
Regression Testing



Reading Assignment

• R. K. Doong and P. G. Frankl, "The ASTOOT 
Approach to Testing Object-Oriented 
Programs," ACM Transactions on Software 
Engineering and Methodology, 3 (2), April 
1994, pp. 101-130. 



Clarification on JUnit

• Unit testing approach
• Can use any unit test data selection technique

• Structural
• Functional

• Encode the test cases so they are easy to 
rerun

• Framework for rerunning test cases and evaluating 
the results

• Unit based regresson testing approach
• Select all test cases



Why is regression testing a problem?

• Large systems can take a long time to retest
• e.g., 6 months of regression testing before 

every release

• Sometimes it is difficult and time consuming to 
create the tests

• Sometimes it is difficult and time consuming to 
evaluate the tests

• e.g., sometimes requires a person in the loop (GUI and 
simulation examples) to create and evaluate the results

• Cost of testing can prevent software improvements 



Regression Testing

• Primarily selecting from existing test data

• Plus, adding some new test cases
• Perhaps, deleting or updating some old test 
cases



Regression Testing

• retest software after it has been modified

• trying to instill confidence that changes are 
correct

• new functionality and corrected
functionality behave as they should

• unchanged functionality is indeed 
unchanged



Automated support for Regression testing

• Test environment or infrastructure support
• Capture and replay

• Test data selection support
• Select a subset of the existing test cases
• Select test data to exercise new functionality



Test environment or infrastructure support

• Automatic results comparison
• Set of {test drivers, test stubs, 
{test cases, previous results}}

• A��utomatically collects and saves test cases and 
previous results

• Reruns previous test cases and reports any 
discrepancies

• Often very effective
• Saves considerable amount of time and human 
resources

• Doesn’t work very well for some applications



Test environment or infrastructure support

• Doesn’t work very well for GUI software
• Specialized capture and replay tools
• Capture all the keystrokes, window layout, 
buttons, etc.

• Small changes in GUI tend to affect many outputs
• Doesn’t work well for complex simulation 
software/hardware

• Many displays, coordination among displays
• Analog results within acceptable ranges
• Use scenario books and “person in the loop”



Test data selection support

• Approaches
• retest all- chooses all existing test cases

• selective retest - chooses a subset of the old 
test cases

• But, what criterion should we use for selecting 
test cases? 



Selective retest goals

• Use a selection criterion that selects 
effective test cases

• Select test cases that will reveal faults
• Select test cases that could reveal faults
• Remove test cases that could not reveal faults
• Do not remove test cases that will reveal faults

• Use a selection criterion that is not too 
costly to compute
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Steps in regression testing

• Given: a program P originally tested with test 
set T producing results R and a modified 
version  of the program P’

• Identify the changes to P
• Select T’ a subset of T to re-execute P’
• Test P’ with T’ and reestablish correctness of 
P’ with respect to T’

• Create new tests T’’ as necessary



Steps in regression testing (continued)

• Create a new test history consisting of  the 
results from executing

• T’ the revised test history
• May need to update expected results

• T’’ the newly expanded test history

• If the selection criterion is conservative,then
(T - T’) is part of the old test history that

is still valid
• Some test cases may become obsolete
if the domain changes



Analyzing Regression Testing Selection 
Techniques
• Rothermel and Harrold
• Developed a framework for analytically 
comparing regression testing techniques

• Later used this framework to experimentally 
compare regression testing techniques



Criteria for evaluating selective retesting

• Inclusiveness - measures the extent to which a 
method chooses tests that will cause the modified 
program to produce different results 

• if it can be demonstrated that a change will not impact 
the results of a test case then there is no reason to 
retest with that test case

• e.g., no syntactic dependence
• Precision - measures the ability of a method to 
avoid choosing test cases that will not cause the 
modified program to produce different results 

• e.g., including all test cases is inclusive but not precise
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Criteria for evaluating selective retesting

• Efficiency - measures the computational cost 
of a  method

• Generality - measures the ability of a method 
to handle realistic and diverse language 
constructs and modifications

• Accountability - measures the ability to 
support some testing criteria (e.g., coverage)



Program dependence must consider

• modified statements
• new statements
• deleted statements

• All of the above can change program 
dependences

• What program dependence information do we 
need?



Measuring Inclusiveness

• Suppose T contains n modification revealing 
test cases  and a method selects m of them, 
then the inclusiveness of the method for P, 
P’, and T is  (m/n*100)% 

• Not a good metric      Why? 
• Depends on the program and the test set
• What if n= 0?

• Better to have a metric that is independent 
of a particular program or test suite



Modification-traversing

• a test case t ε T is fault-revealing if it produces incorrect 
outputs for P’

• In general, can not determine which elements of T are fault 
revealing

• a test case t ε T is modification-revealing if it produces 
different outputs for P than for P’

• Modification-revealing test cases over-approximates the fault 
revealing test cases

• In general, can not determine which elements of T are modification 
revealing

• a test case t ε T is modification-traversing if it executes a 
statement in P’ that has changed 

• Modification-traversing over-approximates modification revealing
• Can be computed
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Fault revealing (Conservative and Precise)
-impossible to compute

Modification revealing (Conservative, but not precise)
-hard to compute

Traversal revealing -easier to compute
Retest all (Conservative, but not precise )- trivial to   compute 



Four Different Major Approaches
• Minimization techniques

• Select at least one test case that exercises the components that have 
changed

• Coverage techniques
• Select test cases that exercise components that have changed and

that satisfy some coverage criteria
• Safe techniques

• Select every test case that could expose one or more faults
• Can only eliminate a test case if it can be proven that it cannot expose 

a fault



Four Different Major Approaches
(continued)
• Data Flow based

• Modification-Need to select all the test cases 
that exercised a statement that was modified

• Deletion-Need to exercise all the test cases that 
exercised a deleted statement

• New-need to exercise all the test cases that
• exercised a statement that is now directly 
data or control dependent on a new statement, 
or

• exercised a statements that the new statement 
is now directly data or control dependent on



Modifications, deletions, additions

• Modification-Need to select all 
the test cases that exercised a 
statement that was modified

• Deletion-Need to exercise all 
the test cases that exercised a 
deleted statement

• New-need to exercise all the 
test cases that exercised a 
statement that is directly data 
or control dependent on the new 
statement (e.g., e) or the new 
statement is directly data or 
control dependent on it 
(e.g., c)
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An Empirical Study

• Graves, Harrold, Kim, Porter, and Rothermel, TOSEM April 
2001

• Experiment to evaluate 
• Fault detection effectiveness

• Regression testing is usually not more effective than the original 
test set

• Retest-all has good fault detection effectiveness, but may not 
be cost effective

• Cost effectiveness
• Are there techniques that have the same fault detection 

effectiveness but the cost of the analysis is significantly less
than the test cases it eliminates

• Cost to compute T’ versus the cost of executing (T-T’)



Program studied

• 7 C++ programs from Siemens
• 138- 516 LOCs
• Many versions of each

• 9-41 versions
• Each version had one seeded fault

• 2 larger programs
• 6 Klocs/ 33 versions/multiple faults
• 49 Klocs/ 5 versions/ multiple faults



Test pools, test suites, test cases

• Test pools
• Test cases with known edge coverage 

• 1000 edge-coverage test suites selected from 
the pool randomly

• Selected test cases to achieve edge-coverage
• Assume nk test cases needed for the kth suite

• 1000 non-edge coverage test suites
• Selected randomly from the pool
• Kth test suite has nk test cases, so non-edge 
coverage has a “buddy” edge-coverage test suite



Regression testing techniques studied

• Minimization - test cases from a suite that 
covers the edges associated with changes or 
nodes that have changed

• often resulted in a single test case

• Safe - every test case in a suite that 
exercises a statement that has been deleted 
or was modified or is new

• How do we know if a test case exercises a new 
statement?



Regression testing techniques studied 
(continued)

• Data flow-every test case in a test suite 
that exercises a def-use pair affected by a 
deleted or modified statement

• Not quite safe
• Not full dependence

• Random-select 25%/50%/75% of the test 
cases in a suite chosen randomly

• Retest-all 



Test case size reduction

• Random and test-all select a test suite size 
that is 25%, 50%, 75%, and 100%, 
respectively, of T by definition

• Minimization: ~1% test suite size
• Safe:60% test suite size
• Data flow: 54% test suite size



Fault detection effectiveness

• For minimization, random, and test-all
• The larger the test suite size the better the fault 
detection

• Improvement diminishes as the % gets higher

testall 100%

random75%

random 50%

random25%

minimization

x
x

x
x

x
20         40         60         80       100

Effectiveness (%)



Fault detection effectiveness : safe versus data 
flow
• Safe and data flow had about the same 
effectiveness

• Data flow is slightly less
• Safe always found all the faults that test-all 
found (by design)

• Data flow costs more than safe to perform so 
there is no gain in using data flow over safe



Fault detection effectiveness : safe versus 
random
• Safe test suite size averaged 60% of original, but only 

performed slightly better than random(75%)
• There was significant variance in the test suite reduction

• Some programs resulted in almost no reduction in original test suite 
size

• Larger programs tended to have a larger reduction in the test suite 
size

• for some programs the payoff was significant
• best case: 5% of the test cases were required



Summary of regression testing experiment

• If fault detection is not paramount, then 
random (75%) might be a reasonable 
compromise. 

• Often as good as safe but not as expensive
• 75% is often too many test cases 



Summary of regression testing experiment

• If fault detection is important then need to 
choose a safe technique

• Test-all is a safe technique, but expensive
• Selective safe techniques might be worth the cost, 
but 

• need more experimental data
• need better selective techniques
• When many test cases are selected at least 
know they are needed (within our ability to 
determine this effectively) 

• Modification traversing, not modification revealing nor fault 
revealing



Another experiment: TestTube

• Chen, Rosenblum, Vo
• Experimental study carried out at AT&T, 
1994

• Coarse-grain regression testing for C
• Applicable to large systems



TestTube approach

• Monitors the entities each test case 
exercises

• Dynamic slice/dependence
• Identifies changed entities
• Selects those test cases that exercised at 
least one of the changed entities

• Hypothesis: Works well if entities are 
coarse-grained

• Entities: Functions, types, variables, macros



Defining entities

• For a test case t can determine the set of 
functions tf that are exercised and the set of 
non-functions tv that affect those functions

• Functions--can determine effect by monitoring
• Non-functions--non-executing entities: 
declarations, macros,etc.

• Can be computed using static analysis
• Difficult for languages such as C and C++

• Must deal with aliasing problems



Proposition

• Let t be a test case for Program P. If the 
changes to P do not affect any of the 
entities in tf or tv then there is no need to 
test t



Experimental results: SFIO

• SFIO(Safe, Fast Input/Output)
• 11,000 LOCS
• 706 entities: 481 macros, 175 function defs, 18 
defs of global variables, 32 type defs

• 39 test cases
• Observations:

• Reduction in test case size depended on the 
change

• Those components that were least likely to change 
required the most test cases

• Core functionality versus feature functionality



Experimental results: Incl

• Incl
• 1700 LOCS
• 91 entities: 37 macros, 32 function defs, 14 defs 
of global variables, 8 type defs

• 8 test cases
• Observations:

• Version 2 only required 4 test cases



Results depended on where a change was made

• Changes to leaf 
components required few 
test cases

• Changes to root node 
required all test cases

• Less likely to change the 
root
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Summary comments on TestTube

• Demonstrated that a relatively simple 
technique could be effective

• Overhead was reasonable
• Claimed to be safe but didn’t deal with some of 
the harder issues

• Testing additions to the code



Another experiment

• Where the Bugs Are

Thomas Ostrand, Elaine Weyuker, and Robert 
Bell
AT&T

• 2004
• Provides information about two “real” systems 
from AT&T



Contributions

• Studied release data over several years
• 2 systems
• Inventory control, 17 releases over 4 years, full lifecycle 

info
• Provisioning System, 9 releases, over 2 years, post unit 

testing info only
• Used the data to develop a model to predict where 

the errors would be in a new release
• Could predict which 20% of the files would have 80% 

of the bugs
• Used a simply prediction model (LOC) and still could 

predict where 75% of the bugs would be found



Observations

• Could not use the error severity levels for 
predictions because they were unreliable

• Value was often political, not technical
• About 3/4 of the faults were found during 
unit testing

• LOCS & # files increased with each release 
• Fault density (faults/KLOCS) decreased with 
each release



Prediction Model

• LOC and the file's change status were the 
strongest individual predictors in the model

• Number of changes since the last release did 
not improve the model





File Prediction => 80% of the faults



LOC almost as good a predictor as the full model



Prediction only using faults found after unit 
testing



Provisioning System



Prediction by Model



Conclusion from Study

• Applied to two programs with similar results
• Appears to generalize

• Post-unit testing information was adequate 
for prediction

• LOC and change info was not as good as the 
more complicated prediction algorithm but it 
was pretty good

• Remember: Not a safe technique



Regression testing Conclusion

• Regression testing a problem for some 
programs

• Want to reduce test suite size but not fault 
detection

• Need prediction models to select test cases
• Prediction models

• Safe selection techniques might still return too 
many test cases

• Need to combine with priority techniques
• Simple selection techniques, such as LOC and 
change info might be sufficient



Suggested regression testing process

• Determine the set of safe test cases
• This can be run as a background job
• Cost is basically irrelevant

• Select from these safe test cases
• % selected depends on resources available
• Rerun selected test cases

• Cost of executing test cases
• Cost of evaluating the results

• Can often be automated

• Select new test cases to exercise new 
functionality



How to select a subset of the safe test cases?

• Priority
• LOCs and exposed faults previously 
• Exercised components that were faulty
• Executes changed components that have not been re-

executed yet?
• Coverage criteria

• Recent work by Gregg Rothermel evaluates priority 
selection

• Regression testing-- Real and important problem 
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