
Error Seeding and Mutation Testing

Random Testing
• Based on a description of the legal inputs,
generate test cases randomly over the
program domain

• Drawbacks
• Need to have an oracle for each test case
• May not match the operational profile

• Benefits
• Easy to generate test cases
• Serves a a baseline for comparison

• Using the same number of test cases, does
testing criteria X do as well as random testing
at detecting faults/finding failure?

Error Seeding

• Insert “typical” faults into a system
• Determine how many of the inserted faults
are found

• If K of the N faults found, then assume that K/N
of actual faults found as well

• Motivates developers/testers
• Know there is something to find
• Not looking for their own faults, so more
motivated

Mutation Testing

• Systematic method of error seeding
• originally proposed by Budd, Lipton, DeMillo, and
Sayward in the mid 1970s

• Approach: considers all simple (atomic) faults
that could occur

• introduces single faults one at a time to create
“mutants” of original program

• apply test set to each mutant program
• “test adequacy” is measured by % “mutants killed”

Mutation Testing
apply test set
to distinguish (kill)
mutants

... ...

Mutants
introduce
simple faults

Original program

Mutation testing process

• Execute program P on test set T
• P is considered the “correct” program
• save results R to serve as an oracle

• Each inserted fault results in a new program
• Mutant programs = P1,...,Pk

• If Pi(T) ≠ P(T) then mutant Pi is killedP

Mutants

P2

Pk

P1

apply test data
to create “oracle” R

Mutation Testing Assumptions

• Competent Programmer Hypothesis
• programmers write programs that are reasonably
close to the desired program

• e.g., sort program is not written as a hash
table

• Coupling Effect
• detecting simple atomic faults will lead to the
detection of more complex faults

Atomic faults: Operand mutations

• Constant replacement
e.g., x := x + 5; would replace 5 with each
constant of the appropriate type that appears in
the program

• Scalar variable replacement
e.g., y := x + 5; would replace x with each
scalar variable of the appropriate type that
appears in the program

More operand mutations

• scalar variable for constant replacement
• constant for scalar variable replacement
• array reference for constant replacement
• array reference for scalar variable
replacement

• constant for array reference replacement

More operand mutations

• scalar variable for array reference replacement
• array reference for array reference
replacement

• array index replacement for array index
replacement

• data statement alteration

Operator mutations

• arithmetic operator replacement
• e.g., x := x + 5;
• would replace + with -, *, /, and **

• relational operator replacement
• e.g., a > b;
• would replace > with >=, <, <=, =, and /=

More operator mutations

• logical connector replacement
• absolute value insertion
• unary operator insertion
• statement deletion
• return statement replacement
• GOTO label replacement
• DO statement end replacement

Example

• consider the assignment:
A : = X + 1;

• assume:
• 2 is the only other constant in the

program
• Y is the only scalar variable of the

same type as X and A
• C[I] is the only array with the same

type as X and A

Mutating one statement

operand mutations:
A : = X + 1; ⇒ A : = X + 2
A : = X + 1; ⇒ A : = X + Y
A : = X + 1; ⇒ A : = X + A
A : = X + 1; ⇒ A : = X + C[I]
A : = X + 1; ⇒ A : = Y + 1
A : = X + 1; ⇒ A : = A + 1
A : = X + 1; ⇒ A : = C[I] + 1
A : = X + 1; ⇒ A : = 1 + 1
A : = X + 1; ⇒ A : = 2 + 1
A : = X + 1; ⇒ X : = X + 1
A : = X + 1; ⇒ Y : = X + 1
A : = X + 1; ⇒ C[I] : = X + 1

binary operator replacement:
A : = X + 1; ⇒ A : = X - 1
A : = X + 1; ⇒ A : = X * 1
A : = X + 1; ⇒ A : = X / 1
A : = X + 1; ⇒ A : = X ** 1
unary operator insertion:
A : = X + 1; ⇒ A : = -X + 1
A : = X + 1; ⇒ A : = X + (-1)
A : = X + 1; ⇒ A : = - (X + 1)
absolute value insertion:
A : = X + 1; ⇒ A : = abs (X) + 1
A : = X + 1; ⇒ A : = abs (X + 1)
statement replacement:
A : = X + 1; ⇒ continue
A : = X + 1; ⇒ return
A : = X + 1; ⇒ go to 100

Mutation testing process
• execute each mutant Pi on T and compare results Ri

to R
• If Ri ≠ R then mutant is killed
• if Ri = R then either

Pi = P, thus it is an equivalent mutant or
the test cases do not reveal

the error and need to find a new
test case that does

apply test data and compare
output with oracle; “kill”
distinguished mutants

... ...

Mutants

P2

Pk

P1

Mutation System

• Automates the mutation process
• uses the initial execution to determine the oracle
• creates the mutants
• lists the seeded errors that have not been detected
user states (interactively) if the mutant is equivalent to the

original program or finds a test case to kill the mutant

• Mutation system is a test set evaluation system

Techniques to optimize execution cost

• don’t actually create and compile all the mutants
• keep track of the internal state during execution of the original

program & start with the statement preceding a mutated
statement

• stop execution if the values computed by the mutant ever become
the same as the value computed by the correct program
(report that the mutant was not killed)

• An alternative approach
• stop execution if the values computed by the mutant are not the

same as the original program
(report that the mutant was probably killed)

• called weak mutation testing

The state at a stmt consists of all the variables that are live (will
ever be used in the future)

Examples

A := X + 1; mutated stmt A’ := X + Y;

Weak mutation testing would stop
at this point and report that the
mutant is killed

Test case:X=5; Y=3

Results: A= 6, A’= 8

Z := A * (Y - 3); Strong mutation would continue to be
sure the fault propagates to an output

Still can stop and report that the
mutant is NOT killed if the state at an
intermediate point is the same as the
original program

Conclusions

• even with optimization techniques, mutation
testing is an expensive way to find faults in
a program

• eliminating equivalent mutants is tedious;
killing all mutants is hard

• first 80% are easy, last 20% are hard

Is mutation testing effective at finding real
faults in real programs?
• Several analytic studies showed that it “subsumes”

other approaches
• E.g., Subsumes statement and branch coverage

• Some studies showed that it is as effective or
almost as effective as other test data selection
techniques

• only a few studies done and on limited size/simple programs
• Mutation testing usually requires significantly more test

cases to be as effective
• For the amount of effort, how does mutation testing

compare to random testing?
• For same number of test cases as mutation testing

• Random test cases easier to generate
• Mutation testing assumes the original program is the

oracle

Another Mutation-Based Technique:

• Mutating Test Data
• instead of mutating program, mutate input

• Bart Miller did an experiment where he
demonstrated that arbitrary strings caused
UNIX to consistently fail

• wanted to understand why storms caused his
connection to go down

C compiler experiment

• conducted by Bill McKeeman
• using the language grammar, generated legal
C programs

• ran the generated C programs on n
different C compilers and compared the
results

• 20% of the time at least one of the
compilers generated incorrect code

C compiler experiment-version 2

• weighted the grammar productions to avoid
hard cases

• 1 out of 100 times at least one of the
compilers generated incorrect code

• compiler maintainers gave a low priority to
fixing these errors

Ada validation suite

• intended to demonstrate that a compiler
handles all of the constructs

• did not attempt to stress test for each
construct, although users have added such
cases over the years

Comparison

• mutation testing evaluates the test cases
• mutated test data is “stress” testing the
system
often the generated strings do not correspond to typical

cases
e.g., 007.5

thus, not the kind of errors most programmers will
report

Summary of Mutation testing

• Mutation testing takes error seeding to the
absurd,

but it did simulate some useful research
and insight

• Mutated test data is really a form of random
testing, but looking at extreme values

	Error Seeding and Mutation Testing
	Random Testing
	Error Seeding
	Mutation Testing
	Mutation Testing
	Mutation testing process
	Mutation Testing Assumptions
	Atomic faults: Operand mutations
	More operand mutations
	More operand mutations
	Operator mutations
	More operator mutations
	Example
	Mutating one statement
	Mutation testing process
	Mutation System
	Techniques to optimize execution cost
	Examples
	Conclusions
	Is mutation testing effective at finding real faults in real programs?
	Another Mutation-Based Technique:
	C compiler experiment
	C compiler experiment-version 2
	Ada validation suite
	Comparison
	Summary of Mutation testing

