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What is JML?

A Design by Contract (DBC) tool for 
Java
Specifies agreement between a class 
and client code

Obligations/Rights of the class and the 
client
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Contracts in Software
/*@ requires x >= 0.0;
@ ensures JMLDouble.approximatelyEqualTo(x, 
@               \result * \result, eps);
@*/

public static double sqrt(double x) { … }

Client

Implementor

Obligations Rights

Passes non-negative
number

Gets square
root approximation

Computes and 
returns square root

Assumes argument
is non-negative
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JML Syntax: comments

Specifications written in annotation comments
Single-line:
//@ assert x >= 0;

Multi-line:
/*@ ensures kgs >= 0
@     && weight == kgs + 10;
@*/

Comments:
//@ requires x > 0;  (* x is positive *)
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JML Syntax: Assertions

Assertions are Java expressions that 
evaluate to a boolean value, but:

Cannot have side effects
No use of =, ++, --, etc., and
Can only call pure methods.

public /*@ pure @*/ int getWeight();
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JML – Types of Assertions

Class Invariants
Loop Invariants
Method Pre and Postconditions

Normal and exceptional postconditions
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Class Invariants

invariant keyword used
Checked at the start and end of each 
method call to the class

public class Person{
private String name;
//@ public invariant !name.equals(“”);
…
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Loop Invariants

assert keyword used
Checked at each iteration at the 
designated point in a loop

for(i=0;i<n;i++){
//@ assert !list.isEmpty();
list.remove(i);

}
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Method Pre and Postconditions

requires keyword used for preconditions
Checked immediately before method invocation

ensures keyword used for normal 
postconditions

Checked immediately following method invocation

/*@ requires n != null && !n.equals(“”);
@ ensures name.equals(n)
@*/

public setName(String n);
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Exceptional Postconditions

signals keyword used
Checked when method throws an exception

multiple exceptional postconditions possible

/*@ signals (IllegalArgumentException e)
@  e.getMessage() != null
@ && !(x > 0.0);
@*/

public static double sqrt(double x) throws 
IllegalArgumentException
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JML: Additional Syntax
JML has some extensions to Java syntax

/*@ ensures kgs >= 0
@    && \result == \old(weight + kgs);
@*/

public int addWeight(int weight);

Syntax         Meaning

\result          result of method call
a ==> b          a implies b
a <== b        b implies a
a <==> b      a iff b
a <=!=> b     !(a <==> b)
\old(E)          value of E in pre-state
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JML: Quantification

JML also provides for quantification

/*@ requires a != null
@ && (\forall int i;
@ 0 < i && i < a.length;
@ a[i-1] <= a[i];
@*/

int binarySearch(int[] a, int x) {…}
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JML Tools

jmlc
parses annotation comments and creates 
Java bytecode
calls javac

jmlrac
executes code with assertions, throws 
exception if assertion violated 
calls java



Nathan Jokel

JML: Exercising Assertions

Java program with “main” method 
required by jmlrac
Test cases needed to exercise 
assertions

A method that is never called in a program 
can’t cause an assertion violation!
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For more information

www.jmlspecs.org

http://www.jmlspecs.org/
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