
Assertions

Reading assignment

• A. J. Offutt, “A Practical System for
Mutation Testing: Help for the Common
Programmer,” Proceedings of the 12th
International Conference on Testing
Computer Software, Washington, D.C., June
1995, pp. 99-109.

Reading assignment
• L. A. Clarke, A. Podgurski, D. J. Richardson and

Steven J. Zeil, "A Formal Evaluation of Data Flow
Path Selection Criteria,” IEEE Transactions on
Software Engineering, 15 (11), November 1989, pp.
1318-1332.

• Background reading
• S. Rapps and E. J. Weyuker, "Data Flow Analysis

Techniques for Test Data Selection,” Proceedings of the
Sixth International Conference of Software Engineering,
Tokyo, Japan, September 1982, pp. 272-277.

Assertions

• Self-checking software
• insert specifications about the intent of a
system

• Violation means there is a fault in the system
• during execution, monitor if the assertion is
violated

• if violated then report the violation

History of Assertions

• Alan Turing discussed using “assert
statements” in algorithms, ~1947

• Assert statements used in formal verification
to indicate what should be true at points in a
program, ~1967

• Assertions advocated for finding faults
during execution, ~1972

• Based on preprocessors

History of Assertions

• Assertions introduced as part of programming
and specification languages, 1975->

• Euclid, Alphard, Clu, …
• Bertrand Meyer popularizes Design by
Contract and includes assertions as an
integral part of Eiffel, an OO language

• Assertion capabilities for common
programming languages, available but limited

Parts of an Assertion Mechanism

• a high-level language
• for representing logical expressions (typically Boolean-valued

expressions) for characterizing invalid program execution
states

• for associating the logical expressions with well-defined
states of the program (scope of applicability)

• automatic translation of the logical expressions into
executable statements that evaluate the expressions
on the appropriate states of the associated program

• predefined or user-defined runtime response that is
invoked if the logical expression is violated

Language for representing logical expressions

• Usually use a notation that can be “easily” translated
into the programming language

• Boolean expressions
• Use variables and operators defined in the program
• Must adhere to programming languages scoping rules
• ASSERT X < Y + Z;

where X, Y, and Z are variables in the program

• Quantification
• ForAll and ThereExists

Example

• --ASSERT for all I, (1 ≤ I < N) ,
A[I] ≤ A[I + 1]

• --ASSERT for some I, (1 ≤ I < N) ,
A[I] ≤ A[I + 1]

• not always supported since quantification can
result in expensive computation

Language for representing logical expressions

• Want to reference original value and current
value of a variable

• Pre(X) versus X
• Old(X) versus X
• X’ versus X

Example old and current values

• --ASSERT for all I, (1 ≤ I ≤ N),
old(A[I]) = A[I]

• Value of the array has not changed

• --ASSERT for all J, (1 ≤ J ≤ N)
(for some I, (1 ≤ I ≤ N),old(A[J]) = A[I])

• Permutation of the array

Scope of an assertion

• Local assertion
• checked at the definition site

• Global assertion
• defined over a specific scope, usually using the
scoping rules of the programming language

• must determine the locations that need to be
checked,

• Global ASSERT X > 10
must determine all the locations where X is
defined and check that X is greater than 10

Scope of an assertion

• Loop assertion (Loop invariant)
• Checked at each iteration at the designated point
in a loop

• Class assertion (Class invariant)
• Checked at the start and end of each method in a
class

• Pre (and Post conditions)
• Checked at the start (and end) of a method each
time it is invoked

• All of the above are syntactic sugar

More Advanced Assertion Language Capabilities

• may be able to introduce additional (hidden)
operators, operands, and types

• e.g., length operator for stack
• must be able to define the hidden entities in
terms of the provided entities

• --ASSERT Z < Bound (Q)
• means that whenever Z is assigned a value, it
must be less than Bound (Q),

• where Bound(Q) is visible wherever Z is visible and
• either Bound(Q) is already defined in the program or is
defined to be a hidden operation

Parts of an Assertion Mechanism

• a high-level language
• for representing logical expressions (typically Boolean-valued

expressions) for characterizing invalid program execution
states

• for associating the logical expressions with well-defined
states of the program (scope of applicability)

• automatic translation of the logical expressions into
executable statements that evaluate the expressions
on the appropriate states of the associated program

• predefined or user-defined runtime response that is
invoked if the logical expression is violated

Execution Models

• Suppress assertion checking
• Binary -> on or off
• Multi-level

• Select severity level to support
• Suppress all assertions except those at
severity level 3 and higher

Assertion preprocessor

source code with
assertions

preprocessor

instrumented
source code

compiler

assertion checking
off assertion checking on

Response model

• Termination model
• When an assertion is violated, issue an error
report and terminate

• Failure and Warning model
• 2 (3) level model: failure, (warning,) no problem

• On failure, issue an error report and terminate
• On warning, issue an error report and continue
• Continue as long as there is no problem

Annotation PreProcessor (APP)

• David Rosenblum
• APP supports 4 types of assertions

• assume--specifies a precondition on a function
• promise--specifies a postcondition on a function
• return--specifies a constraint on the return value
of a function

• assert--specifies a constraint on an intermediate
state of a function body

• Where should these be placed?

APP

• provides quantification operations all and
some

• default action gives an error message that
prints information about the location of the
violation and values of any variables involved

• users can define their own violation actions
• can associate severity levels with assertions

• before processing indicate which severity levels
should be checked

APP case study

• evaluated a program called Yeast
• 12,000 LOCs of C code
• half the program developed using APP

• had specific rules for writing assertions
• resulted in 116 assertions

Results of the study

• detected 19 known faults
• 8 detected by APP
• 6 would have been detected by APP, if it had
been used

• 2 detected by a dynamic storage certification
routine

• 3 required event sequence information
• Overhead of using assertions

• 3.7% larger
• no discernible difference in speed!

Example
public int binarySearch(int data [], int key){
 int lower = 0;
 int upper = data.length - 1;
 int location;
 while (true) {
 if(upper < lower)
 { return (-1) };
 else {
 location = midpoint(lower, upper);
 if (data [location] == key)

 {return (location); }
 else if (data[location] < key)
 {lower = location +1; }
 else
 { upper = location -1; }

 }}}

Example: assume clause
public int binarySearch(int data [], int key){
 int lower = 0;
 int upper = data.length - 1;
 int location;
 while (true) {
 if(upper < lower)
 { return (-1) };
 else {
 location = midpoint(lower, upper);
 if (data [location] == key)

 {return (location); }
 else if (data[location] < key)
 {lower = location +1; }
 else
 { upper = location -1; }

 }}}

assume
(data != null)&&
all (int i = 0; i < data.length - 1; i++) data[i] < = data[i + 1]

Example: return clause
public int binarySearch(int data [], int key){
 int lower = 0;
 int upper = data.length - 1;
 int location;
 while (true) {
 if(upper < lower)
 { return (-1) };
 else {
 location = midpoint(lower, upper);
 if (data [location] == key)

 {return (location); }
 else if (data[location] < key)
 {lower = location +1; }
 else
 { upper = location -1; }

 }}}

return location where
((all(int i = 0; i < data.length; i++) data[i] != key) && (location == -1)) ||
((some(int i = 0; i < data.length; i++) data[i] == key) && (location == i))

Example: promise clause
public int binarySearch(int data [], int key){
 int lower = 0;
 int upper = data.length - 1;
 int location;
 while (true) {
 if(upper < lower)
 { return (-1) };
 else {
 location = midpoint(lower, upper);
 if (data [location] == key)

 {return (location); }
 else if (data[location] < key)
 {lower = location +1; }
 else
 { upper = location -1; }

 }}}

promise (data != null) &&
data.length == in data.length &&
all (int i = 0; i < data.length; i++) data[i] == in data[i]

Example: internal assertions

public int binarySearch(int data [], int key){
 int lower = 0;
 int upper = data.length - 1;
 int location;
 while (true) {
 if(upper < lower)
 { return (-1) };
 else {
 location = midpoint(lower, upper);
/** location is the midpoint between upper and lower
* assert location <((float)(lower + upper)/2.0) + 1.0
* assert location >((float)(lower + upper)/2.0) - 1.0
*/
 if (data [location] == key)

 {return (location); }
 else if (data[location] < key)
 {lower = location +1; }
 else
 { upper = location -1; }

 }}}

Major objection to using assertions

• storage and runtime overhead
• Not apparent in APP study
• need more empirical data!!!

• optimization techniques could remove many of
the assertions

• basically proving that the assertion is valid
• would expect that many of the assertions could be
eliminated

• preconditions are often redundant checks on
the validity of the parameters

Assertions versus Exceptions

• Assertion violation => error
• Predefined response

• Error report
• Terminate or continue

• More expressive notation (e.g. All, Some, old, class
invariant)

• Exception violation => unusual case
• Style guideline=> exceptions should be reserved for truly

exceptional situations
• Program defined response

• Handler
• Different choices for resuming execution
• Complex exception flow

Correct by Design

• Design/Code by contract
• Development method that incorporates
assertions early in the design and coding
process

• Eiffel, Bertrand Meyer included assertions as
part of the language

• Assertions are the most requested feature in
Java

• 1.4 introduced a very limited assertion capability

Summary about Assertions
• assertions are a relatively easy way to improve

software reliability
• assertion languages are accessible to most programmers
• assertions document intent and thus are useful beyond

just runtime checking
• overhead is usually small, especially if optimization

techniques are applied
• need more experimental data

• which kinds of assertions are most useful?
• what is the expected overhead?

Bottom line: Appears to be an effective approach with little
overhead

	Assertions
	Reading assignment
	Reading assignment
	Assertions
	History of Assertions
	History of Assertions
	Parts of an Assertion Mechanism
	Language for representing logical expressions
	Example
	Language for representing logical expressions
	Example old and current values
	Scope of an assertion
	Scope of an assertion
	More Advanced Assertion Language Capabilities
	Parts of an Assertion Mechanism
	Execution Models
	Assertion preprocessor
	Response model
	Annotation PreProcessor (APP)
	APP
	APP case study
	Results of the study
	Example
	Example: assume clause
	Example: return clause
	Example: promise clause
	Example: internal assertions
	Major objection to using assertions
	Assertions versus Exceptions
	Correct by Design
	Summary about Assertions

