
Nathan Jokel

What is JML?

A Design by Contract (DBC) tool for
Java
Specifies agreement between a class
and client code

Obligations/Rights of the class and the
client

Nathan Jokel

Contracts in Software
/*@ requires x >= 0.0;
@ ensures JMLDouble.approximatelyEqualTo(x,
@ \result * \result, eps);
@*/

public static double sqrt(double x) { … }

Client

Implementor

Obligations Rights

Passes non-negative
number

Gets square
root approximation

Computes and
returns square root

Assumes argument
is non-negative

Nathan Jokel

JML Syntax: comments

Specifications written in annotation comments
Single-line:
//@ assert x >= 0;

Multi-line:
/*@ ensures kgs >= 0
@ && weight == kgs + 10;
@*/

Comments:
//@ requires x > 0; (* x is positive *)

Nathan Jokel

JML Syntax: Assertions

Assertions are Java expressions that
evaluate to a boolean value, but:

Cannot have side effects
No use of =, ++, --, etc., and
Can only call pure methods.

public /*@ pure @*/ int getWeight();

Nathan Jokel

JML – Types of Assertions

Class Invariants
Loop Invariants
Method Pre and Postconditions

Normal and exceptional postconditions

Nathan Jokel

Class Invariants

invariant keyword used
Checked at the start and end of each
method call to the class

public class Person{
private String name;
//@ public invariant !name.equals(“”);
…

Nathan Jokel

Loop Invariants

assert keyword used
Checked at each iteration at the
designated point in a loop

for(i=0;i<n;i++){
//@ assert !list.isEmpty();
list.remove(i);

}

Nathan Jokel

Method Pre and Postconditions

requires keyword used for preconditions
Checked immediately before method invocation

ensures keyword used for normal
postconditions

Checked immediately following method invocation

/*@ requires n != null && !n.equals(“”);
@ ensures name.equals(n)
@*/

public setName(String n);

Nathan Jokel

Exceptional Postconditions

signals keyword used
Checked when method throws an exception

multiple exceptional postconditions possible

/*@ signals (IllegalArgumentException e)
@ e.getMessage() != null
@ && !(x > 0.0);
@*/

public static double sqrt(double x) throws
IllegalArgumentException

Nathan Jokel

JML: Additional Syntax
JML has some extensions to Java syntax

/*@ ensures kgs >= 0
@ && \result == \old(weight + kgs);
@*/

public int addWeight(int weight);

Syntax Meaning

\result result of method call
a ==> b a implies b
a <== b b implies a
a <==> b a iff b
a <=!=> b !(a <==> b)
\old(E) value of E in pre-state

Nathan Jokel

JML: Quantification

JML also provides for quantification

/*@ requires a != null
@ && (\forall int i;
@ 0 < i && i < a.length;
@ a[i-1] <= a[i];
@*/

int binarySearch(int[] a, int x) {…}

Nathan Jokel

JML Tools

jmlc
parses annotation comments and creates
Java bytecode
calls javac

jmlrac
executes code with assertions, throws
exception if assertion violated
calls java

Nathan Jokel

JML: Exercising Assertions

Java program with “main” method
required by jmlrac
Test cases needed to exercise
assertions

A method that is never called in a program
can’t cause an assertion violation!

Nathan Jokel

For more information

www.jmlspecs.org

http://www.jmlspecs.org/

	What is JML?
	Contracts in Software
	JML Syntax: comments
	JML Syntax: Assertions
	JML – Types of Assertions
	Class Invariants
	Loop Invariants
	Method Pre and Postconditions
	Exceptional Postconditions
	JML: Additional Syntax
	JML: Quantification
	JML Tools
	JML: Exercising Assertions
	For more information

