
Introduction to Dynamic Analysis

Static Analysis versus Dynamic Analysis
• Static Analysis -- the static examination of a

product or a representation of the product for the
purpose of inferring properties or characteristics

• Dynamic Analysis -- the “execution” of a product or
representation of a product for the purpose of
inferring properties or characteristics

• Testing -- the (systematic) selection and subsequent
"execution" of sample inputs from a product's input
space in order to infer information about the
product's behavior.

• usually trying to uncover failures
• the most common form of dynamic analysis

Approaches

• Dynamic Analysis
• Assertions
• Error seeding,
mutation testing

• Coverage criteria
• Fault-based testing
• Specification-based
testing

• Object oriented
testing

• Regression testing

• Static Analysis
• Inspections
• Software metrics
• Symbolic execution
• Dependence Analysis
• Data flow analysis
• Software Verification

Types of Testing--what is tested
• Unit testing-exercise a single simple component

• Procedure
• Class

• Integration testing-exercise a collection of inter-
dependent components

• Focus on interfaces between components
• System testing-exercise a complete, stand-alone

system
• Acceptance testing-customer’s evaluation of a

system
• Usually a form of system testing

• Regression testing-exercise a changed system
• Focus on modifications or their impact

Approaches to testing

• Black Box/Functional/Requirements based

• White Box/Structural/Implementation based

White box testing process

test cases

evaluation

execution results

oracle
Requirements
or specifications testing report

test data selection
criteria

executable
component

(textual rep) executable
component
(obj code)

Black box testing process

test cases

evaluation

execution results

oracle
Requirements
or specifications testing report

test data selection
criteria

executable
component

(textual rep) executable
component
(obj code)

Why black AND white box?

• Black box
• May not have access to the source code
• Often do not care how s/w is implemented, only
how it performs

• White box
• Want to take advantage of all the information
• Looking inside indicates structure=> helps
determine weaknesses

Test Selection Criteria

• How do we determine what are good test
cases?

• How do we know when to stop testing?

Test Adequacy

Test Selection Criteria

• A test set T is a finite set of inputs (test cases) to
an executable component

• Let D(S) be the domain of execution for
program/component/system S

• Let S(T) be the results of executing S on T
• A test selection criterion C(T,S) is a predicate that

specifies whether a test set T satisfies some
selection criterion for an executable component S.

• Thus, the test set T that satisfies the Criterion C
is defined as:

{ tєT | T⊆ D(S) and C(T, S) }

Ideal Test Criterion

• A test criterion is ideal if for any
executable system S and every
T ⊆ D(S) such that C(T, S),
if S (T) is correct, then S is correct

• of course we want T<< D(S)
• In general, T= D(S) is the only test
criterion that satisfies ideal

In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

• Dijkstra was arguing that verification was better
than testing

• But verification has similar problems
• can't prove an arbitrary program is correct

• can't solve the halting problem
• can't determine if the specification is complete

• Need to use dynamic and static techniques that
compliment each another

Effectiveness a more reasonable goal

• A test criterion C is effective if for any
executable system S and every
T ⊆ D (S) such that C(T, S),

⇒if S (T) is correct, then S is highly reliable
OR
⇒ if S (T) is correct, then S is guaranteed (or is
highly likely) not to contain any faults of a
particular type

• Currently can not do either of these very well
• Some techniques (static and dynamic) can provide some

guarantees

Two Uses for Testing Criteria

• Stopping rule--when has a system been
tested enough

• Test data evaluation rule--evaluates the
quality of the selected test data

• May use more than one criterion
• May use different criteria for different types of
testing

• regression testing versus acceptance testing

Black Box/Functional Test Data Selection

• Typical cases
• Boundary conditions/values
• Exceptional conditions
• Illegal conditions (if robust)
• Fault-revealing cases

• based on intuition about what is likely to
break the system

• Other special cases

Functional Test Data Selection

• Stress testing
• large amounts of data
• worse case operating conditions

• Performance testing
• Combinations of events

• select those cases that appear to be
more error-prone

• Select 1 way, 2 way, … n way
combinations

Sequences of events

• Common representations for
selecting sequences of events
• Decision tables
• Cause and effect graphs
• Usage scenarios

Decision Table

events t1 t2 t3 t5 t6 t7 ...

e1
e2
e3
e4
...

x

x

x
x

x

x

x

x

x

x
x

x
x

x

x

x

x-

-

-

Cause and Effect Graph

e0

e1 e2 e3

e4 e5 e6 e7

e8

Usage Scenarios

Overview of Dynamic Analysis Techniques

• Testing Processes
• Unit, Integration, System, Acceptance,
Regression, Stress

• Testing Approaches
• Black Box versus White Box

• Black Box Strategies
• Test case selection criteria
• Representations for considering combinations of
events/states

White Box/Structural Test Data Selection

• Coverage based
• Fault-based

• e.g., mutation testing, RELAY
• Failure-based

• domain and computation based
• use representations created by symbolic
execution

Coverage Criteria

• control-flow adequacy criteria
• G = (N, E, s, f) where

• the nodes N represent executable instructions
(statement or statement fragment)

• the edges E represent the potential transfer of
control

• s є N is a designated start node
• f є N is a designated final node
• E = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}

Control-Flow-Graph-Based Coverage Criteria

• Statement Coverage
• Branch Coverage
• Path Coverage
• Hidden Paths
• Loop Guidelines

• General
• Boundary - Interior

Statement Coverage

• requires that each statement in a program
be executed at least once

• formally:
• a set P of paths in the CFG satisfies the
statement coverage criterion iff for
each ni є N, ∃ p є P such that ni is on
path p

• defined in terms of paths

Statement Coverage
• only about 1/3 of NASA statements were
executed before software was released
(Stucki 1973)

• usually can achieve 85% coverage easily,
but why not 100%?

• unreachable code
• complex sequence (should be tested!)

• Microsoft reports 80-90% code coverage

How does OO affect coverage?

• Often only parts of a reused component are
actually executed by a system

• Would expect good coverage for unit testing
• More restricted coverage for integration testing

Coincidental Correctness

• Executing a statement does not
guarantee that a fault on that path will
be revealed

• Example:
Y : = X * 2
Y : = X * * 2

If x = 2 then the
fault is not exposed

Branch Coverage

• Requires that each branch in a
program (each edge in a control flow
graph) be executed at least once
• e.g., Each predicate must evaluate to
each of its possible outcomes

• Branch coverage is stronger than
statement coverage

Branch Coverage

3

1

2

STATEMENT COVERAGE: PATH 1, 2, 3

BRANCH COVERAGE: PATH 1, 2, 1, 2, 3

Hidden Path (branch) Coverage
• Requires that each condition in a compound
predicate be tested
Example:

(X > 1) ∨ (Y < 2)
Test Data:

X = 2, Y = 5 ->T
X = 1, Y = 5 ->F

but, true branch is never tested for data where Y < 2.

(X > 1) (Y < 2)
T F
F T
T T
F F

X > 1

Y < 2

T

F

F

T

Path Coverage
• Requires that every executable path in the program

be executed at least once
• In most programs, path coverage is impossible

• Example:
read N;
SUM := 0;
for I = 1 to N do

read X;
SUM := SUM + X;

endfor
• How do we choose a set of paths?

Loop Coverage

• Path 1, 2, 1, 2, 3 executes all branches
(and all statements) but does not execute
the loop well.

1

3

2

Typical Guidelines for loop coverage

• fall through case
• minimum number of iterations
• minimum +1 number of iterations
• maximum number of iterations

3

2

1 1, 3
1,2,3
1,2,1,2,3
(1, 2,)n 3

Boundary - Interior Criteria

• boundary test of a loop causes the loop to
be entered but not iterated

• interior test of a loop causes a loop to be
entered and then iterated at least once

• both boundary and interior tests are to be
selected for each unique path through the
the loop

Example

2

1

43

5 6

7

8

Paths for Example

2

1

43

5 6

7

8
Boundary paths

1,2,3,5,7 a
1,2,3,6,7 b
1,2,4,5,7 c
1,2,4,6,7 d

Interior paths
(for 2 executions of the loop)

a,a
a,b
a,c
a,d
b,a
b,b
...
x,y for x,y = a, b, c, d

Selecting paths that satisfy these criteria

• static selection
• some of the associated paths may be
infeasible

• dynamic selection
• monitors coverage and displays areas that
have not been satisfactorily covered

Problem with coverage criteria:

• Fault detection may depend upon
• Specific combinations of statements, not
just coverage of those statements

• Astutely selected test data that reveals
the fault, not just test data that
executes the statement/branch/path

• Will look at semantically richer models
• First look at some axioms about testing
criteria

Axiomatizing Software Test Data Adequacy

• Elaine Weyuker, Dec. 86, TSE
• Adequacy criteria for testing determines
whether it is reasonable to stop testing

• Axioms are basic assumption that “well
formed” criteria should satisfy

• A system that executes a test set T that
satisfies an adequacy criterion is NOT
necessarily correct

• Correctness would be too strong
• Only exhaustive testing would satisfy correctness

Weyuker’s axioms

• for every system there exists an adequate
test set [ADEQUACY]

• Assuming that a system’s domain is always finite,
then the adequate test set is finite

• There is a system S and a test set T such
that S is adequately tested by T, and T is
not an exhaustive test set
[NON-EXHAUSTIVE APPLICABILITY]

• If T is adequate for S and T is a subset of
T’, then T’ is adequate for S
[MONOTONICITY]

Weyuker’s axioms

• the empty set is not adequate for any
system [INADEQUATE EMPTY SET]

• let S be a renaming of Q, then T is
adequate for S if and only if T is adequate
for Q [RENAMING]

• Superificial change does not change test cases

Weyuker’s axioms

• if two systems compute the same function, a test
set that is adequate for one is not necessarily
adequate for the other
[ANTI-EXTENSIONALITY]

• Semantic equivalence does not preserve testing criteria
• Implies that implementation must be taken into consideration

• if two systems are the same shape, a test set that
is adequate for one is not necessarily adequate for
the other [GENERAL MULTIPLE CHANGE]

• Same shape means same CFG and same variables
are referenced and defined at the nodes

• Same values may not be computed

Weyuker’s axioms

• for every n, there is a system S such that S
is adequately tested by a set of size n, but
not by any test set of size n-1
[COMPLEXITY]

• Need at least n test cases
• Any n test cases may not be adequate, however

Weyuker’s axioms

• there exists a system S with a subcomponent
Q such that T is adequate for S, T’ is the
set of vectors of values that variables can
assume on entrance to Q and T’ is not
adequate for Q
[ANTI-DECOMPOSITION]

• S constrains the values that can be applied to Q
and thus does not adequately test Q

Are these axioms?

• A principle that is accepted as true without
proof as the basis for argument; a postulate
(The American Heritage® Dictionary of the English Language, Third
Edition copyright © 1992 by Houghton Mifflin Company. Electronic
version licensed from InfoSoft International, Inc. All rights reserved)

• Want a set of axioms that are consistent
and lead to theorems that provide insight

• Weyuker’s “axioms” are not axioms, but
desired properties

• Showed that most testing criteria do NOT satisfy
all these “axioms”

Stopping rule vs. Measurement

• C:(S,T) -> {true, false } stopping rule

• C: (S,T) -> [0,1] measurement

Zhu and Hall’s Measurement Theory

• For all systems S and specifications R,
• the adequacy of the empty test is 0
• the adequacy of exhaustive testing is 1
• If test set t1 is a subset of test set t2,
then the adequacy of t1 is less than or
equal to the adequacy t2 (monotonicity)

	Introduction to Dynamic Analysis
	Static Analysis versus Dynamic Analysis
	Approaches
	Types of Testing--what is tested
	Approaches to testing
	White box testing process
	Black box testing process
	Why black AND white box?
	Test Selection Criteria
	Test Selection Criteria
	Ideal Test Criterion
	In general, there is no ideal test criterion
	Effectiveness a more reasonable goal
	Two Uses for Testing Criteria
	Black Box/Functional Test Data Selection
	Functional Test Data Selection
	Sequences of events
	Decision Table
	Cause and Effect Graph
	Usage Scenarios
	Overview of Dynamic Analysis Techniques
	White Box/Structural Test Data Selection
	Coverage Criteria
	Control-Flow-Graph-Based Coverage Criteria
	Statement Coverage
	Statement Coverage
	How does OO affect coverage?
	Coincidental Correctness
	Branch Coverage
	Branch Coverage
	Hidden Path (branch) Coverage
	Path Coverage
	Loop Coverage
	Typical Guidelines for loop coverage
	Boundary - Interior Criteria
	Example
	Paths for Example
	Selecting paths that satisfy these criteria
	Problem with coverage criteria:
	Axiomatizing Software Test Data Adequacy
	Weyuker’s axioms
	Weyuker’s axioms
	Weyuker’s axioms
	Weyuker’s axioms
	Weyuker’s axioms
	Are these axioms?
	Stopping rule vs. Measurement
	Zhu and Hall’s Measurement Theory

