
Foundations for SE Analysis

Formal models
• Analysis is usually done on a model of an artifact

• textual representation of the artifact is translated into a
model that is more amenable to analysis then the original
representation

• the translation may require syntactic and semantic analysis
so that the model is as accurate as possible

e.g., x:= y + foo.bar
• model must be appropriate for the intended analysis

• graphs are the most common form of models used
• e.g., abstract syntax graphs, control flow graphs, call

graphs, reachability graphs, Petri nets, program dependence
graphs

Ideally want general models

• different languages
• e.g., Ada, C++, Java

• different levels of abstraction/detail
• e.g., detailed design, arch. design

• different kinds of artifacts
• e.g., code, designs, requirements

Creating a Common Underlying Model

textual representations

translatorL1

L2

L3

modeltranslator

translator

analyzer

Graphs

• A graph, G = (N, E), is an ordered pair consisting of
a node set, N, and an edge set, E = {(ni, nj)}

• If the pairs in E are ordered, then G is called a directed
graph and is depicted with arrowheads on its edges

• If not, the graph is called an undirected graph
• Graphs are suggestive devices that help in the

visualization of relations. The set of edges in the
graph are visual representations of the ordered pairs
that compose relations

• Graphs provide a mathematical basis for reasoning
about s/w

Paths

• a path, P, through a directed graph
G = (N, E) is a sequence of edges,
((ni,1, nj,1), (ni,2, nj,2), ... , (ni,t, nj,t))

such that nj,k-1 = ni,k for all 2≤ k ≤t
• ni,1 is called the start node and nj,t is called
the end node

• the length of a path is the number of edges
in the path

• Paths are also frequently represented by a
sequence of nodes (ni,1, ni,2, ni,3, …, ni,t)

Cycles

• a cycle in a graph G is a path whose
start node and end node are the same

• a simple cycle in a graph G is a cycle
such that all of its nodes are different
(except for the start and end nodes)

• if a graph G has no path through it
that is a cycle, then the graph is
called acyclic

Examples

1

3

5

2

4

Cycle:1,3,2,4,3,1

Simple cycle:3,2,4,3

Trees

• an acyclic, undirected graph is called a tree
• if the undirected version of a directed graph
is acyclic, then the graph is called a directed
tree

• if the undirected version of a directed graph
has cycles, but the directed graph itself has
no cycles, then the graph is called a
Directed Acyclic Graph (DAG)

Examples

tree
directed tree

cyclic undirected
graph

directed acyclic
graph (DAG)

Abstract Syntax Tree (AST)

• a common form for representing expressions
• executable statements are expressions
• programs are expressions, where the operator is
execute and the operands are the statements

• 2 kinds of nodes: operator and operands
• operator applied to N operands

• An abstract syntax graph G = (N1, N2, E)
where N1 are nodes that represent
operators in the language, N2 are nodes that
represent identifiers or literals , and E
represents is "applied to"

Example Abstract Syntax Tree

X:= A + 5;

:=

X

A

+

5

Operator node

Operand node

Key

Abstract Syntax Trees have many advantages
• provide a visual display of the body of an object

• body of an assignment, addition, while, etc.
• supports incremental modification

• incremental syntactic or semantic analysis
• Basis for structural editing

• user is provided with a template and fills in the slots
• can assure syntactic consistent
• need to control granularity of consistency checking

• e.g., keystroke, semi-colon, user-request
• Used to create other graph models

Computation tree

• Models all the possible executions of a
system

• At each node, shows the state (value) of
each variable

• Effectively infinite number of paths
• Some paths may be effectively infinite

Example Computation Tree
total, value, count, maximum : pos int;

read maximum;

total := 0;

count := 1;

while (count <= maximum) do

total := total + value;

count: = count + 1;

read value;

endwhile;

print total;

<total, value, count, maximum>

<0,ϑ,1,2>

<0,ϑ,1,ϑ>

<0,ϑ,1,1> <0,ϑ,1,max pos>...

<0,1,1,2> <0, max pos,1,2>...

<1,1,1,2>

...

<0,ϑ,ϑ,ϑ>

Computation Trees have few advantages

• Represent the space that we want to reason
about

• For anything interesting they are too large
to create or reason about

• Other models of executable behavior are
providing abstractions of the computation
tree model

• Abstract values
• Abstract flow of control
• Specialize abstraction depending on focus of
analysis

Control Flow Graph (CFG)

• represents the flow of executable behavior
• G = (N, E, S, T) where

• the nodes N represent executable instructions
(statement or statement fragments);

• the edges E represent the potential transfer of
control;

• S is a designated start node;
• T is a designated final node

• E = { (ni, nj) | syntactically, the execution of
nj follows the execution of ni}

Control Flow Graph (CFG)

• Nodes may correspond to single statements,
parts of statements, or several statements

• Execution of a node means that the
instructions associated with a node are
executed in order from the first instruction
to the last

• Nodes are 1-in, 1-out

Example

total := 0;
count := 1;

read maximum;

read value;

total := total + value;

count := count + 1;

count <=maximum?

print total;

1

2

3 4

count > maximum

count <= maximum

total, value, count, maximum : int;

read maximum;

total := 0;

count := 1;

while (count <= maximum) do

total := total + value;

count: = count + 1;

read value;

endwhile;

print total;

Control Flow Graphs

• a subpath through a control flow graph is a
sequence of nodes (n1, n2,...nt) where for
each nk, 1≤ k < t, (nk, nk+1) is an edge in
the graph

e.g., 2, 3, 2, 3, 2, 4
• a complete path starts at
the start node and ends
at the final node

1, 2, 3, 2, 4

total := 0;

count := 1;

read maximum;

read value;

total := total + value;

count := count + 1;

count <=maximum?

print total;

1

2

3 4

count > maximum

count <= maximum

Control Flow Graphs

• Every executable sequence in the
represented component corresponds to a path
in G

• not all paths correspond to executable
sequences

• requires additional semantic information
• “infeasible paths” are not an indication of a fault

• CFG usually overestimates the executable
behavior

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < = 0, Y = 5

X > 0

X > 0, Y > 0

Example Paths

• Feasible path: 1, 2, 4, 5, 7
• Infeasible path: 1, 3, 4, 5,7
• Determining if a path is feasible or
not requires additional semantic
information

• In general, unsolveable
• In practice, intractable

Another example of an infeasible path

For i :=1 to 5 do
x (i) := x (i +1) + 1;
end for:

i :=1

x (i) := x (i +1) +1

i := i + 1

i <= 5

true

false
Note, implicit
instructions are
explicitly represented

Infeasible paths vs. unreachable code and dead code

unreachable code
X := X + 1;
Goto loop;
Y := Y + 5;

dead code
X := X + 1;
X := 7;
X := X + Y;

Never executed

‘Executed’, but
irrelevant

Modeling behavior

• want to accurately capture the
semantics

• i := i + 1
not explicitly stated in the
For loop

• the way in which information is
represented in a CFG depends on the
analysis that is planned

Reducing the CFG

• basic blocks are nodes that contain sequential
execution
Can reduce the number of nodes in the CFG, but
may add more complications to the analysis

• y defined in the node before it is used
• x defined in the node after it is used

y:= 5
x:= x+y

CFGs
• Usually, have a single start and a single exit

node
• Multiple start nodes ⇒ Single start node

• May have to encode information about each start
in an auxiliary variable

s1
s1 s2

s2

CFGs

• Multiple exit nodes ⇒ Single terminal node

• Single-entrance, single exit CFGs facilitate
inter-component analysis

• plugable

s1
s1 s2

s2

Plugable components

call a

call b

Benefits of CFG

• Probably the most commonly used
representation

• Numerous variants
• Basis for inter-component analysis

• Collections of CFGs
• Basis for various transformations

• Compiler optimizations
• S/W analysis

• Basis for automated analysis
• Graphical representations of interesting programs
are too complex for direct human understanding

Call Graph
• represents "may invoke" relationship between components
• G = (N, E, M) where

the nodes N represent invokable entities;
the edges E represent the potential for one entity

to invoke another entity;
M is the start node

• E = { (ni, nj) | syntactically nj is directly invoked by ni}
• Does not represent the order entities are invoked
• Does not represent the number of times an entity is

invoked
• A cycle in G indicates that the nodes along the cycle

syntactically participate in a recursive calling chain
• Provides a framework for inter-component analysis

Call Graph Example

a

b c d

e f g

Functional Representation of an Executable Component

F: X ⇒ Y
or

F: (x1,...xn) ⇒ (y1,...ym)

x =(x1,...xn)

y= (y1,...ym)

F

range

domain

Combining the functional and graph view of a
component

• F : X Y
• F is composed of partial functions, where
each partial function corresponds to a path
in a program

• F = { f1, f2, ... fr}, where fi : Xi Yi

• X = X1U ... U Xr (r could be ∞)
• Xi ∩ Xj = ∅, i ≠ j (deterministic)

Paths

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

•Paths:
–1, 2, 4, 5, 7
–1, 2, 4, 6, 7
–1, 3, 4, 5, 7
–1, 3, 4, 6, 7

Paths can be identified by predicate outcomes

•outcomes
–t, t
–t, f
–f, t
–f, f

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

Paths can be identified by domains

•domains
–{ X, Y | X > 0 and X * Y > 0}
–{ X, Y | X > 0 and X * Y < = 0 }
–{ X, Y | X < = 0 and X * Y > 0}
–{ X, Y | X < = 0 and X * Y < = 0}

X > 0

Z := 1 Z := 5

X * Y > 0

X := Y + Z

1

2 3

4

5 6

7

Z := Z + 10 Z := Z + 20

Common Definitions

• Failure-- result that deviates from the expected or specified intent
• Fault/defect-- a flaw that could cause a failure
• Error -- erroneous belief that might have led to a flaw that could

result in a failure
• Static Analysis -- the static examination of a product or a

representation of the product for the purpose of inferring properties
or characteristics

• Dynamic Analysis -- the execution of a product or representation of a
product for the purpose of inferring properties or characteristics

• Testing -- the (systematic) selection and subsequent "execution" of
sample inputs from a product's input space in order to infer
information about the product's behavior.

• usually trying to uncover failures
• the most common form of dynamic analysis

• Debugging -- the search for the cause of a failure and subsequent
repair

Validation and Verification: V&V

• Validation -- techniques for assessing the quality of
a software product

• Verification -- the use of analytic inference to
(formally) prove that a product is consistent with a
specification of its intent

• the specification could be a selected property of interest or
it could be a specification of all expected behaviors and
qualities

e.g., all deposit transactions for an individual will be
completed before any withdrawal transaction will be
initiated

• a form of validation
• usually achieved via some form of static analysis

Correctness

• a product is correct if it satisfies all the
requirement specifications

• correctness is a mathematical property
• requires a specification of intent
• specifications are rarely complete
• difficult to prove poorly-quantified qualities such
as user-friendly

• a product is behaviorally or functionally
correct if it satisfies all the specified
behavioral requirements

Reliability

• measures the dependability of a product
• the probability that a product will perform as
expected

• sometimes stated as a property of time
e.g., mean time to failure

• Reliability vs. Correctness
• reliability is relative, while correctness is absolute
(but only wrt a specification)
• given a "correct" specification, a correct product
is reliable, but not necessarily vice versa

Robustness

• behaves "reasonably" even in circumstances
that were not expected

• making a system robust more than doubles
development costs

• a system that is correct may not be robust, and
vice versa

Static analysis techniques usually try to be
conservative

• never declare a property to be valid if it is not
• Usually achieve this by using representations that

over-estimate actual behavior
• The representation depends on the analysis

• AST is a conservative representation for
• Determining all the operators in a program
• Determining all the locations where X is defined

• CFG is a conservative representation for
• Determining how many loops are in the program
• Determining how deeply nested each loop is

Conservative analysis when considering paths

• For all execution sequences, is P true?
• if P is true for all paths, then P is true
• if P is true for some paths, then P may

be true or false
• Paths where P is not true may not be

feasible
• For some execution sequence, is P true?

• If P is true for some path, P may be
true or false

• the path where P is true may or
may not be feasible

2 3

65

4

7

1

Conservative static analysis would only say P is true if it is
known to be true for all paths

Dynamic analysis techniques draw inferences
from a sample of the problem domain

x
x

x

x

How do we choose that sample?

Static analysis

• Tries to find errors in the system
• Conservative=>too many false positives?

• Over reporting
• Too precise=> too expensive?
• Not conservative => effective enough?

• Under reporting

	Foundations for SE Analysis
	Formal models
	Ideally want general models
	Creating a Common Underlying Model
	Graphs
	Paths
	Cycles
	Examples
	Trees
	Examples
	Abstract Syntax Tree (AST)
	Example Abstract Syntax Tree
	Abstract Syntax Trees have many advantages
	Computation tree
	Example Computation Tree
	Computation Trees have few advantages
	Control Flow Graph (CFG)
	Control Flow Graph (CFG)
	Example
	Control Flow Graphs
	Control Flow Graphs
	Example with an infeasible path
	Example with an infeasible path
	Example Paths
	Another example of an infeasible path
	Infeasible paths vs. unreachable code and dead code
	Modeling behavior
	Reducing the CFG
	CFGs
	CFGs
	Plugable components
	Benefits of CFG
	Call Graph
	Call Graph Example
	Functional Representation of an Executable Component
	Combining the functional and graph view of a component
	Paths
	Paths can be identified by predicate outcomes
	Paths can be identified by domains
	Common Definitions
	Validation and Verification: V&V
	Correctness
	Reliability
	Robustness
	Static analysis techniques usually try to be conservative
	Conservative analysis when considering paths
	Dynamic analysis techniques draw inferences from a sample of the problem domain
	Static analysis

