
Assertions



Reading assignment

• A. J. Offutt, “A Practical System for 
Mutation Testing: Help for the Common 
Programmer,” Proceedings of the 12th 
International Conference on Testing 
Computer Software, Washington, D.C., June 
1995, pp. 99-109. 



Reading assignment
• L. A. Clarke, A. Podgurski, D. J. Richardson and 

Steven J. Zeil, "A Formal Evaluation of Data Flow 
Path Selection Criteria,” IEEE Transactions on 
Software Engineering, 15 (11), November 1989, pp. 
1318-1332. 

• Background reading
• S. Rapps and E. J. Weyuker, "Data Flow Analysis 

Techniques for Test Data Selection,” Proceedings of the 
Sixth International Conference of Software Engineering, 
Tokyo, Japan, September 1982, pp. 272-277. 



Assertions

• Self-checking software
• insert specifications about the intent of a 
system

• Violation means there is a fault in the system
• during execution, monitor if the assertion is 
violated

• if violated then report the violation



History of Assertions

• Alan Turing discussed using “assert 
statements” in algorithms, ~1947

• Assert statements used in formal verification 
to indicate what should be true at points in a 
program, ~1967

• Assertions advocated for finding faults 
during execution, ~1972

• Based on preprocessors



History of Assertions

• Assertions introduced as part of programming 
and specification languages, 1975->

• Euclid, Alphard, Clu, …
• Bertrand Meyer popularizes Design by 
Contract and includes assertions as an 
integral part of Eiffel, an OO language  

• Assertion capabilities for common 
programming languages, available but limited



Parts of an Assertion Mechanism

• a high-level language 
• for representing logical expressions (typically Boolean-valued 

expressions) for characterizing invalid program execution 
states

• for associating the logical expressions with well-defined 
states of the program (scope of applicability)

• automatic translation of the logical expressions into 
executable statements that evaluate the expressions 
on the appropriate states of the associated program

• predefined or user-defined runtime response that is 
invoked if the logical expression is violated



Language for representing logical expressions

• Usually use a notation that can be “easily” translated 
into the programming language

• Boolean expressions
• Use variables and operators defined in the program
• Must adhere to programming languages scoping rules 
• ASSERT  X < Y + Z;

where X, Y, and Z are variables in the program 

• Quantification
• ForAll and  ThereExists



Example

• --ASSERT  for all I, (1 ≤ I < N) ,
A[ I ] ≤ A[ I + 1 ]

• --ASSERT for some I, (1 ≤ I < N) ,
A[ I ] ≤ A[ I + 1 ]

• not always supported since quantification can 
result in expensive computation



Language for representing logical expressions

• Want to reference original value and current 
value of a variable

• Pre(X) versus X
• Old(X) versus X
• X’ versus X



Example old and current values

• --ASSERT  for all I, (1 ≤ I ≤ N),
old(A[ I ]) =  A[ I ]

• Value of the array has not changed

• --ASSERT for all J, (1 ≤ J ≤ N)
(for some I, (1 ≤ I ≤ N),old(A[ J ]) =  A[I] )

• Permutation of the array



Scope of an assertion

• Local assertion
• checked at the definition site

• Global assertion
• defined over a specific scope, usually using the 
scoping rules of the programming language

• must determine the locations that need to be 
checked, 

• Global ASSERT X > 10
must determine all the locations where X is         
defined and check that X is greater than 10



Scope of an assertion

• Loop assertion (Loop invariant)
• Checked at each iteration at the designated point 
in a loop

• Class assertion (Class invariant)
• Checked at the start and end of each method in a 
class 

• Pre (and Post conditions)
• Checked at the start (and end) of a method each 
time it is invoked

• All of the above are syntactic sugar 



More Advanced Assertion Language Capabilities

• may be able to introduce additional (hidden) 
operators, operands, and types

• e.g., length operator for stack 
• must be able to define the hidden entities in 
terms of the provided entities

• --ASSERT Z <  Bound (Q)
• means that whenever Z is assigned a value, it 
must be less than Bound (Q), 

• where Bound(Q) is visible wherever Z is visible and 
• either Bound(Q) is already defined in the program or is 
defined to be a hidden operation



Parts of an Assertion Mechanism

• a high-level language 
• for representing logical expressions (typically Boolean-valued 

expressions) for characterizing invalid program execution 
states

• for associating the logical expressions with well-defined 
states of the program (scope of applicability)

• automatic translation of the logical expressions into 
executable statements that evaluate the expressions 
on the appropriate states of the associated program

• predefined or user-defined runtime response that is 
invoked if the logical expression is violated



Execution Models

• Suppress assertion checking
• Binary -> on or off
• Multi-level 

• Select severity level to support
• Suppress all assertions except those at 
severity level 3 and higher



Assertion preprocessor

source code with
assertions

preprocessor

instrumented
source code

compiler

assertion checking
off assertion checking on



Response model

• Termination model
• When an assertion is violated, issue an error 
report and terminate

• Failure and Warning model
• 2 (3) level model: failure, (warning,) no problem

• On failure, issue an error report and terminate
• On warning, issue an error report and continue
• Continue as long as there is no problem



Annotation PreProcessor (APP)

• David Rosenblum
• APP supports 4 types of assertions

• assume--specifies a precondition on a function
• promise--specifies a postcondition on a function
• return--specifies a constraint on the return value 
of a function

• assert--specifies a constraint on an intermediate 
state of a function body

• Where should these be placed?



APP

• provides quantification operations all and 
some

• default action gives an error message that 
prints information about the location of the 
violation and values of any variables involved

• users can define their own violation actions
• can associate severity levels with assertions

• before processing indicate which severity levels 
should be checked



APP case study

• evaluated a program called Yeast
• 12,000 LOCs of C code
• half the program developed using APP

• had specific rules for writing assertions 
• resulted in 116 assertions



Results of the study

• detected 19 known faults
• 8 detected by APP
• 6 would have been detected by APP, if it had 
been used

• 2 detected by a dynamic storage certification 
routine

• 3 required event sequence information
• Overhead of using assertions

• 3.7% larger 
• no discernible difference in speed!



Example
public int binarySearch(int data [], int key){
  int lower = 0;
  int upper = data.length - 1;
  int location;
  while (true) {
     if(upper < lower)
        { return (-1) };
     else {
         location = midpoint(lower, upper);
         if (data [location] == key)

  {return (location); }
  else if (data[location] < key)
    {lower = location +1; }
  else
   { upper = location -1; }

    }}}



Example: assume clause
public int binarySearch(int data [], int key){
  int lower = 0;
  int upper = data.length - 1;
  int location;
  while (true) {
     if(upper < lower)
        { return (-1) };
     else {
         location = midpoint(lower, upper);
         if (data [location] == key)

  {return (location); }
  else if (data[location] < key)
    {lower = location +1; }
  else
   { upper = location -1; }

    }}}

assume
(data != null)&& 
all (int i = 0; i < data.length - 1; i++) data[i] < = data[i + 1] 



Example: return clause
public int binarySearch(int data [], int key){
  int lower = 0;
  int upper = data.length - 1;
  int location;
  while (true) {
     if(upper < lower)
        { return (-1) };
     else {
         location = midpoint(lower, upper);
         if (data [location] == key)

  {return (location); }
  else if (data[location] < key)
    {lower = location +1; }
  else
   { upper = location -1; }

    }}}

return location where 
((all(int i = 0; i < data.length; i++) data[i] != key) && (location == -1)) || 
((some(int i = 0; i < data.length; i++) data[i] == key) && (location == i))



Example: promise clause
public int binarySearch(int data [], int key){
  int lower = 0;
  int upper = data.length - 1;
  int location;
  while (true) {
     if(upper < lower)
        { return (-1) };
     else {
         location = midpoint(lower, upper);
         if (data [location] == key)

  {return (location); }
  else if (data[location] < key)
    {lower = location +1; }
  else
   { upper = location -1; }

    }}}

promise (data != null) && 
data.length == in data.length && 
all (int i = 0; i < data.length; i++) data[i] == in data[i] 



Example: internal assertions

public int binarySearch(int data [], int key){
  int lower = 0;
  int upper = data.length - 1;
  int location;
  while (true) {
     if(upper < lower)
        { return (-1) };
     else {
         location = midpoint(lower, upper);
/** location is the midpoint between upper and lower
* assert location <((float)(lower + upper)/2.0) + 1.0
* assert location >((float)(lower + upper)/2.0) - 1.0
*/
         if (data [location] == key)

  {return (location); }
  else if (data[location] < key)
    {lower = location +1; }
  else
   { upper = location -1; }

    }}}



Major objection to using assertions

• storage and runtime overhead
• Not apparent in APP study
• need more empirical data!!!

• optimization techniques could remove many of 
the assertions

• basically proving that the assertion is valid
• would expect that many of the assertions could be 
eliminated

• preconditions are often redundant checks on 
the validity of the parameters



Assertions versus Exceptions

• Assertion violation => error
• Predefined response

• Error report
• Terminate or continue

• More expressive notation (e.g. All, Some, old, class 
invariant)

• Exception violation => unusual case 
• Style guideline=> exceptions should be reserved for truly 

exceptional situations
• Program defined response

• Handler
• Different choices for resuming execution
• Complex exception flow



Correct by Design

• Design/Code by contract
• Development method that incorporates 
assertions early in the design and coding 
process

• Eiffel, Bertrand Meyer included assertions as 
part of the language

• Assertions are the most requested feature in 
Java 

• 1.4 introduced a very limited assertion capability 



Summary about Assertions
• assertions are a  relatively easy way to improve 

software reliability
• assertion languages are accessible to most programmers
• assertions document intent and thus are useful beyond 

just runtime checking
• overhead is usually small, especially if optimization 

techniques are applied
• need more experimental data

• which kinds of assertions are most useful?
• what is the expected overhead?

Bottom line: Appears to be an effective approach with little 
overhead
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