
Reading assignment
• G. Rothermel and M. J. Harrold, "Analyzing Regression Test Selection

Techniques," IEEE Transactions on Software Engineering, 22 (8),
August 1996, pp. 529-551.

• T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter and G. Rothermel,
"An Empirical Study of Regression Test Selection Techniques," ACM
Transactions on Software Engineering and Methodology, 10 (2),
April 2001, pp. 184-208.

• Y. F. Chen, D. S. Rosenblum and K. P. Vo, "TestTube: A System for
Selective Regression Testing," Sixteenth International Conference
on Software Engineering, Sorrento, Italy, May 1994, pp. 211-220.

• T. J. Ostrand, E. J. Weyuker, R. M. Bell, "Where the Bugs Are,"
Proceedings of the 2004 International Symposium on Software
Testing and Analysis, Boston, MA, July 2004

What is Agile Development?

• Family of development processes
• Allow the team to respond to changes in

any phase of development
• Accepts change as a fact of life and uses

process to enable change

• Most notorious Agile Development
Process: Extreme Programming

Agile Processes

Software processes that are:
• Incremental (small software releases with

rapid cycles)
• Cooperative (customer and developer working

together with close communication)
• Straightforward (method is easy to learn and

modify)
• Adaptive (able to make last moment changes)

eXtreme Programming (XP)

“Extreme Programming is a discipline of
software development based on the
values of simplicity, communication,
feedback, and courage…

eXtreme Programming (XP)

… It works by bringing the whole team
together in the presence of simple
practices, with enough feedback to
enable to the team to see where they are
and to tune the practices to their unique
situation.” – Ron Jeffries

eXtreme Programming (XP)

• Defined by 12 practices
• Claim: XP ‘flattens’ the cost-of-change

curve
• Most literature on XP is experience

reports
• Rigorous evaluation is needed

12 Practices of XP

XP Practices: Whole Team

• Everyone working on project is on one
team

• “Customer” – provides requirements,
steers planning

• Different roles on team, but:
• No specialists
• Generally competent people with special

skills

XP Practices: Planning Game

• Address two questions:
• What will be accomplished by the due

date?
• What to do next?

• Release Planning
• Iteration Planning

XP Practices: Customer Tests

• Automated acceptance tests
• Defined by customer
• Implemented by team

XP Practices: Small Releases

• Release functional, “useful” software
every iteration

• For evaluation by customer, or release to
end-users

• Releases are kept reliable by testing

XP Practices:
Continuous Integration

• Constantly keep the entire system
integrated

• Multiple daily builds (10-20 in practice!)
• Problems with infrequent integration

• Team not experienced with integration
• Buggy code (problems introduced by

integration)
• Long code freezes

XP Practices:
Collective Code Ownership

• Anyone on team can work to improve
any piece of code

• Avoids asking code “owner” to add
feature

• Problem: working with unfamiliar code
• Pair with someone familiar with it
• Automated tests

XP Practices:
Coding Standard

• Common coding standard followed by
everyone on team

• Specifics unimportant – as long as code
all looks familiar

• Supports collective code ownership

XP Practices: Metaphor

• Metaphor for function of system shared
by team

• For example, an agent-based
information retrieval system:

“This program works like a hive of bees,
going out for pollen and bringing it back
to the hive.” [www.xprogramming.com]

XP Practices:
Sustainable Pace

• Maintain pace that will be successful in
the long run

• Pace should be sustainable indefinitely
• Work overtime when necessary, but

don’t burn out and lose productivity

XP Practices:
Pair Programming

• All code written by two programmers
working side-by-side

• Ensures code is reviewed
• Communicates knowledge throughout

team
• Claim: results in better code

XP Practices: Simple Design

• Start with a simple design and keep it
that way through design improvement

• Don’t make code unnecessarily general
• No wasted effort – design suited for

current functionality

XP Practices:
Design Improvement

• Continuous process of design
improvement called “Refactoring”

• Implementation of code changed
without altering interface

• Remove duplication

XP Practices:
Test Driven Development

• Write test first, then write code to make
it work

• A form of Design by Contract

• Every test must pass at every build
• Supports Continuous Integration

Unit Testing

• Based on the idea that classes should
contain their own tests

• Highly localized; test(s) work within a
single package

• Tests the interfaces to other packages,
but just assumes other packages work

Why Unit Testing?
• Better able to exercise all code
• Can write tests before writing code:

• Helps programmer to focus on the interface
rather than the implementation

• Provides a clear finish point: when the test works
• Cuts down significantly on debugging time

• Run tests every time code is compiled
• If new code breaks a previously-passed test, bug

location is easier to pinpoint

Unit Testing Difficulties

• Detraction: seem to be writing code
twice

• Many programmers have never learned
to write tests or even to think about
tests

• Overhead of test framework

The Junit Testing Framework

• Used for writing unit tests in Java
• Helps automate testing process
• Provides some basic constructs for

running tests

Structure
• Any class that contains tests must subclass

the TestCase class
• Typically one for each class being tested

• Junit framework allows tests to be grouped
into suites

• TestSuites can contain TestCases or other
TestSuites

• Makes it easy to build a range of large test suites
and run the tests automatically

Junit Example: I/O Class

• The test must have a constructor:

class FileReaderTester extends TestCase {
public FileReaderTester (String name) {

super(name);
}

}

First step: Set up a test fixture

• A test fixture is the set of objects that
act as samples for testing. In the case
of I/O testing, a test file: data.txt

Bradman 99.94 52 80 10 6996 334 29
Pollock 60.97 23 41 4 2256 274 7
Headley 60.83 22 40 4 2256 270* 10
Sutcliffe 60.73 54 84 9 4555 194 16

Manipulating the test fixture

• TestCase provides:
• protected void setUp() – creates objects
• protected void tearDown() – removes them

• Important to execute both methods for
each test so that the tests are isolated
from each other; thus can run them in
any order

setUp & tearDown

class FileReaderTester…
protected void setUp() {

try {
_input = new FileReader(“data.txt”);

} catch (FileNotFoundException e) {
throw new RuntimeException (“unable to open test file”);

}
}
protected void tearDown(){

try {
_input.close();

} catch (IOException e) {
throw new RuntimeException (“error on closing test file”);

}
}

Create the first test
public void testRead() throws IOException {

char ch;
for (int i = 0; i < 4; i++) {

ch = (char) _input.read();
}
Assert.assertEquals(‘d’, ch);

}

• assertEquals is the automatic Junit
test

How to run the test

• Create a test suite:
class FileReaderTester …

public static Test suite(){
TestSuite suite = new TestSuite();
suite.addTest(new FileReaderTester(“testRead”));
return suite;

}

• The test is bound to the method
testRead()

How to run the test (cont’d)

• Use a separate TestRunner class
• can use a GUI version, but character

interface can be called within the code

class FileReaderTester …
public static void main(String[] args) {

junit.textui.TestRunner.run(suite());
}

TestRunner success output
.
Time: 0.110

OK (1 tests)

• Junit prints a period (“.”) for every test
run

• Junit prints a single “OK” if no test fails

TestRunner failure output
Result:

.F
Time: 0.220

FAILURES!!!
Test Results:
Run: 1 Failures: 1 Errors: 0
There was 1 failure:
1) FileReaderTester.testRead
“expected: “2” but was: “d”

public void testRead() throws
IOException

{
char ch;
for (int i = 0; i < 4; i++) {

ch = (char) _input.read();
}
Assert.assertEquals(‘2’, ch);
// deliberate error

}

Usefulness of Failures

• Can start by making tests fail, to
prove:

• the test does actually run
• the test is actually testing what it’s

supposed to
• A common testing error is to be

testing something other than what is
supposed to be tested

Catching errors

• In addition to catching failures (assertions
are false), Junit’s framework also catches
errors (unexpected exceptions)

public void testRead() throws IOException
{

char ch;
_input.close();
for (int i = 0; i < 4; i++)
{

ch = (char) _input.read();
// will throw exception

}
Assert.assertEquals(‘d’, ch);

}

Result:
.E
Time: 0.110

!!!FAILURES!!!
Test Results:
Run: 1 Failures: 0 Errors: 1
There was 1 error:
1) FileReaderTester.testRead
java.io.IOException: Stream closed

Running multiple tests
• Write new test methods

• public void testReadAtEnd()
• Put them in the suite to run them:

• suite.addTest(new
FileReaderTester(“testReadAtEnd”));

• Junit has a lazy-programmer shortcut:
• Naming convention: “testX()”
• Replace main() method with:

public static void main(String[] args) {
junit.textui.TestRunner.run(new TestSuite(FileReaderTester.class));

}

Can run a Master Test Suite
class MasterTester extends TestCase {

public static void main (String[] args) {
junit.textui.TestRunner.run (suite());

}
public static Test suite() {

TestSuite result = new TestSuite();
result.addTest(new TestSuite(FileReaderTester.class));
result.addTest(new TestSuite(FileWriterTester.class));
// and so on…
return result;

}
}

User-defined comments in
Junit

public void testReadBoundaries() throws IOException {
assertEquals(“read first char”, ‘B’, _input.read());
char ch;
for (int i = 1; i < 140; i++){

ch = _input.read();
}
Assert.assertEquals(“read last char”, ‘6’, _input.read());
Assert.assertEquals(“read at end”, -1, _input.read());

}

Testing philosophies
• Testing should be risk-driven

• “test every public method” is not enough
• A little testing goes a long way

• Better to focus on complex code and areas that
are at most risk of going wrong

• Helps to keep the task of test-writing to a doable
size

• Focus on boundary conditions and special
conditions that make the test fail

• e.g. for an I/O class, an empty file

Conclusions

• Cannot prove a program has no bugs
by testing

• Tests will not find every bug, but they
will make it easier to find many bugs

• The process of writing tests sparks
consideration of boundary and error
conditions and helps with
understanding interfaces

	Reading assignment
	What is Agile Development?
	Agile Processes
	eXtreme Programming (XP)
	eXtreme Programming (XP)
	eXtreme Programming (XP)
	12 Practices of XP
	XP Practices: Whole Team
	XP Practices: Planning Game
	XP Practices: Customer Tests
	XP Practices: Small Releases
	XP Practices:Continuous Integration
	XP Practices:Collective Code Ownership
	XP Practices:Coding Standard
	XP Practices: Metaphor
	XP Practices:Sustainable Pace
	XP Practices: Pair Programming
	XP Practices: Simple Design
	XP Practices:Design Improvement
	XP Practices:Test Driven Development
	Unit Testing
	Why Unit Testing?
	Unit Testing Difficulties
	The Junit Testing Framework
	Structure
	Junit Example: I/O Class
	First step: Set up a test fixture
	Manipulating the test fixture
	setUp & tearDown
	Create the first test
	How to run the test
	How to run the test (cont’d)
	TestRunner success output
	TestRunner failure output
	Usefulness of Failures
	Catching errors
	Running multiple tests
	Can run a Master Test Suite
	User-defined comments in Junit
	Testing philosophies
	Conclusions

