-$600

• Typical programmer produces about 30 LOCs
a day

• Ranges between 10-100 LOCs
• Ranges between 3-10 faults/KLOC

Barriers to engineering software

• industry’s short term focus
• shortage of skilled personnel
• inadequate investment in R&D

• PITAC (Kennedy-Joy) Report
• US SW GNP is ~$228B but less than 1% spent on
R&D

• Poor technology transfer models
• "toss over the fence"

• Lack of “good” standards
• Lack of experimental basis for standards

Standards
• IEEE Standards Group

• P 730.2, Guide for Software Quality Assurance Programming (6/89)
• R 982.1, Std Dict. of Measures to Produce Reliable Software (3/88)
• R 982.2, Guide: Use of Std Meas. to Produce Reliable Software (3/88)
• R 1002, Software Engineering Taxonomy (9/92)
• ...
• R 1012, Software Verification Plans (3/92)
• P 1420.2, Software Reuse - Data Model for Reuse Library Interop.: Basic Data Model (12/94)
• P 1430, Software Reuse - Concept of Operations for Interoperating Reuse Libraries (6/95)
• * P 1498, Software Life Cycle Processes: Acquirer-Supplier Agreement

• NIST FIPS
• FIPSPUB99 GUIDELINE:A FRAMEWORK FOR THE EVALUATION AND COMPARISON OF

SOFTWARE DEVELOPMENT TOOLS, 1983 March 31.
• FIPSPUB106 GUIDELINE ON SOFTWARE MAINTENANCE, 1984 June 15.
• FIPSPUB101 GUIDELINE FOR LIFECYCLE VALIDATION, VERIFICATION, AND TESTING OF

COMPUTER SOFTWARE, 1983 June 6.
• FIPSPUB132 GUIDELINE FOR SOFTWARE VERIFICATION AND VALIDATION PLANS, 1987

November 19.

• DoD
• MIL-STD-498 -harmonizes the predecessor standards DOD-STD-2167A and DOD-STD-7935A
• IEEE-STD-1498 and J-STD-016-1995 a commercial version of MIL-STD-498 [1] published in

January 1996

President's Information Technology Advisory
Committee (PITAC) report, February 1999
• 4 priority areas
• Software;”The demand for software has
grown far faster than our ability to produce
it. Furthermore, the Nation needs software
that is far more usable, reliable, and
powerful than what is being produced today.
We have become dangerously dependent on
large software systems whose behavior is not
well understood and which fail in unpredicted
ways.”

• Other areas: scaleable infrastructure, high-end
computing, socioeconomic impacts

High-level Goals of Software Engineering

• improve productivity
• reduce resources
e.g., time, cost, personnel

• improve predictability
• improve maintainability
• improve quality

What do we need?

• Scientific basis for exploration and evaluation
• Organized discipline
• Trained professionals
• Technology transfer strategies
• Quality control

• Model for s/w engineering
• Based on accumulated experimental evaluations,
recommended best practices

Some Contributions of SE
60's

70's

80's

90's

recognized software problem
waterfall model

programming-in-the-small
structured programming
step-wise refinement
modularization

programming-in-the-large
data abstraction
object-oriented development

programming-in-the-many
heterogeneity
distributed computing models
open architectures

	Software Engineering
	Another definition
	Why engineer software?
	Why engineer software? Impact on Society
	Why engineer software? Economics
	Why engineer software? Quality
	Quality Issues
	The nature of software
	Hardware versus Software
	Hardware / Software Cost trends for projects
	Trends in Software Expansion (Bernstein, 1997)
	What is novel about software?
	How to improve Software Quality
	But what is that process?
	Software Lifecycle
	Waterfall Model
	Waterfall Model (continued)
	Waterfall Model (continued)
	Waterfall Model (continued)
	Waterfall Model (continued)
	Is the waterfall model an appropriate process model?
	Software costs
	Software Costs
	Decisions made throughout a project affect the cost of maintenance
	Some interesting numbers
	Barriers to engineering software
	Standards
	President's Information Technology Advisory Committee (PITAC) report, February 1999
	High-level Goals of Software Engineering
	What do we need?
	Some Contributions of SE

