Data Flow Coverage

Control-Flow-Graph-Based Coverage Criteria

- Statement Coverage
- Path Coverage
- Branch Coverage
- Hidden Paths
- Loop Guidelines
- General
- Boundary - Interior

Paths for Example

Boundary paths

$1,2,3,5,7$	a
$1,2,3,6,7$	b
$1,2,4,5,7$	c
$1,2,4,6,7$	d

Interior paths
(for 2 executions of the loop)
a, a
a, b
a, c
a,d
b,a
b,b
x, y for $x, y=a, b, c, d$

Need Control Flow AND Data Dependence

Non-looping Path Selection Problem

All branches 1, 2, 4, 5, 7
1, 3, 4, 6, 7
does not exercise the relationship between the definition of X in statement 2 and the reference to X in statement 6.

Definitions

- $d_{n}(x)$ denotes that variable x is assigned a value at node n (defined)
- $u_{m}(y)$ denotes that variable y is used (referenced at node m)
- a definition clear path p with respect to (wrt) x is a subpath where x is not defined at any of the nodes in p
- a definition $d_{m}(x)$ reaches a use $u_{n}(x)$ iff there is a subpath (m) • $p \bullet(n)$ such that p is definition clear wrt x

Data Flow Path Selection

- Rapps and Weyuker
- definition-clear subpaths from definitions to uses
- Ntafos
- chains of alternating definitions and uses linked by definition-clear subpaths
- Laski and Korel
- combinations of definitions that reach uses at a node via a subpath

Assumptions

- no edges of the form $\left(n, n_{s}\right)$ or $\left(n_{f}, n\right)$
- no edges of the form (n, n)
- there is at most one edge (m, n) for all m, n
- every control graph is well formed
- Connected
- Single start and single final node
- every loop has a single entry and a single exit

More assumptions

- at least one variable is associated with a node representing a predicate
- no variable definitions are associated with a node representing a predicate
- every definition of a variable reaches at least one use of that variable
- every use is reached by at least one definition
- every control graph contains at least one variable definition
- no variable uses or definitions are associated with n_{s} and n_{f}

Rapps' and Weyuker's Data Flow Criteria

Foundation:

- Definition-clear subpaths from each definition to \{some/all\} use(s)
All-Defs
- Some definition-clear subpath from each definition to some use reached by that definition

Rapps' and Weyuker's Data Flow Criteria

All-Uses

- Some definition-clear subpath from each definition to each use reached by that definition and each successor node of the use

Rapps' and Weyuker's Data Flow Criteria

C-use is a "computation use"
P-use is a "predicate use"
All-C-Uses, Some-P-Uses

- either All-C-Uses for $d_{m}(x)$ or at least one P -Use
All-P-Uses, Some-C-Uses
- either All-P-Uses for $d_{m}(x)$ or at least one C-Use

Rapps' and Weyuker's Data Flow Criteria

All-Du-Paths

- All definition-clear subpaths that are cycle-free or simple-cycles from each definition to each use reached by that definition and each successor node of the use

Example

All-Defs

Requires:

$d_{1}(x)$ to a use

Satisfactory Path:

$$
1,2,4,6
$$

All-Uses

Requires:
$d_{1}(x)$ to $u_{2}(x)$ $d_{1}(x)$ to $u_{3}(x)$ $d_{1}(x)$ to $u_{5}(x)$
Satisfactory Paths:
1, 2, 4, 5, 6
1, 3, 4, 6

All-Du-Paths

Requires:
$d_{1}(x)$ to $u_{2}(x)$
$d_{1}(x)$ to $u_{3}(x)$
both paths for $d_{1}(x)$ to $u_{5}(x)$
Satisfactory Paths:
1, 2, 4, 5, 6
$1,3,4,5,6$

Ntafos' Data Flow Criteria

- Foundation:
- Chains of alternating definitions and uses linked by definition-clear subpaths (k-dr interactions)
- $i^{\text {th }}$ definition reaches $i^{\text {th }}$ use,
- which defines $i^{\text {th }}+1$ definition
- K is number of branches

k-dr interactions

Ntafos' Data Flow Criteria

- Required K-tuples

Some subpath propagating each $k-d r$ interaction

+ if last use is a predicate, both branches
+ if first definition or last use is in a loop, minimal and some larger number of loop iterations

Example

1-DR interaction

d1 (x) to $u 4(x)$	$\mathrm{g}: \mathrm{d} 3(\mathrm{x})$ to $\mathrm{u} 5(\mathrm{x})$
b: d1 (x) to u5(x)	h: $\mathrm{d} 3(x)$ to u6(x)
c: ${ }^{\text {d }}$ (x) to $u 6(x)$	i: $\mathrm{d} 3(x)$ to $u 4(x)$
d: d0(y) to u2(y)	j: $d 4(y)$ to $u 6(y)$
d0(y) to u3(y)	k: ${ }^{\text {d }}$ (y) to $\mathrm{u} 2(\mathrm{y}$)
d0(y) to u6(y)	I: $\mathrm{d} 4(\mathrm{y})$ to $\mathrm{u} 3(\mathrm{y})$

PATHS

0,1, 2, 4, 5, 6; satisfies $a-d, j$
$0,1,2,3,5,6$: satisfies e-h
0,1, 2, 3, 5, 2, 4, 5, 2, 3, 5, 6
(0) $d_{0}(y)$
$u_{3}(y), d_{3}(x)^{\frac{1}{3}}$
: satisfies i,k,l

From 1-DR to 2-DR

Plus:
$d 1(x)$ to $u 4(x) d 4(y)$ to $u 6(y)$ $d 1(x)$ to $u 4(x) d 4(y)$ to $u 2(y)$ $d 1(x)$ to $u 4(x) d 4(y)$ to $u 3(y)$ $d 0(y)$ to $u 3(y) d 3(x)$ to $u 5(x)$ $d 0(y)$ to $u 3(y) d 3(x)$ to $u 6(x)$ $d 0(y)$ to $u 3(y) d 3(x)$ to $u 4(x)$

2-DR interactions

aj: d1(x), u4(x), d4(y), u6(y) ak: $d 1(x), u 4(x), d 4(y), u 2(y)$ al: d1(x), u4(x), d4(y), u3(y) eg: d0(y), u3(y), d3(x), u5(x) eh: dO(y), u3(y), d3(x), u6(x) ei: dO(y), u3(y), d3(x), u4(x) $i j: d 3(x), u 4(x), d 4(y), u 6(y)$ ik: d3(x), u4(x), d4(y), u2(y) il: d3(x), u4(x), d4(y), u3(y) lg: d4(y), u3(y), d3(x), u5(x) lh: d4(y), u3(y), d3(x), u6(x) li: d4(y), u3(y), d3(x), u4(x) Paths:
0, 1, 2, 4, 5, 6: satisfies aj
$0,1,2,3,5,6$: satisfies eg, eh
0, 1, 2, 3, 5, 2, 4, 5, 2, 3, 5, 6
: satisfies ei, ij, ik, il, Ih

$0,1,2,4,5,2,3,5,6$: satisfies ak, al, lg (but not li)

Laski's and Korel's Criteria

- Foundation:

Combinations of definitions that reach uses at some node via a subpath

- Reach Coverage

Some definition-clear subpath from each definition to all uses reached by that definition
basically the same as all-uses

Laski's and Korel's Criteria

- Context Coverage

Some subpath along which each set of definitions reach uses at each node
:=x..y..z

Laski's and Korel's Criteria

- Ordered Context Coverage

Some subpath along which each sequence of definitions reach uses at each node

Context Coverage

$$
\begin{aligned}
& D C\left(n_{6}\right)=\left\{d_{1}(x), d_{4}(y)\right\}, \quad a \\
& \left\{d_{3}(x), d_{0}(y)\right\}, b \\
& \left\{d_{3}(x), d_{4}(y)\right\} \\
& \text { a: 1, 2, 4, 5, } 6 \\
& \text { b: 1, 2, 3, 5, } 6 \\
& \text { c: 1, 2, 3, 5, 2, 4, 5, }
\end{aligned}
$$

Note: must compute the sets for each node

Ordered Context Coverage

$$
\begin{aligned}
\operatorname{ODC}\left(n_{6}\right)= & {\left[d_{1}(x),\right.} & \left.d_{4}(y)\right], & a \\
& {\left[d_{0}(y),\right.} & \left.d_{3}(x)\right], & b \\
& {\left[d_{3}(x),\right.} & \left.d_{4}(y)\right], & c \\
& {\left[d_{4}(y),\right.} & \left.d_{3}(x)\right], & d
\end{aligned}
$$

(0) $d_{0}(y)$

\author{

Paths

 a: 1, 2, 4, 5, 6
 b: 1, 2, 3, 5, 6
 c: 1, 2, 3, 5, 2, 4, 5, 6
 d: 1, 2, 4, 5, 2, 3, 5, 6}

Note: must compute the sequences for each node

How can we compare these criteria?

- all select a set of paths, so compare the paths that they select
set of paths that satisfy a criterion are not necessarily unique
e.g., s1 or s2 satisfies criterion A s1, s2, or s3 satisfy criterion B

How can we compare these criteria?

- define a subsumption relationship
- criterion A subsumes criterion B iff for any flow graph

P satisfies $A==>P$ satisfies B

- criterion A is equivalent to criterion B iff A subsumes B and B subsumes A

Relationships among these criteria

Should we define yet another criteria?

- could subsume all the others, (except all paths)?

Problems with data flow coverage criteria

- infeasible paths
- Don't usually get 100\% coverage
- Need to understand fault detection ability
- Artificially combines control with data flow
- Considering p-uses or all predicate alternatives, tacked on to incorporate control flow

Conclusions

- An improvement over control flow techniques
- Provides a rationale for how many times to iterate a loop or which combinations of subpaths to consider
- Most commonly used criterion is all-uses
- Need more empirical evidence to evaluate effectiveness

