
Foundations for SE Analysis



Formal models
• Analysis is usually done on a model of an artifact

• textual representation of the artifact is translated into a 
model that is more amenable to analysis then the original 
representation 

• the translation may require syntactic and semantic analysis 
so that the model is as accurate as possible

e.g., x:= y + foo.bar
• model must be appropriate for the intended analysis

• graphs are the most common form of  models used
• e.g., abstract syntax graphs, control flow graphs, call 

graphs, reachability graphs, Petri nets, program dependence 
graphs



Ideally want general models

• different languages 
• e.g., Ada, C++, Java

• different levels of abstraction/detail
• e.g., detailed design, arch. design

• different kinds of artifacts
• e.g., code, designs, requirements



Creating a Common Underlying Model

textual representations

translatorL1

L2

L3

modeltranslator

translator

analyzer



Graphs

• A graph, G = (N, E), is an ordered pair consisting of 
a node set, N, and an edge set, E = {(ni, nj)}

• If the pairs in E are ordered, then G is called a directed 
graph and is depicted with arrowheads on its edges

• If not, the graph is called an undirected graph
• Graphs are suggestive devices that help in the 

visualization of relations.  The set of edges in the 
graph are visual representations of the ordered pairs 
that compose relations

• Graphs provide a mathematical basis for reasoning 
about s/w



Paths

• a path, P, through a directed graph 
G = (N, E) is a sequence of edges, 
( (ni,1, nj,1 ),  (ni,2, nj,2 ), ... , (ni,t, nj,t )) 

such that nj,k-1 = ni,k for all 2≤ k ≤t
• ni,1 is called the start node and nj,t is called 
the end node

• the length of a path is the number of edges 
in the path

• Paths are also frequently represented by a 
sequence of nodes (ni,1, ni,2, ni,3, …, ni,t)



Cycles

• a cycle in a graph G is a path whose 
start node and end node are the same

• a simple cycle in a graph G is a cycle 
such that all of its nodes are different 
(except for the start and end nodes)

• if a graph G has no path through it 
that is a cycle, then the graph is 
called acyclic



Examples

1

3

5

2

4

Cycle:1,3,2,4,3,1

Simple cycle:3,2,4,3



Trees

• an acyclic, undirected graph is called a tree
• if the undirected version of a directed graph 
is acyclic, then the graph is called a directed 
tree 

• if the undirected version of a directed graph 
has cycles, but the directed graph itself has 
no cycles, then the graph is called a 
Directed Acyclic Graph (DAG)



Examples

tree
directed tree

cyclic undirected
graph

directed acyclic
graph (DAG)



Abstract Syntax Tree (AST)

• a common form for representing expressions
• executable statements are expressions
• programs are expressions, where the operator is 
execute and the operands are the statements

• 2 kinds of nodes: operator and operands
• operator applied to N operands

• An abstract syntax graph G = ( N1, N2, E ) 
where N1 are nodes that represent 
operators in the language, N2 are nodes that 
represent identifiers or literals , and E 
represents is "applied to" 



Example Abstract Syntax Tree

X:= A + 5;

:=

X

A

+

5

Operator node

Operand node

Key



Abstract Syntax Trees have many advantages
• provide a visual display of the body of an object

• body of an assignment, addition, while, etc. 
• supports incremental modification

• incremental syntactic or semantic analysis
• Basis for structural editing

• user is provided with a template and fills in the slots
• can assure syntactic consistent
• need to control granularity of consistency checking 

• e.g., keystroke, semi-colon, user-request
• Used to create other graph models



Computation tree

• Models all the possible executions of a 
system

• At each node, shows the state (value) of 
each variable

• Effectively infinite number of paths
• Some paths may be effectively infinite



Example Computation Tree
total, value, count, maximum : pos int;

read maximum;

total := 0;

count := 1;

while (count <= maximum) do

total := total + value;

count: = count + 1;

read value;

endwhile;

print total;

<total, value, count, maximum>

<0,ϑ,1,2>

<0,ϑ,1,ϑ>

<0,ϑ,1,1> <0,ϑ,1,max pos>...

<0,1,1,2> <0, max pos,1,2>...

<1,1,1,2>

...

<0,ϑ,ϑ,ϑ>



Computation Trees have few advantages

• Represent the space that we want to reason 
about

• For anything interesting they are too large 
to create or reason about

• Other models of executable behavior are 
providing abstractions of the computation 
tree model

• Abstract values
• Abstract flow of control
• Specialize abstraction depending on focus of 
analysis



Control Flow Graph (CFG)

• represents the flow of executable behavior
• G = (N, E, S, T) where

• the nodes N represent executable instructions 
(statement or statement fragments);

• the edges E represent the potential transfer of 
control;

• S is a designated start node;
• T is a designated final node 

• E = { (ni, nj) | syntactically, the execution of
nj follows the execution of ni} 



Control Flow Graph (CFG)

• Nodes may correspond to single statements, 
parts of statements, or several statements

• Execution of a node means that the 
instructions associated with a node are 
executed in order from the first instruction 
to the last

• Nodes are 1-in, 1-out 



Example

total := 0;
count := 1;

read maximum;

read value;

total := total + value;

count := count + 1;

count <=maximum?

print total;

1

2

3 4

count  > maximum

count <= maximum

total, value, count, maximum : int;

read maximum;

total := 0;

count := 1;

while (count <= maximum) do

total := total + value;

count: = count + 1;

read value;

endwhile;

print total;



Control Flow Graphs

• a  subpath through a control flow graph is a 
sequence of nodes (n1, n2,...nt ) where for 
each nk, 1≤ k < t, (nk, nk+1) is an edge in     
the graph

e.g., 2, 3, 2, 3, 2, 4
• a complete path starts at 
the start node and ends 
at the final node

1, 2, 3, 2, 4

total := 0;

count := 1;

read maximum;

read value;

total := total + value;

count := count + 1;

count <=maximum?

print total;

1

2

3 4

count  > maximum

count <= maximum



Control Flow Graphs

• Every executable sequence in the 
represented component corresponds to a path 
in G

• not all paths correspond to executable 
sequences

• requires additional semantic information
• “infeasible paths” are not an indication of a fault

• CFG usually overestimates the executable 
behavior 



Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z  := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2



Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z  := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < =  0, Y = 5

X > 0

X > 0, Y > 0



Example Paths

• Feasible path: 1, 2, 4, 5, 7
• Infeasible path: 1, 3, 4, 5,7
• Determining if a path is feasible or 
not requires additional semantic 
information

• In general, unsolveable
• In practice, intractable



Another example of an infeasible path

For i :=1 to 5 do
x ( i ) := x ( i +1 ) + 1;
end for:

i :=1

x ( i ) := x ( i +1 ) +1

i := i + 1

i <= 5

true

false
Note, implicit 
instructions are 
explicitly represented



Infeasible paths vs. unreachable code and dead code

unreachable code
X := X + 1;
Goto loop;
Y := Y + 5;

dead code
X := X + 1;
X := 7;
X := X + Y;

Never executed

‘Executed’, but 
irrelevant 



Modeling behavior

• want to accurately capture the 
semantics 

• i := i + 1 
not explicitly stated in the 
For loop 

• the way in which information is 
represented in a CFG depends on the 
analysis that is planned



Reducing the CFG

• basic blocks are nodes that contain sequential 
execution
Can reduce the number of nodes in the CFG, but 
may add more complications to the analysis

• y defined in the node before it is used
• x defined in the node after it is used

y:= 5
x:= x+y



CFGs
• Usually, have a single start and a single exit 

node  
• Multiple start nodes ⇒ Single start node

• May have to encode information about each start 
in an auxiliary variable

s1
s1 s2

s2



CFGs

• Multiple exit nodes ⇒ Single terminal node

• Single-entrance, single exit CFGs facilitate 
inter-component analysis

• plugable

s1
s1 s2

s2



Plugable components

call a

call b



Benefits of CFG

• Probably the most commonly used 
representation 

• Numerous variants
• Basis for inter-component analysis

• Collections of CFGs
• Basis for various transformations

• Compiler optimizations
• S/W analysis

• Basis for automated analysis
• Graphical representations of interesting programs 
are too complex for direct human understanding



Call Graph
• represents "may invoke" relationship between components
• G = (N, E, M) where

the nodes N represent invokable entities;
the edges E represent the potential for one entity 

to  invoke another entity;
M is the start node

• E = { (ni, nj) | syntactically nj is directly invoked by ni} 
• Does not represent the order entities are invoked
• Does not represent the number of times an entity is 

invoked
• A cycle in G indicates that the nodes along the cycle 

syntactically participate in a recursive calling chain
• Provides a framework for inter-component analysis



Call Graph Example

a

b c d

e f g



Functional Representation of an Executable Component

F: X ⇒ Y
or

F: (x1,...xn)  ⇒ (y1,...ym)

x =(x1,...xn)

y= (y1,...ym)

F

range

domain



Combining the functional and graph view of a 
component

• F : X Y
• F is composed of partial functions, where 
each partial function corresponds to a path 
in a program 

• F = { f1, f2, ... fr}, where  fi : Xi Yi

• X = X1U ... U Xr (r could be ∞)
• Xi ∩ Xj = ∅, i ≠ j       (deterministic)



Paths

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

•Paths:
–1, 2, 4, 5, 7
–1, 2, 4, 6, 7
–1, 3, 4, 5, 7
–1, 3, 4, 6, 7



Paths can be identified by predicate outcomes

•outcomes
–t, t
–t, f
–f, t
–f, f

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20



Paths can be identified by domains

•domains
–{ X, Y |  X > 0 and X * Y > 0}
–{ X, Y |  X > 0 and X *  Y < = 0 }
–{ X, Y |  X < = 0 and X *  Y > 0}
–{ X, Y |  X < = 0 and X *  Y < = 0}

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20



Common Definitions

• Failure-- result that deviates from the expected or specified intent
• Fault/defect-- a flaw that could cause a failure  
• Error -- erroneous belief that might have led to a flaw that could 

result in a failure
• Static Analysis -- the static examination of a product or a 

representation of the product for the purpose of inferring properties 
or characteristics

• Dynamic Analysis -- the execution of a product or representation of a 
product for the purpose of inferring properties or characteristics

• Testing -- the (systematic) selection and subsequent "execution" of 
sample inputs from a product's input space in order to infer 
information about the product's behavior. 

• usually trying to uncover failures
• the most common form of dynamic analysis

• Debugging -- the search for the cause of a failure and subsequent 
repair



Validation and Verification:       V&V

• Validation -- techniques for assessing the quality of 
a software product

• Verification -- the use of analytic inference to 
(formally) prove that a product is consistent with a 
specification of its intent 

• the specification could be a selected property of interest or 
it could be a specification of all expected behaviors and 
qualities

e.g., all deposit transactions for an individual will be 
completed  before any withdrawal transaction will be 
initiated

• a form of validation
• usually achieved via some form of static analysis 



Correctness

• a product is correct if it satisfies all the 
requirement specifications

• correctness is a mathematical property
• requires a specification of intent
• specifications are rarely complete
• difficult to prove poorly-quantified qualities such 
as user-friendly

• a product is behaviorally or functionally
correct if it satisfies all the specified 
behavioral requirements



Reliability

• measures the dependability of a product
• the probability that a product will perform as 
expected

• sometimes stated as a property of time
e.g., mean time to failure

• Reliability vs. Correctness
• reliability is relative, while correctness is absolute
(but only wrt a specification)
• given a "correct" specification, a correct product 
is reliable, but not necessarily vice versa



Robustness

• behaves "reasonably" even in circumstances 
that were not expected

• making a system robust more than doubles 
development costs

• a system that is correct may not be robust, and 
vice versa



Static analysis techniques usually try to be 
conservative

• never declare a property to be valid if it is not
• Usually achieve this by using representations that 

over-estimate actual behavior
• The representation depends on the analysis

• AST is a conservative representation for 
• Determining all the operators in a program
• Determining all the locations where X is defined

• CFG is a conservative  representation for
• Determining how many loops are in the program
• Determining how deeply nested each loop is



Conservative analysis when considering paths

• For all execution sequences, is P true?
• if P is true for all paths, then P is true
• if P is true for some paths, then P may 

be true or false 
• Paths where P is not true may not be 

feasible
• For some execution sequence, is P true?

• If P is true for some path, P may be 
true or false

• the path where P is true  may or 
may not be feasible

2 3

65

4

7

1

Conservative static analysis would only say P is true if it is 
known to be true for all paths



Dynamic analysis techniques draw inferences 
from a sample of the problem domain

x
x

x

x

How do we choose that sample?



Static analysis

• Tries to find errors in the system
• Conservative=>too many false positives?

• Over reporting
• Too precise=> too expensive?
• Not conservative => effective enough? 

• Under reporting
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