
Fault-based Testing

Reading assignment

• JUnit is a regression testing framework
written by Erich Gamma and Kent Beck.

• JUnit Test Infected: Programmers Love
Writing Tests ,
http://junit.sourceforge.net/doc/testinfecte
d/testing.htm

• References
• JUnit, http://junit.sourceforge.net/
• http://www.junit.org/index.htm

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/
http://www.junit.org/index.htm

Structural Test Data Selection
• Random
• Coverage based

• Control flow
• Data flow

• Fault-based
• Error (fault) seeding

• e.g., mutation testing
• Fault constraints

• E.g., RELAY
• Error-based (Failure-based)

• domain and computation based
• use representations created by symbolic execution

Dependence based analysis

Fault Based Techniques

• For each statement try to select test data
that will expose faults at that statement
• Mutation testing monitors effectiveness
• Fault constraints --instead of monitoring if the
selected test data kills a mutant, determine the
necessary conditions to guarantee that the fault
is revealed if it exists

Remember: comments on dependence based
testing coverage
• for selecting test cases

• syntactic dependence alone is not adequate
• the number of syntactic dependencies in a
program can be quadratic in the number of
statements

• a given syntactic dependence may be
demonstrated by (infinitely) many paths

• propagation of a fault through a particular
path may depend on the selection of input data

⇒must use semantic information

Can we do better than this?????

Can exercise a dependence relationship but not
reveal the fault

X:= Y + Z;

X := X * (Z - 1);

Relay Model

• Selective semantic information + syntactic
dependency information
• origination of a fault
• computational transfer of a fault
• propagation of a fault (based on data and control
flow)

• Define necessary and sufficient conditions
for detecting certain classes of faults

Overview of Relay Model

• origination
• introduction of potential failure at smallest
(valued) subexpression containing fault

• transfer
• “movement” of potential failure in program

• Within the originating statement
• computational transfer

• From one statement to the next
• data dependence transfer
• control dependence transfer

Relay Model

“observable”
failure

:= <op>

faulttransfer

:=

:=

transfer

Example

8

1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C Y: = (2 * X) + C76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Correct:
What test data

would reveal
this fault?

Example

Y: = (2 * X) + C

1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

module t. c. exp a d x d < x - 5 y output
b c

faulty 1 1 2 2 3 1 F 2 2
correct 1 1 2 2 3 1 F 2 2

B+C
B+1

NO ORIGINATION OF POTENTIAL FAILURE AT NODE 2

Example 1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

ORIGINATION (NODE 2),
NO COMPUTATIONAL TRANSFER AT NODE 2

module t. c. exp a d x d < x - 5 y output
b c

faulty 1 0 1 0 0 0 F 0 0
correct 1 0 2 0 0 0 F 0 0

B+C
B+1

Example 1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

ORIGINATION, COMP. TRANSFER (NODE 2)
NO DATA DEPENDENCE TRANSFER AT NODE 3

module t. c. exp a d x d < x - 5 y output
b c

faulty 0 3 3 9 3 0 F 3 3
correct 0 3 1 3 3 0 F 3 3

B+C
B+1

Example 1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

module t. c. exp a d x d < x - 5 y output
b c

faulty 2 3 5 15 33 6 F 39 39
correct 2 3 3 9 21 6 F 39 39

B+C
B+1

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODE 3)
NO DATA DEPENDENCE TRANSFER AT NODE 5

1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

Example

module t. c. exp a d x d < x - 5 y output
b c

faulty -2 -1 -3 3 -7 2 T 3 3
correct -2 -1 -1 1 -3 2 F 3 3

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODES 3, 5)
NO CONTROL DEPENDENCE TRANSFER AT NODE 7 and 6

B+C
B+1

1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

Example

module t. c. exp a d x d < x - 5 y output
b c

faulty 1 -3 -2 6 3 -3 F 6 6
correct 1 -3 2 -6 -9 -3 T -9 -9

CONTROL DEPENDENCE TRANSFER (NODE 6)

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODES 3, 5)

FAILURE AT NODE 8

B+C
B+1

To Guarantee Detection

Step 1: guarantee introduction of potential failure at
statement containing hypothetical fault

• origination condition
• computational transfer conditions at statement
• called original state potential failure condition

Step 2: guarantee transfer of potential failure along
information flow to some output

• called transfer set condition

Step 1a

• origination condition
• guarantees introduction of potential failure in
smallest subexpression

• exp ≠ exp*
• defined for fault
• suppose c*(b+1) instead of c*(b+c)

⇒ c ≠ 1

Step 1b

• computational transfer condition
for a statement

• exp1 <op> exp2 ≠ exp1’ <op> exp2
• defined for operator and fault

e.g., (b + c) ≠ (b + 1) ⇒ c ≠ 1
• many are fault independent

c * (exp) ≠ c * (exp’)
⇒ c ≠ 0

Step 2

• Information flow transfer
• combines data dependence and control
dependence transfer

• occurs along information flow chains
• to guarantee transfer from (hypothetically)
faulty node to output must guarantee transfer
along transfer set
• collection of information flow chains that
can be executed together

Simpler Example

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

2* A: = X + Z

C ≠ 0 ⇒
A * Y ≠ 0 ⇒
Y ≠ 0 Λ A ≠ 0 ⇒
Y ≠ 0 Λ X +Y ≠ 0 ⇒
Y ≠ 0 Λ X ≠ −Y

Y ≠ Z

X ≠ 0

B ≠ 0 ⇒
A * X ≠ 0 ⇒
X ≠ 0 Λ A ≠ 0 ⇒
X ≠ 0 Λ X +Y ≠ 0 ⇒
X ≠ 0 Λ X ≠ −Y

Y ≠ Z

Y ≠ 0

Necessary but not sufficient?

B ≠ 0 ⇒
A * X ≠ 0 ⇒
X ≠ 0 Λ A ≠ 0 ⇒
X ≠ 0 Λ X +Y ≠ 0 ⇒
X ≠ 0 Λ X ≠ −Y

C ≠ 0 ⇒
A * Y ≠ 0 ⇒
Y ≠ 0 Λ A ≠ 0 ⇒
Y ≠ 0 Λ X +Y ≠ 0 ⇒
Y ≠ 0 Λ X ≠ −Y

Y ≠ Z

Y ≠ 0

Y ≠ Z

X ≠ 0

2* A: = X + Z

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

module test case a b c d output
x y z

faulty 1 -3 1 -2 -2 6 -12 -12
correct 1 -3 1 2 2 -6 -12 -12

x+y
x+z

Not Necessary!

Y ≠ Z

X ≠ 0

Y ≠ 0 Λ X ≠ −Y

Y ≠ Z

Y ≠ 0

2* A: = X + Z

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

X ≠ 0 Λ X ≠ −Y

module test case a b c d output
x y z

1 faulty 1 -3 1 -2 -2 6 -12 -12
correct 1 -3 1 2 2 -6 -12 -12

2 faulty 1 -1 1 0 0 0 0 0
correct 1 -1 1 2 2 -2 -4 -4

x+y
x+z

x+y
x+z

Transfer Condition

• condition that guarantees transfer
• must know points of interaction

• places where two or more potential failures come
together

• Transfer set defines locations of potential
interaction

• Notation: (Un, Vm) means faulty value for variable U at
node n transfers to variable V at node m

• Transfer route defines chains of transfer set
elements that can be combined to form a path

Example
• Transfer Set =

{(A2, B3), (B3, D5), (D5, out6), (A2, C4) (C4, D5) }

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

Notation: (Un, Vm) means
faulty value for variable U at
node n transfers to variable
V at node m

Construction of Transfer Route

• different ways to transfer along same set,
depending on which portions of chains
transfer and which do not

• a transfer route is a subset of the nodes in
a transfer set where transfer does and does
not occur

• a transfer route defines where actual
interactions occur

Example
• Transfer Set =

{ (A2, B3), (B3, D5), (D5, out6), (A2, C4), (C4, D5)}
• Transfer Routes

1. (A transfers to B at 3) and
(A does not transfer to C at 4)
and (B transfers to D at 5)

2. (A does not transfer to B at 3)
and (A transfers to C at 4)
and (C transfers to D at 5)

3. (A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

Transfer Condition

• 1. Path Condition
• guarantees execution of a particular transfer
route

• must guarantee execution of nodes in chain as
well as def-clear paths between nodes

• 2. Transfer Route Condition
• guarantees transfer for particular transfer route

• computational transfer conditions at nodes in
transfer route where transfer does occur

• complement of computational transfer
conditions at nodes where transfer does not
occur

Transfer Routes for Example

1. (A transfers to B at 3) and
(A does not transfer to C at 4) and
(B transfers to D at 5)

2. (A does not transfer to B at 3) and
(A transfers to C at 4) and
(C transfers to D at 5)

3. (A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

Condition for First Transfer Route

(A transfers to B at 3) and
(A does not transfer to C at 4) and
(B transfers to D at 5)

• Transfer Route
Conditions:

x ≠ 0 ∧ y = 0 ∧ c ≠ 0 ⇒
x ≠ 0 ∧ y = 0 ∧ a*y ≠ 0 ⇒ false

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

2* A: = X + Z

Condition for Second Transfer Route
(A does not transfer to B at 3) and
(A transfers to C at 4) and
(C transfers to D at 5)

• Transfer Route
Conditions:

x = 0 ∧ y ≠ 0 ∧ b ≠ 0 ⇒
x = 0 ∧ y ≠ 0 ∧ a*x ≠ 0 ⇒ false

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

2* A: = X + Z

Condition for Third Transfer Route
(A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

• Transfer Route Conditions:
x ≠ 0 ∧ y ≠ 0 ∧ b * c ≠ b ’ *c’ ⇒
x ≠ 0 ∧ y ≠ 0 ∧ (a∗x)(a∗y) ≠ (a’∗x)(a’∗y) ⇒
x ≠ 0 ∧ y ≠ 0 ∧

(x+y)x(x+y)y ≠ (x+z)x(x+z)y ⇒
x ≠ 0 ∧ y ≠ 0 ∧ (x+y)2 ≠ (x+z)2 ⇒
x ≠ 0 ∧ y ≠ 0 ∧ y ≠ z

test case: x=1, y= 1, z=2 satisfies the
conditions and causes the fault to be revealed

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

Example

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B := A * X

C := A * Y

D := B * C

output D

2* A: = X + Z

A= 2
B= 2
C= 4
D= 8

A= 3
B= 3
C= 3
D= 9

test case: x=1, y= 1, z=2 satisfies the
conditions x ≠ 0 ∧ y ≠ 0 ∧ y ≠ z
and causes the fault to be revealed

Failure condition

failure condition =
original state potential failure condition and transfer condition

if test data satisfies failure condition (fc) and failure → fault
if test data satisfies fc and no failure→ no fault
if can’t satisfy fc → try another transfer set
if can’t satisfy fc for all transfer sets → no fault

Relay Fault Based Approach

• recognizes what is needed to transfer to output
• other fault based techniques:

• do not deal with how to select test data that
transfers

• may recognize need to transfer but provide no
guidance in test data selection (assume transfer
“usually” occurs)

• do not consider control dependence
• none discuss interactions for a single fault/multiple
faults -- they assume that there is a single fault or if
there is more than one that there is no interaction

Relay Fault Based Approach
• defines what is needed to reveal a fault at a
statement

• a general procedure that could be applied to any
“atomic” fault

• defines what is needed to propagate erroneous
values to output

• a very negative result!
• if interaction is not accounted for, then the
constraints are neither necessary nor sufficient

• assumptions about single faults are now very
questionable

• can not assume constraints are necessary

	Fault-based Testing
	Reading assignment
	Structural Test Data Selection
	Fault Based Techniques
	Remember: comments on dependence based testing coverage
	Can exercise a dependence relationship but not reveal the fault
	Relay Model
	Overview of Relay Model
	Relay Model
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	To Guarantee Detection
	Step 1a
	Step 1b
	Step 2
	Simpler Example
	Necessary but not sufficient?
	Not Necessary!
	Transfer Condition
	Example
	Construction of Transfer Route
	Example
	Transfer Condition
	Transfer Routes for Example
	Condition for First Transfer Route
	Condition for Second Transfer Route
	Condition for Third Transfer Route
	Example
	Failure condition
	Relay Fault Based Approach
	Relay Fault Based Approach

