
Fault-based Testing



Reading assignment

• JUnit is a regression testing framework 
written by Erich Gamma and Kent Beck. 

• JUnit Test Infected: Programmers Love 
Writing Tests , 
http://junit.sourceforge.net/doc/testinfecte
d/testing.htm

• References
• JUnit, http://junit.sourceforge.net/
• http://www.junit.org/index.htm

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/
http://www.junit.org/index.htm


Structural Test Data Selection
• Random
• Coverage based

• Control flow
• Data flow

• Fault-based
• Error (fault) seeding

• e.g., mutation testing
• Fault constraints

• E.g., RELAY
• Error-based (Failure-based)

• domain and computation based 
• use representations created by symbolic execution

Dependence based analysis



Fault Based Techniques

• For each statement try to select test data 
that will expose faults at that statement
• Mutation testing monitors effectiveness
• Fault constraints --instead of monitoring if the 
selected test data kills a mutant, determine the 
necessary conditions to guarantee that the fault 
is revealed if it exists



Remember: comments on dependence based 
testing coverage 
• for selecting test cases

• syntactic dependence alone is not adequate
• the number of syntactic dependencies in a 
program can be quadratic in the number of 
statements

• a given syntactic dependence may be 
demonstrated by (infinitely) many paths

• propagation of a fault through a particular 
path may depend on the selection of input data

⇒must use semantic information

Can we do better than this?????



Can exercise a dependence relationship but not 
reveal the fault

X:= Y + Z;

X := X * (Z - 1);



Relay Model

• Selective semantic information + syntactic 
dependency information
• origination of a fault
• computational transfer of a fault
• propagation of a fault (based on data and control 
flow)

• Define necessary and sufficient conditions 
for detecting certain classes of faults



Overview of Relay Model

• origination 
• introduction of potential failure at smallest 
(valued) subexpression containing fault

• transfer
• “movement” of potential failure in program

• Within the originating statement
• computational transfer

• From one statement to the next
• data dependence transfer
• control dependence transfer



Relay Model

“observable”
failure

:= <op>

faulttransfer

:=

:=

transfer



Example

8

1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C Y: = (2 * X) + C76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Correct:
What test data 

would reveal 
this fault?



Example

Y: = (2 * X) + C

1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

module t. c. exp a d x d < x - 5 y output
b c

faulty 1 1 2 2 3 1 F 2 2
correct 1 1 2 2 3 1 F 2 2

B+C
B+1

NO ORIGINATION OF POTENTIAL FAILURE AT NODE 2



Example 1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

ORIGINATION (NODE 2),
NO COMPUTATIONAL TRANSFER AT NODE 2

module t. c. exp a d x d < x - 5 y output
b c

faulty 1 0 1 0 0 0 F 0 0
correct 1 0 2 0 0 0 F 0 0

B+C
B+1



Example 1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

ORIGINATION, COMP. TRANSFER (NODE 2)
NO DATA DEPENDENCE TRANSFER AT NODE 3

module t. c. exp a d x d < x - 5 y output
b c

faulty 0 3 3 9 3 0 F 3 3
correct 0 3 1 3 3 0 F 3 3

B+C
B+1



Example 1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

module t. c. exp a d x d < x - 5 y output
b c

faulty 2 3 5 15 33 6 F 39 39
correct 2 3 3 9 21 6 F 39 39

B+C
B+1

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODE 3)
NO DATA DEPENDENCE TRANSFER AT NODE 5



1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

Example

module t. c. exp a d x d < x - 5 y output
b c

faulty -2 -1 -3 3 -7 2 T 3 3
correct -2 -1 -1 1 -3 2 F 3 3

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODES 3, 5)
NO CONTROL DEPENDENCE TRANSFER AT NODE 7 and 6

B+C
B+1



1

output Y

A: = C * (B + 1)2

Y: = (X * * 2) + C 76

FALSE TRUE

input B, C

A: = C * (B + C)2

D: = (A * B) + C3

X : = B * C4

5 D < X - 5

Y: = (2 * X) + C

Example

module t. c. exp a d x d < x - 5 y output
b c

faulty 1 -3 -2 6 3 -3 F 6 6
correct 1 -3 2 -6 -9 -3 T -9 -9

CONTROL DEPENDENCE TRANSFER (NODE 6)

ORIGINATION, COMP. TRANSFER (NODE 2)
DATA DEPENDENCE TRANSFER (NODES 3, 5)

FAILURE AT NODE 8

B+C
B+1



To Guarantee Detection

Step 1: guarantee introduction of potential failure at 
statement containing hypothetical fault

• origination condition 
• computational transfer conditions at statement 
• called original state potential failure condition

Step 2: guarantee transfer of potential failure along 
information flow to some output

• called transfer set condition



Step 1a

• origination condition
• guarantees introduction of potential failure in 
smallest subexpression

• exp ≠ exp*
• defined for fault 
• suppose c*(b+1) instead of c*(b+c)

⇒ c ≠ 1



Step 1b

• computational transfer condition
for a statement 

• exp1 <op> exp2  ≠ exp1’ <op> exp2
• defined for operator and fault

e.g., (b + c) ≠ (b + 1) ⇒ c ≠ 1 
• many are fault independent

c * (exp) ≠ c * (exp’) 
⇒ c ≠ 0 



Step 2

• Information flow transfer
• combines data dependence and control 
dependence transfer

• occurs along information flow chains
• to guarantee transfer from (hypothetically) 
faulty node to output must guarantee transfer 
along transfer set
• collection of information flow chains that 
can be executed together



Simpler Example

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

2*    A: = X + Z

 
 

 

C ≠ 0 ⇒ 
A * Y ≠ 0  ⇒ 
Y ≠ 0 Λ A ≠ 0 ⇒ 
Y ≠ 0 Λ X +Y ≠ 0 ⇒
Y ≠ 0 Λ X ≠ −Y

Y ≠ Z

X ≠ 0

 
 

 
 

B ≠ 0 ⇒ 
A * X ≠ 0  ⇒ 
X ≠ 0 Λ A ≠ 0 ⇒ 
X ≠ 0 Λ X +Y ≠ 0 ⇒ 
X ≠ 0 Λ X ≠ −Y

Y ≠ Z

Y  ≠ 0



Necessary but not sufficient?

 
 

 
 

B ≠ 0 ⇒ 
A * X ≠ 0  ⇒ 
X ≠ 0 Λ A ≠ 0 ⇒ 
X ≠ 0 Λ X +Y ≠ 0 ⇒ 
X ≠ 0 Λ X ≠ −Y

 
 

 

C ≠ 0 ⇒ 
A * Y ≠ 0  ⇒ 
Y ≠ 0 Λ A ≠ 0 ⇒ 
Y ≠ 0 Λ X +Y ≠ 0 ⇒
Y ≠ 0 Λ X ≠ −Y

Y ≠ Z

Y  ≠ 0

Y ≠ Z

X ≠ 0

2*    A: = X + Z

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

module test case a b c d output
x y z

faulty 1 -3 1 -2 -2 6 -12 -12
correct 1 -3 1 2 2 -6 -12 -12

x+y
x+z



Not Necessary! 

Y ≠ Z

X ≠ 0

Y ≠ 0 Λ X ≠ −Y

Y ≠ Z

Y  ≠ 0

2*    A: = X + Z

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

X ≠ 0 Λ X ≠ −Y

module test case a b c d output
x y z

1 faulty 1 -3 1 -2 -2 6 -12 -12
correct 1 -3 1 2 2 -6 -12 -12

2 faulty 1 -1 1 0 0 0 0 0
correct 1 -1 1 2 2 -2 -4 -4

x+y
x+z

x+y
x+z



Transfer Condition

• condition that guarantees transfer
• must know points of interaction

• places where two or more potential failures come 
together

• Transfer set defines locations of potential  
interaction

• Notation: (Un, Vm)  means faulty value for variable U  at 
node n transfers to variable V at node m

• Transfer route defines chains of transfer set 
elements that can be combined to form a path 



Example
• Transfer Set =

{(A2, B3), (B3, D5), (D5, out6), (A2, C4) (C4, D5) }

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

Notation: (Un, Vm)  means 
faulty value for variable U at 
node n transfers to variable 
V at node m



Construction of Transfer Route

• different ways to transfer along same set, 
depending on which portions of chains 
transfer and which do not

• a transfer route  is a subset of the nodes in 
a transfer set where transfer does and does 
not occur

• a transfer route defines where actual 
interactions occur



Example
• Transfer Set =

{ (A2, B3), (B3, D5), (D5, out6), (A2, C4), (C4, D5)}
• Transfer Routes

1. (A transfers to B at 3) and
(A does not transfer to C at 4) 
and (B transfers to D at 5)

2. (A does not transfer to B at 3)
and (A transfers to C at 4)
and (C transfers to D at 5)

3. (A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D



Transfer Condition

• 1.  Path Condition 
• guarantees execution of a particular transfer 
route 

• must guarantee execution of nodes in chain as 
well as def-clear paths between nodes

• 2.  Transfer Route Condition
• guarantees transfer for particular transfer route

• computational transfer conditions at nodes in 
transfer route where transfer does occur

• complement of computational transfer 
conditions at nodes where transfer does not
occur



Transfer Routes for Example

1. (A transfers to B at 3) and
(A does not transfer to C at 4) and
(B transfers to D at 5)

2. (A does not transfer to B at 3) and
(A transfers to C at 4) and
(C transfers to D at 5)

3. (A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D



Condition for First Transfer Route

(A  transfers to B at 3) and
(A does not transfer to C at 4) and
(B transfers to D at 5)

• Transfer Route 
Conditions: 

x ≠ 0 ∧ y = 0 ∧ c ≠ 0 ⇒
x ≠ 0 ∧ y = 0 ∧ a*y ≠ 0 ⇒ false

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

2*    A: = X + Z



Condition for Second Transfer Route
(A does not transfer to B at 3) and
(A transfers to C at 4) and
(C transfers to D at 5)

• Transfer Route 
Conditions: 

x = 0 ∧ y ≠ 0 ∧ b ≠ 0  ⇒
x = 0 ∧ y ≠ 0 ∧ a*x ≠ 0 ⇒ false

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

2*    A: = X + Z



Condition for Third Transfer Route
(A transfers to B at 3) and
(A transfers to C at 4) and
(B and C transfer to D at 5)

• Transfer Route Conditions: 
x ≠ 0 ∧ y ≠ 0 ∧ b * c ≠ b ’ *c’ ⇒
x ≠ 0 ∧ y ≠ 0 ∧ (a∗x)(a∗y) ≠ (a’∗x)(a’∗y)  ⇒
x ≠ 0 ∧ y ≠ 0 ∧

(x+y)x(x+y)y ≠ (x+z)x(x+z)y  ⇒
x ≠ 0 ∧ y ≠ 0 ∧ (x+y)2 ≠ (x+z)2 ⇒
x ≠ 0 ∧ y ≠ 0 ∧ y ≠ z

test case: x=1, y= 1, z=2 satisfies the 
conditions and causes the fault to be revealed

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D



Example

6

5

1

2

3

4

input X, Y, Z

A := X + Y

B  := A * X

C :=  A * Y

D := B * C

output D

2*    A: = X + Z

A= 2
B= 2 
C= 4
D= 8

A= 3
B= 3 
C= 3
D= 9

test case: x=1, y= 1, z=2 satisfies the
conditions x ≠ 0 ∧ y ≠ 0 ∧ y ≠ z
and causes the fault to be revealed



Failure condition

failure condition = 
original state potential failure condition and transfer condition

if test data satisfies failure condition (fc) and failure → fault
if test data satisfies fc and no failure→ no  fault
if can’t satisfy fc → try another transfer set
if can’t satisfy fc for all transfer sets → no fault 



Relay Fault Based Approach

• recognizes what is needed to transfer to output
• other fault based techniques:

• do not deal with how to select test data that 
transfers

• may recognize need to transfer but provide no 
guidance in test data selection (assume transfer 
“usually” occurs)

• do not consider control dependence
• none discuss interactions for a single fault/multiple 
faults -- they assume that there is a single fault or if 
there is more than one that there is no interaction 



Relay Fault Based Approach
• defines what is needed to reveal a fault at a 
statement 

• a general procedure that could be applied to any 
“atomic” fault

• defines what is needed to propagate erroneous 
values to output

• a very negative result! 
• if interaction is not accounted for, then the 
constraints are neither necessary nor sufficient

• assumptions about single faults are now very 
questionable

• can not assume constraints are necessary
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