
Program Dependencies



Reading assignment

• M. C. Thompson, D. J. Richardson and 
L. A. Clarke, "An Information Flow Model 
of Fault Detection", Proceedings of the 
International Symposium on Software 
Testing and Analysis, (ISSTA), Boston, MA, 
June 1993, pp.182-192



Today’s reading

• A. Podgurski and L. A. Clarke, "A Formal Model of 
Program Dependencies and Its Implications for 
Software Testing, Debugging, and Maintenance", 
IEEE Transactions on Software Engineering, 16 (9), 
September 1990, pp. 965-979. 

• Background
• M. Weiser, “Program Slicing,” Proceedings of the Fifth 

International Conference on Software Engineering, San 
Diego, Ca 1981, pp. 439-449. 

• D. W. Binkley and K. B. Gallagher, “Program Slicing,”
Advances in Computers, Vol. 43, M. Zelkowitz, editor, 
Academic Press, 1996 pp. 1-50. 



Program Slice

• Introduced by Mark Weiser in 1979
• Argued it was a mental abstraction that 
programmers used when debugging

• Program slice S is a reduced, executable 
program obtained from program P by 
removing statements from P, such that S 
replicates part of the behavior of P



Program Slice
read n;

i := 1;

sum := 0;

product  := 1;

while i ≤ n do

sum := sum +1;

product := product * i;

i:= i+1;

endwhile;

write sum;

write product;

read n;

i := 1;

product  := 1;

while i ≤ n do

product := product * i;

i:= i+1;

endwhile;

write product;



Original Slicing Concept

• Based on statements
• Algorithm restricted to structured programs
• Missed some relationships
• Foundation for considerable work

• Podgurski and Clarke generalized some of the 
concepts

• Language-independent model of dependence 
• More general model of control flow

• Weak and strong control flow



Applications of Program Slicing/Dependence

• Debugging
• Data/control flow testing criteria
• Software understanding
• Maintenance



Program Dependencies

• sk is semantically dependent on si if 
the semantics of si can affect the 
execution behavior of sk

• In general, can’t determine semantic 
dependence

si

sm

sl

sj

sk



Syntatic Dependence

• Can we find syntactic dependence relations 
that “approximate” semantic dependence?
• that define necessary conditions for semantic 
dependence

• that are defined in terms of a  language-
independent, graph-theoretic model that can be 
efficiently computed



Forward Dominators

• let G(N,E) be a control flow graph, 
where su, sv, and sf are nodes in G and 
sf is the final node
• a node sv forward dominates su iff every su
->sf path in G contains sv

• sv properly forward dominates su iff
• su ≠ sv and  sv forward dominates su



Immediate Forward Dominators
A node sv is the the immediate 
forward dominator of su, su ≠
sf if it is the node that is the 
first proper forward dominator 
of sv to occur on every su->sf
path in G

after a branch, this is the point 
where all paths come together

si

sm

su

sj

sk

sv

sl



Example
1

2 3

4

5

6

7

7 forward dominates all 
nodes

ifd(5) =
ifd(1)=
ifd(4)=

7

4

5



Control Dependence

• sv is control dependent on su iff there exists 
a path  su•P•sv not containing the immediate 
forward dominator of su

• bodies of structured constructs are control 
dependent on the start of the construct



Example 1

2 3

4

5

6

7

• 2 and 3 are control 
dependent on 1

• 6 is control dependent on 
5



Direct Data Dependence

Assume G(N,E) is a control flow graph, where 
Def(sn) are the variables defined at node sn
and Use(sn) are the variables referenced at 
node sn. 

if path P =  si1,...,sin then Def(P)= UjDef(sij)
node sv is directly data dependent on node su
iff there is a path su•P•sv such that

(Def(su) ∩ Use(sv)) - Def(P) ≠ 0



In other words

(Def(su) ∩ Use(sv)) - Def(P) ≠ 0

This is just a set theoretic way of 
saying that there is at least one 
variable, say x, defined at node su
that is used at node sv and there is a def-clear 
path with respect to x from su to sv



Data Dependence
• node sv is  data 
dependent on su iff there 
is a path sv1,...,svn such 
that u=v1, v=vn, and Svi
is directly data 
dependent on Svi+1 for all 
i, 1 ≤ i < n Svn-1

svn

sm

sk

= ... an

sv1

a2=...a1

an= ...an-1

sv2

a1=...

si



Example 1

2 3

4

5

6

7

x:= 

y:= x 

:= y

• 4 is directly data dep. on 2
• 6 is directly data dep. on 4
• 6 is data dependent on 2

directly data dependent is the same 
as the def-use relationship defined 
by Rapps and Weyuker

data dependent is the same as the 
chains of def ref used by Ntafos, 
but without a bound



Syntactic Dependence

• node Sv is syntactically dependent on Su iff
there is a path Sv1,...,Svn of nodes such that 
u=v1, v=vn, and Svi+1 is  data or control
dependent on Svi for all i, 1≤ i < n
• combines data dependence and  control 
dependence

• sometimes called information flow
• syntactic dependence over-approximates 
semantic dependence
• Why?



Syntactic Dependence
1

2 3

4

5

6

7

x:= 

x:=

Control flow

(1,2)

(1,3)

(5,7)

(5,6)

Direct Data flow

(2,7)

(6,7)

:= x



Data (and control) flow coverage criteria

• coverage criteria  exercise  subsets of 
control and data dependencies in the hope of 
exposing faults

• Rapps and Weyuker, Ntafos, Laski and Korel
selected different subsets of information 
flow

• need experimental data to know which are 
the most effective subsets
• intuitively, direct data dependence and control 
dependence are appealing

• relatively easy to achieve at least 85% coverage 
with automated support



Data Flow/Control Flow Coverage revisited

“NEW Winner”

All-DU-Paths

All-Uses

All-Defs

Required k-Tuples

All-P-Uses

All-Edges

All-Nodes

All-P-Uses/Some-C-Uses

ORDERED CONTEXT COVERAGE

CONTEXT COVERAGE

REACH COVERAGE

All-C-Uses/Some-P-Uses

All-dependencies



Applications

• Debugging
• Data/control flow testing criteria
• Software understanding
• Maintenance



Symmetric Relationship
1

2 3

4

5

6

7

x:=

:= x

• dep(si, sj) is true if sj is 
syntactically dependent on si

• dep(?, sj) = {si | dep(si,sj)} 
is the set of nodes that can 
syntactically affect sj

• dep(si, ?) ={sj | dep(si,sj)} is the 
set of nodes that can be 
syntactically affected by si

x:= 



Debugging Dependencies

• Which statements could have caused an 
observed failure?

• If sv computes an erroneous value, want to 
know the statements sv is dependent upon? 

•dep(?,Sv)



Maintenance Dependencies
• Which statements will be affected by a change?
->which statements are dependent upon su

dep(su,?)
• Will a particular statement be affected by a 
change?
• Is there a dependency between Su and Sv?

dep(Su,Sv)?

• Which statements could affect “this” statement?
• Which statements are statement Sv� dependent on?

dep(?,Sv)



Kinds of flow

• Forward flow
• dep(Su,?)

• Backward flow
• dep(?,Sv)



Program Dependence Graph

• Originally proposed by Ottenstein and 
Ottenstein(Ott), 1984

• Nodes correspond to statements
• Edges correspond to data or control 
dependencies

• A slice corresponds to all nodes that are 
reachable from a selected node (forward 
slice)



Program dependence graph example

read n;
i := 1;
sum := 0;
product  := 1;
while i ≤ n do

sum := sum +1;
product := product * i;
i:= i+1;

endwhile;
write sum;
write product;



Program Dependence Graph Example

entry

read n i := 1 product  := 1sum := 0 while i ≤ n write prod write sum 

sum := i := i+1 prod := 

read n;
i := 1;
sum := 0;
product  := 1;
while i ≤ n do

sum := sum +1;
product := product * i;
i:= i+1;

endwhile;
write sum;
write product;



Program Dependence Graph Example

entry

read n i := 1 product  := 1sum := 0 while i ≤ n write prod write sum 

sum := i:=i + 1prod := 
read n;
i := 1;
sum := 0;
product  := 1;
while i ≤ n do

sum := sum +1;
product := product * i;
i:= i+1;

endwhile;
write sum;
write product;



Control Flow Graph Model w/ Data 
Dependencies

read n

i := 1

product  := 1

sum := 0

while i ≤ n 

write prod 

write sum 

sum := 

i:=i+1 

prod := 

read n;
i := 1;
sum := 0;
product  := 1;
while i ≤ n do

sum := sum +1;
product := product * i;
i:= i+1;

endwhile;
write sum;
write product;

enter



Problems with dependence analysis/slicing

• In practice, a program slice is often too 
big to be useful

• Infeasible paths lead to imprecision
• Complex data structures lead to 
imprecision

A[i]:= 
…

B[j] := A[k] 

• Need to use an efficient, 
interprocedural algorithm



Refining program dependencies

• Dependence/slice wrt a criteria
• Dynamic dependence/slice



Levels of Granularity

• by statement
• by entity

• e.g., x:= y + z
• only look at dependencies on z
• only look at data dependencies on z
• only look at direct data dependencies on z

• by component 
• e.g., TASC avionics maintenance system 



Dynamic Slice

• First proposed by Laski and Korel, 1988
• Only provides those dependencies that were 
exercised during a particular execution

• Could also be further refined according to 
some criteria
• E.g., dynamic slice and depends on statement n



Conclusion

• program dependencies provide a theory for 
restricting/focusing attention
• can allow users to select and refine focus of 
attention

• can support different levels of granularity
• Can be used for software understanding, 
regression testing, debugging, maintenance, 
and data/control test coverage criteria



Conclusion 

• for selecting test cases
• syntactic dependence alone is not adequate

• the number of syntactic dependencies in a 
program can be quadratic in the number of 
statements

• a given syntactic dependence may be 
demonstrated by (infinitely) many paths

• propagation of a fault through a particular 
path may depend on the selection of input data

⇒must use semantic information


	Program Dependencies
	Reading assignment
	Today’s reading
	Program Slice
	Program Slice
	Original Slicing Concept
	Applications of Program Slicing/Dependence
	Program Dependencies
	Syntatic Dependence
	Forward Dominators
	Immediate Forward Dominators
	Example
	Control Dependence
	Example
	Direct Data Dependence
	In other words
	Data Dependence
	Example
	Syntactic Dependence
	Syntactic Dependence
	Data (and control) flow coverage criteria
	Data Flow/Control Flow Coverage revisited
	Applications
	Symmetric Relationship
	Debugging Dependencies
	Maintenance Dependencies
	Kinds of flow
	Program Dependence Graph
	Program dependence graph example
	Program Dependence Graph Example
	Program Dependence Graph Example
	Control Flow Graph Model w/ Data Dependencies
	Problems with dependence analysis/slicing
	Refining program dependencies
	Levels of Granularity
	Dynamic Slice
	Conclusion
	Conclusion

