
Introduction to Dynamic Analysis



Static Analysis versus Dynamic Analysis
• Static Analysis -- the static examination of a 

product or a representation of the product for the 
purpose of inferring properties or characteristics

• Dynamic Analysis -- the “execution” of a product or 
representation of a product for the purpose of 
inferring properties or characteristics

• Testing -- the (systematic) selection and subsequent 
"execution" of sample inputs from a product's input 
space in order to infer information about the 
product's behavior. 

• usually trying to uncover failures
• the most common form of dynamic analysis



Approaches

• Dynamic Analysis
• Assertions
• Error seeding, 
mutation testing

• Coverage criteria
• Fault-based testing
• Specification-based 
testing

• Object oriented 
testing

• Regression testing

• Static Analysis
• Inspections
• Software metrics
• Symbolic execution
• Dependence Analysis
• Data flow analysis
• Software Verification



Types of Testing--what is tested 
• Unit testing-exercise a single simple component

• Procedure
• Class

• Integration testing-exercise a collection of inter-
dependent components

• Focus on interfaces between components
• System testing-exercise a complete, stand-alone 

system
• Acceptance testing-customer’s evaluation of a 

system
• Usually a form of system testing

• Regression testing-exercise a changed system
• Focus on modifications or their impact



Approaches to testing

• Black Box/Functional/Requirements based

• White Box/Structural/Implementation based
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Why black AND white box?

• Black box
• May not have access to the source code
• Often do not care how s/w is implemented, only 
how it performs

• White box
• Want to take advantage of all the information
• Looking inside indicates structure=> helps 
determine weaknesses 



Test Selection Criteria

• How do we determine what are good test 
cases?

• How do we know when to stop testing?

Test Adequacy



Test Selection Criteria

• A test set T is a finite set of inputs (test cases) to 
an executable component

• Let D( S ) be the domain of execution for 
program/component/system S

• Let S(T) be the results of executing S on T
• A test selection criterion C(T,S) is a predicate that 

specifies whether a test set T satisfies some 
selection criterion for an executable component S.

• Thus, the test set T that satisfies the Criterion C 
is defined as:

{ tєT | T⊆ D(S) and C( T, S ) }



Ideal Test Criterion

• A  test criterion is ideal if for any 
executable system S and every 
T ⊆ D( S ) such that C( T, S ), 
if S (T) is correct, then S is correct

• of course we want T<< D( S )
• In general, T= D( S ) is the only test 
criterion that satisfies ideal



In general, there is no ideal test criterion 

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

• Dijkstra was arguing that verification was better 
than testing 

• But verification has similar problems
• can't prove an arbitrary program is correct

• can't solve the halting problem
• can't determine if the specification is complete

• Need to use dynamic and static techniques that 
compliment each another 



Effectiveness a more reasonable goal

• A  test criterion C is effective if for any 
executable system S and every 
T ⊆ D (S ) such that C(T, S),   

⇒if S (T) is correct, then S is highly reliable
OR
⇒ if S (T) is correct, then S is guaranteed (or is 
highly likely) not to contain any faults of a 
particular type

• Currently can not do either of these very well
• Some techniques (static and dynamic) can provide some 

guarantees  



Two Uses for Testing Criteria

• Stopping rule--when has a system been 
tested enough

• Test data evaluation rule--evaluates the 
quality of the selected test data

• May use more than one criterion
• May use different criteria for different types of 
testing

• regression testing versus acceptance testing



Black Box/Functional Test Data Selection 

• Typical cases
• Boundary conditions/values
• Exceptional conditions
• Illegal conditions (if robust)
• Fault-revealing cases 

• based on intuition about what is likely to 
break the system

• Other special cases



Functional Test Data Selection 

• Stress testing
• large amounts of data
• worse case operating conditions

• Performance testing
• Combinations of events

• select those cases that appear to be 
more error-prone

• Select 1 way, 2 way, … n way 
combinations



Sequences of events

• Common representations for 
selecting sequences of events
• Decision tables
• Cause and effect graphs
• Usage scenarios
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Cause and Effect Graph
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Usage Scenarios



Overview of Dynamic Analysis Techniques

• Testing Processes
• Unit, Integration, System, Acceptance, 
Regression, Stress

• Testing Approaches
• Black Box versus White Box

• Black Box Strategies
• Test case selection criteria
• Representations for considering combinations of 
events/states



White Box/Structural Test Data Selection

• Coverage based
• Fault-based 

• e.g., mutation testing, RELAY
• Failure-based

• domain and computation based 
• use representations created by symbolic 
execution



Coverage Criteria

• control-flow adequacy criteria
• G = (N, E, s, f) where

• the nodes N represent executable instructions 
(statement or statement fragment) 

• the edges E represent the potential transfer of 
control

• s є N is a designated start node
• f є N is a designated final node 
• E = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}



Control-Flow-Graph-Based Coverage Criteria 

• Statement Coverage 
• Branch Coverage
• Path Coverage
• Hidden Paths
• Loop Guidelines

• General
• Boundary - Interior



Statement Coverage

• requires that each statement in a program 
be executed at least once

• formally:
• a set P of paths in the CFG satisfies the 
statement coverage criterion iff for 
each ni є N,    ∃ p є  P such that ni is on 
path p

• defined in terms of paths



Statement Coverage
• only about 1/3 of NASA statements were 
executed before software was released 
(Stucki 1973)

• usually can achieve 85% coverage easily, 
but why not 100%? 

• unreachable code
• complex sequence (should be tested!)

• Microsoft reports 80-90% code coverage



How does OO affect coverage?

• Often only parts of a reused component are 
actually executed by a system

• Would expect good coverage for unit testing
• More restricted coverage for integration testing



Coincidental Correctness

• Executing a statement does not 
guarantee that a fault on that path will 
be revealed

• Example:
Y : = X * 2
Y : = X * * 2

If x = 2 then the
fault is not exposed



Branch Coverage

• Requires that each branch in a 
program (each edge in a control flow 
graph) be executed at least once
• e.g., Each predicate must evaluate to 
each of its possible outcomes

• Branch coverage is stronger than 
statement coverage



Branch Coverage
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Hidden Path (branch) Coverage
• Requires that each condition in a compound 
predicate be tested
Example:

( X > 1 ) ∨ ( Y < 2 )
Test Data:

X = 2, Y = 5 ->T
X = 1, Y = 5 ->F

but, true  branch is never tested for data where Y < 2.

( X > 1 ) ( Y < 2 )
T F
F T
T T
F F

X > 1

Y < 2

T

F

F

T



Path Coverage
• Requires that every executable path in the program 

be executed at least once
• In most programs, path coverage is impossible

• Example:
read N;
SUM :=  0;
for I = 1 to N do

read X;
SUM := SUM + X;

endfor
• How do we choose a set of paths?



Loop Coverage

• Path 1, 2, 1, 2, 3  executes all branches 
(and all statements) but does not execute 
the loop well.
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Typical Guidelines for loop coverage

• fall through case
• minimum number of iterations
• minimum +1 number of iterations
• maximum number of iterations
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Boundary - Interior Criteria

• boundary test of a  loop causes the loop to 
be entered but not iterated

• interior test of a loop causes a loop to be 
entered and then iterated at least once

• both boundary and interior tests are to be 
selected for each unique path through the 
the loop



Example
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Paths for Example
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Boundary paths

1,2,3,5,7          a
1,2,3,6,7          b
1,2,4,5,7          c
1,2,4,6,7          d

Interior paths 
(for 2 executions of the loop)

a,a
a,b
a,c
a,d
b,a
b,b
...
x,y for x,y = a, b, c, d



Selecting paths that satisfy these criteria

• static selection
• some of the associated paths may be 
infeasible

• dynamic selection
• monitors coverage and displays areas that 
have not been satisfactorily covered



Problem with coverage criteria:

• Fault detection may depend upon
• Specific combinations of statements, not 
just coverage of those statements

• Astutely selected test data that reveals 
the fault, not just test data that 
executes the statement/branch/path

• Will look at semantically richer models
• First look at some axioms about testing 
criteria



Axiomatizing Software Test Data Adequacy

• Elaine Weyuker, Dec. 86, TSE
• Adequacy criteria for testing determines 
whether it is reasonable to stop testing

• Axioms are basic assumption that “well 
formed” criteria should satisfy

• A system that executes a test set T that 
satisfies an adequacy criterion is NOT
necessarily correct

• Correctness would be too strong
• Only exhaustive testing would satisfy correctness



Weyuker’s axioms

• for every system there exists an adequate 
test set [ADEQUACY]

• Assuming that a system’s domain is always finite, 
then the adequate test set is finite

• There is a system S and a test set T such 
that S is adequately tested by T, and T is 
not an exhaustive test set 
[NON-EXHAUSTIVE APPLICABILITY]

• If T is adequate for S and T is a subset of 
T’, then T’ is adequate for S 
[MONOTONICITY]



Weyuker’s axioms

• the empty set is not adequate for any 
system [INADEQUATE EMPTY SET]

• let S be a renaming of Q, then T is 
adequate for S if and only if T is adequate 
for Q [RENAMING]

• Superificial change does not change test cases



Weyuker’s axioms

• if two systems compute the same function, a test 
set that is adequate for one is not necessarily 
adequate for the other 
[ANTI-EXTENSIONALITY]

• Semantic equivalence does not preserve testing criteria
• Implies that implementation must be taken into consideration 

• if two systems are the same shape, a test set that 
is adequate for one is not necessarily adequate for 
the other [GENERAL MULTIPLE CHANGE]

• Same shape means same CFG and same variables 
are referenced and defined at the nodes

• Same values may not be computed



Weyuker’s axioms

• for every n, there is a system S such that S 
is adequately tested by a set of size n, but 
not by any test set of size n-1 
[COMPLEXITY]

• Need at least n test cases
• Any n test cases may not be adequate, however



Weyuker’s axioms

• there exists a system S with a subcomponent 
Q such that T is adequate for S, T’ is the 
set of vectors of values that variables can 
assume on entrance to Q and T’ is not 
adequate for Q 
[ANTI-DECOMPOSITION]

• S constrains the values that can be applied to Q 
and thus does not adequately test Q



Are these axioms?

• A principle that is accepted as true without 
proof as the basis for argument; a postulate
(The American Heritage® Dictionary of the English Language, Third
Edition copyright © 1992 by Houghton Mifflin Company. Electronic
version licensed from InfoSoft International, Inc. All rights reserved)

• Want a set of axioms that are consistent 
and lead to theorems that provide insight

• Weyuker’s “axioms” are not axioms, but 
desired properties

• Showed that most testing criteria do NOT satisfy 
all these “axioms”



Stopping rule vs. Measurement

• C:(S,T) -> {true, false }    stopping rule

• C: (S,T) -> [0,1]            measurement



Zhu and Hall’s Measurement Theory

• For all systems S and specifications R, 
• the adequacy of the empty test is 0
• the adequacy of exhaustive testing is 1
• If test set t1 is a subset of test set t2, 
then the adequacy of t1 is less than or 
equal to the adequacy t2 (monotonicity)
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