Data Flow Coverage
Control-Flow-Graph-Based Coverage Criteria

• Statement Coverage
• Path Coverage
• Branch Coverage
• Hidden Paths
• Loop Guidelines
 • General
 • Boundary – Interior
Paths for Example

Boundary paths
1,2,3,5,7 a
1,2,3,6,7 b
1,2,4,5,7 c
1,2,4,6,7 d

Interior paths (for 2 executions of the loop)
 a,a
 a,b
 a,c
 a,d
 b,a
 b,b
 ...
 x,y for x,y = a, b, c, d
Need Control Flow **AND** Data Dependence

\[x := 2\]

\[y := x\]

\[z := \ldots y\ldots\]
Non-looping Path Selection Problem

\[\begin{align*} x &:= 1, 2, 4, 5, 7 \\ &:= 1, 3, 4, 6, 7 \\ &:= x \end{align*} \]

All branches 1, 2, 4, 5, 7, 1, 3, 4, 6, 7 does not exercise the relationship between the definition of X in statement 2 and the reference to X in statement 6.
Definitions

• $d_n(x)$ denotes that variable x is assigned a value at node n (defined)

• $u_m(y)$ denotes that variable y is used (referenced at node m)

 • a definition clear path p with respect to (wrt) x is a subpath where x is not defined at any of the nodes in p

 • a definition $d_m(x)$ reaches a use $u_n(x)$ iff there is a subpath $(m) \cdot p \cdot (n)$ such that p is definition clear wrt x
Data Flow Path Selection

• Rapps and Weyuker
 • definition-clear subpaths from definitions to uses

• Ntafos
 • chains of alternating definitions and uses linked by definition-clear subpaths

• Laski and Korel
 • combinations of definitions that reach uses at a node via a subpath
Assumptions

- no edges of the form (n, n_s) or (n_f, n)
- no edges of the form (n, n)
- there is at most one edge (m, n) for all m, n
- every control graph is well formed
 - Connected
 - Single start and single final node
- every loop has a single entry and a single exit
More assumptions

• at least one variable is associated with a node representing a predicate

• no variable definitions are associated with a node representing a predicate

• every definition of a variable reaches at least one use of that variable

• every use is reached by at least one definition

• every control graph contains at least one variable definition

• no variable uses or definitions are associated with n_s and n_f
Rapps' and Weyuker's Data Flow Criteria

Foundation:

• Definition-clear subpaths from each definition to {some/all} use(s)

All-Defs

• Some definition-clear subpath from each definition to some use reached by that definition
Rapps’ and Weyuker’s Data Flow Criteria

All-Uses

- Some definition-clear subpath from each definition to each use reached by that definition and each successor node of the use
Rapps' and Weyuker's Data Flow Criteria

C-use is a “computation use”
P-use is a “predicate use”

All-C-Uses, Some-P-Uses
• either All-C-Uses for \(d_m(x) \) or at least one P-Use

All-P-Uses, Some-C-Uses
• either All-P-Uses for \(d_m(x) \) or at least one C-Use
Rapps’ and Weyuker’s Data Flow Criteria

All-Du-Paths

- All definition-clear subpaths that are cycle-free or simple-cycles from each definition to each use reached by that definition and each successor node of the use

\[x := \quad \ldots \quad \]
Example

\[d_1(x) \]

\[u_2(x) \]

\[u_3(x) \]

\[u_5(x) \]
All-Defs

Requires:
 \(d_1(x) \) to a use

Satisfactory Path:
 1, 2, 4, 6
All-Uses

Requires:
- $d_1(x)$ to $u_2(x)$
- $d_1(x)$ to $u_3(x)$
- $d_1(x)$ to $u_5(x)$

Satisfactory Paths:
- $1, 2, 4, 5, 6$
- $1, 3, 4, 6$
All-Du-Paths

Requires:
- $d_1(x)$ to $u_2(x)$
- $d_1(x)$ to $u_3(x)$
- both paths for $d_1(x)$ to $u_5(x)$

Satisfactory Paths:
- 1, 2, 4, 5, 6
- 1, 3, 4, 5, 6
Ntafos' Data Flow Criteria

• **Foundation:**

 • *Chains of alternating definitions and uses linked by definition-clear subpaths (k-dr interactions)*

 • *i*\(^{th}\) definition reaches *i*\(^{th}\) use,

 • which defines *i*\(^{th}\)+1 definition

 • *K* is number of branches
k-dr interactions

1-dr

\[x := \]
\[y := \ldots x \ldots \]
\[z := \ldots y \ldots \]
\[w := \ldots z \ldots \]

2-dr

\[x := \]
\[y := \ldots x \ldots \]
\[:= \ldots y \ldots \]
Ntafos' Data Flow Criteria

• Required K-tuples
 Some subpath propagating each k-dr interaction
 + if last use is a predicate, both branches
 + if first definition or last use is in a loop, minimal and some larger number of loop iterations
Example

\begin{align*}
&u_4(x), d_4(y) \\
&d_1(x) \\
&1 \\
&2 \\
&u_2(y) \\
&u_3(y), d_3(x) \\
&3 \\
&u_4(x), d_4(y) \\
&4 \\
&u_5(x) \\
&5 \\
&u_6(y), u_6(x) \\
&6 \\
f
\end{align*}
1-DR interaction

a: d1(x) to u4(x)
b: d1(x) to u5(x)
c: d1(x) to u6(x)
d: d0(y) to u2(y)
e: d0(y) to u3(y)
f: d0(y) to u6(y)

g: d3(x) to u5(x)
h: d3(x) to u6(x)
i: d3(x) to u4(x)
j: d4(y) to u6(y)
k: d4(y) to u2(y)
l: d4(y) to u3(y)

PATHS
0, 1, 2, 4, 5, 6: satisfies a-d, j
0, 1, 2, 3, 5, 6: satisfies e-h
0, 1, 2, 3, 5, 2, 4, 5, 2, 3, 5, 6: satisfies i, k, l
From 1-DR to 2-DR

- **a:** $d_1(x)$ to $u_4(x)$
- **b:** $d_1(x)$ to $u_5(x)$
- **c:** $d_1(x)$ to $u_6(x)$
- **d:** $d_0(y)$ to $u_2(y)$
- **e:** $d_0(y)$ to $u_3(y)$
- **f:** $d_0(y)$ to $u_6(y)$

Plus:

- $d_1(x)$ to $u_4(x)$ $d_4(y)$ to $u_6(y)$
- $d_1(x)$ to $u_4(x)$ $d_4(y)$ to $u_2(y)$
- $d_1(x)$ to $u_4(x)$ $d_4(y)$ to $u_3(y)$
- $d_0(y)$ to $u_3(y)$ $d_3(x)$ to $u_5(x)$
- $d_0(y)$ to $u_3(y)$ $d_3(x)$ to $u_6(x)$
- $d_0(y)$ to $u_3(y)$ $d_3(x)$ to $u_4(x)$

g: $d_3(x)$ to $u_5(x)$

h: $d_3(x)$ to $u_6(x)$

i: $d_3(x)$ to $u_4(x)$

j: $d_4(y)$ to $u_6(y)$

k: $d_4(y)$ to $u_2(y)$

l: $d_4(y)$ to $u_3(y)$
2-DR interactions

aj: d1(x), u4(x), d4(y), u6(y)
ak: d1(x), u4(x), d4(y), u2(y)
al: d1(x), u4(x), d4(y), u3(y)

eg: d0(y), u3(y), d3(x), u5(x)
eh: d0(y), u3(y), d3(x), u6(x)
ei: d0(y), u3(y), d3(x), u4(x)

ij: d3(x), u4(x), d4(y), u6(y)
i: d3(x), u4(x), d4(y), u2(y)
il: d3(x), u4(x), d4(y), u3(y)

g: d4(y), u3(y), d3(x), u5(x)
lh: d4(y), u3(y), d3(x), u6(x)
li: d4(y), u3(y), d3(x), u4(x)

Paths:
0, 1, 2, 4, 5, 6: satisfies aj
0, 1, 2, 3, 5, 6: satisfies eg, eh
0, 1, 2, 3, 5, 2, 4, 5, 2, 3, 5, 6: satisfies ei, ij, ik, il, lh
0, 1, 2, 4, 5, 2, 3, 5, 6: satisfies ak, al, lg (but not li)
Laski’s and Korel’s Criteria

• **Foundation:**
 Combinations of definitions that reach uses at some node via a subpath

• **Reach Coverage**
 Some definition-clear subpath from each definition to all uses reached by that definition
 basically the same as all-uses
Laski’s and Korel’s Criteria

• **Context Coverage**

 Some subpath along which each set of definitions reach uses at each node

\[:=x..y..z \]
Laski’s and Korel’s Criteria

- **Ordered Context Coverage**

Some subpath along which each sequence of definitions reach uses at each node
Context Coverage

\[DC(n_6) = \{d_1(x), d_4(y)\}, \{d_3(x), d_0(y)\}, \{d_3(x), d_4(y)\} \]

 Paths

- a: 1, 2, 4, 5, 6
- b: 1, 2, 3, 5, 6
- c: 1, 2, 3, 5, 2, 4, 5, 6

Note: must compute the sets for each node
Ordered Context Coverage

\[\text{ODC}(n_6) = [d_1(x), d_4(y)], \quad a \]
\[[d_0(y), d_3(x)], \quad b \]
\[[d_3(x), d_4(y)], \quad c \]
\[[d_4(y), d_3(x)], \quad d \]

Paths
a: 1, 2, 4, 5, 6
b: 1, 2, 3, 5, 6
c: 1, 2, 3, 5, 2, 4, 5, 6
d: 1, 2, 4, 5, 2, 3, 5, 6

Note: must compute the sequences for each node
How can we compare these criteria?

• all select a set of paths, so compare the paths that they select

 set of paths that satisfy a criterion are not necessarily unique

 e.g., s1 or s2 satisfies criterion A

 s1, s2, or s3 satisfy criterion B
How can we compare these criteria?

• define a subsumption relationship
• criterion A subsumes criterion B iff for any flow graph
 \[P \text{ satisfies } A \implies P \text{ satisfies } B \]
• criterion A is equivalent to criterion B iff A subsumes B and B subsumes A
Relationships among these criteria

- All-Paths
- All-DU-Paths
- Required k-Tuples
- All-P-Uses
- All-Edges
- All-Nodes
- All-C-Uses/Some-P-Uses
- All-Uses
- All-Defs
- ORDERED CONTEXT COVERAGE
- CONTEXT COVERAGE
- REACH COVERAGE
- All-P-Uses/Some-C-Uses
Should we define yet another criteria?

• could subsume all the others, (except all paths)?
Problems with data flow coverage criteria

• infeasible paths
 • Don't usually get 100% coverage
• Need to understand fault detection ability
• Artificially combines control with data flow
 • Considering p-uses or all predicate alternatives, tacked on to incorporate control flow
Conclusions

• An improvement over control flow techniques
• Provides a rationale for how many times to iterate a loop or which combinations of subpaths to consider
• Most commonly used criterion is all-uses
• Need more empirical evidence to evaluate effectiveness