
Regression Testing

Reading Assignment

• R. K. Doong and P. G. Frankl, "The ASTOOT
Approach to Testing Object-Oriented
Programs," ACM Transactions on Software
Engineering and Methodology, 3 (2), April
1994, pp. 101-130.

Clarification on JUnit

• Unit testing approach
• Can use any unit test data selection technique

• Structural
• Functional

• Encode the test cases so they are easy to
rerun

• Framework for rerunning test cases and evaluating
the results

• Unit based regresson testing approach
• Select all test cases

Why is regression testing a problem?

• Large systems can take a long time to retest
• e.g., 6 months of regression testing before

every release

• Sometimes it is difficult and time consuming to
create the tests

• Sometimes it is difficult and time consuming to
evaluate the tests

• e.g., sometimes requires a person in the loop (GUI and
simulation examples) to create and evaluate the results

• Cost of testing can prevent software improvements

Regression Testing

• Primarily selecting from existing test data

• Plus, adding some new test cases
• Perhaps, deleting or updating some old test
cases

Regression Testing

• retest software after it has been modified

• trying to instill confidence that changes are
correct

• new functionality and corrected
functionality behave as they should

• unchanged functionality is indeed
unchanged

Automated support for Regression testing

• Test environment or infrastructure support
• Capture and replay

• Test data selection support
• Select a subset of the existing test cases
• Select test data to exercise new functionality

Test environment or infrastructure support

• Automatic results comparison
• Set of {test drivers, test stubs,
{test cases, previous results}}

• A��utomatically collects and saves test cases and
previous results

• Reruns previous test cases and reports any
discrepancies

• Often very effective
• Saves considerable amount of time and human
resources

• Doesn’t work very well for some applications

Test environment or infrastructure support

• Doesn’t work very well for GUI software
• Specialized capture and replay tools
• Capture all the keystrokes, window layout,
buttons, etc.

• Small changes in GUI tend to affect many outputs
• Doesn’t work well for complex simulation
software/hardware

• Many displays, coordination among displays
• Analog results within acceptable ranges
• Use scenario books and “person in the loop”

Test data selection support

• Approaches
• retest all- chooses all existing test cases

• selective retest - chooses a subset of the old
test cases

• But, what criterion should we use for selecting
test cases?

Selective retest goals

• Use a selection criterion that selects
effective test cases

• Select test cases that will reveal faults
• Select test cases that could reveal faults
• Remove test cases that could not reveal faults
• Do not remove test cases that will reveal faults

• Use a selection criterion that is not too
costly to compute

Retest selection

x x

x

x

x

Only reveal faults (Conservative and Precise)
Will reveal faults (Conservative, but not precise)

Retest all:
Will reveal faults (Conservative, but not precise)

Some Alternatives:

x

x xx

x

Steps in regression testing

• Given: a program P originally tested with test
set T producing results R and a modified
version of the program P’

• Identify the changes to P
• Select T’ a subset of T to re-execute P’
• Test P’ with T’ and reestablish correctness of
P’ with respect to T’

• Create new tests T’’ as necessary

Steps in regression testing (continued)

• Create a new test history consisting of the
results from executing

• T’ the revised test history
• May need to update expected results

• T’’ the newly expanded test history

• If the selection criterion is conservative,then
(T - T’) is part of the old test history that

is still valid
• Some test cases may become obsolete
if the domain changes

Analyzing Regression Testing Selection
Techniques
• Rothermel and Harrold
• Developed a framework for analytically
comparing regression testing techniques

• Later used this framework to experimentally
compare regression testing techniques

Criteria for evaluating selective retesting

• Inclusiveness - measures the extent to which a
method chooses tests that will cause the modified
program to produce different results

• if it can be demonstrated that a change will not impact
the results of a test case then there is no reason to
retest with that test case

• e.g., no syntactic dependence
• Precision - measures the ability of a method to
avoid choosing test cases that will not cause the
modified program to produce different results

• e.g., including all test cases is inclusive but not precise

Retest selection

x x

x

x

x

Only reveal faults (Conservative and Precise)
Will reveal faults (Conservative, but not precise)

Retest all:
Will reveal faults (Conservative, but not precise)

Some Alternatives:

x

x xx

x

Criteria for evaluating selective retesting

• Efficiency - measures the computational cost
of a method

• Generality - measures the ability of a method
to handle realistic and diverse language
constructs and modifications

• Accountability - measures the ability to
support some testing criteria (e.g., coverage)

Program dependence must consider

• modified statements
• new statements
• deleted statements

• All of the above can change program
dependences

• What program dependence information do we
need?

Measuring Inclusiveness

• Suppose T contains n modification revealing
test cases and a method selects m of them,
then the inclusiveness of the method for P,
P’, and T is (m/n*100)%

• Not a good metric Why?
• Depends on the program and the test set
• What if n= 0?

• Better to have a metric that is independent
of a particular program or test suite

Modification-traversing

• a test case t ε T is fault-revealing if it produces incorrect
outputs for P’

• In general, can not determine which elements of T are fault
revealing

• a test case t ε T is modification-revealing if it produces
different outputs for P than for P’

• Modification-revealing test cases over-approximates the fault
revealing test cases

• In general, can not determine which elements of T are modification
revealing

• a test case t ε T is modification-traversing if it executes a
statement in P’ that has changed

• Modification-traversing over-approximates modification revealing
• Can be computed

Retest selection

x x

x

x

x
x

x xx

x
Some Alternatives:

Fault revealing (Conservative and Precise)
-impossible to compute

Modification revealing (Conservative, but not precise)
-hard to compute

Traversal revealing -easier to compute
Retest all (Conservative, but not precise)- trivial to compute

Four Different Major Approaches
• Minimization techniques

• Select at least one test case that exercises the components that have
changed

• Coverage techniques
• Select test cases that exercise components that have changed and

that satisfy some coverage criteria
• Safe techniques

• Select every test case that could expose one or more faults
• Can only eliminate a test case if it can be proven that it cannot expose

a fault

Four Different Major Approaches
(continued)
• Data Flow based

• Modification-Need to select all the test cases
that exercised a statement that was modified

• Deletion-Need to exercise all the test cases that
exercised a deleted statement

• New-need to exercise all the test cases that
• exercised a statement that is now directly
data or control dependent on a new statement,
or

• exercised a statements that the new statement
is now directly data or control dependent on

Modifications, deletions, additions

• Modification-Need to select all
the test cases that exercised a
statement that was modified

• Deletion-Need to exercise all
the test cases that exercised a
deleted statement

• New-need to exercise all the
test cases that exercised a
statement that is directly data
or control dependent on the new
statement (e.g., e) or the new
statement is directly data or
control dependent on it
(e.g., c)

a

b

c d

e

‘

new

An Empirical Study

• Graves, Harrold, Kim, Porter, and Rothermel, TOSEM April
2001

• Experiment to evaluate
• Fault detection effectiveness

• Regression testing is usually not more effective than the original
test set

• Retest-all has good fault detection effectiveness, but may not
be cost effective

• Cost effectiveness
• Are there techniques that have the same fault detection

effectiveness but the cost of the analysis is significantly less
than the test cases it eliminates

• Cost to compute T’ versus the cost of executing (T-T’)

Program studied

• 7 C++ programs from Siemens
• 138- 516 LOCs
• Many versions of each

• 9-41 versions
• Each version had one seeded fault

• 2 larger programs
• 6 Klocs/ 33 versions/multiple faults
• 49 Klocs/ 5 versions/ multiple faults

Test pools, test suites, test cases

• Test pools
• Test cases with known edge coverage

• 1000 edge-coverage test suites selected from
the pool randomly

• Selected test cases to achieve edge-coverage
• Assume nk test cases needed for the kth suite

• 1000 non-edge coverage test suites
• Selected randomly from the pool
• Kth test suite has nk test cases, so non-edge
coverage has a “buddy” edge-coverage test suite

Regression testing techniques studied

• Minimization - test cases from a suite that
covers the edges associated with changes or
nodes that have changed

• often resulted in a single test case

• Safe - every test case in a suite that
exercises a statement that has been deleted
or was modified or is new

• How do we know if a test case exercises a new
statement?

Regression testing techniques studied
(continued)

• Data flow-every test case in a test suite
that exercises a def-use pair affected by a
deleted or modified statement

• Not quite safe
• Not full dependence

• Random-select 25%/50%/75% of the test
cases in a suite chosen randomly

• Retest-all

Test case size reduction

• Random and test-all select a test suite size
that is 25%, 50%, 75%, and 100%,
respectively, of T by definition

• Minimization: ~1% test suite size
• Safe:60% test suite size
• Data flow: 54% test suite size

Fault detection effectiveness

• For minimization, random, and test-all
• The larger the test suite size the better the fault
detection

• Improvement diminishes as the % gets higher

testall 100%

random75%

random 50%

random25%

minimization

x
x

x
x

x
20 40 60 80 100

Effectiveness (%)

Fault detection effectiveness : safe versus data
flow
• Safe and data flow had about the same
effectiveness

• Data flow is slightly less
• Safe always found all the faults that test-all
found (by design)

• Data flow costs more than safe to perform so
there is no gain in using data flow over safe

Fault detection effectiveness : safe versus
random
• Safe test suite size averaged 60% of original, but only

performed slightly better than random(75%)
• There was significant variance in the test suite reduction

• Some programs resulted in almost no reduction in original test suite
size

• Larger programs tended to have a larger reduction in the test suite
size

• for some programs the payoff was significant
• best case: 5% of the test cases were required

Summary of regression testing experiment

• If fault detection is not paramount, then
random (75%) might be a reasonable
compromise.

• Often as good as safe but not as expensive
• 75% is often too many test cases

Summary of regression testing experiment

• If fault detection is important then need to
choose a safe technique

• Test-all is a safe technique, but expensive
• Selective safe techniques might be worth the cost,
but

• need more experimental data
• need better selective techniques
• When many test cases are selected at least
know they are needed (within our ability to
determine this effectively)

• Modification traversing, not modification revealing nor fault
revealing

Another experiment: TestTube

• Chen, Rosenblum, Vo
• Experimental study carried out at AT&T,
1994

• Coarse-grain regression testing for C
• Applicable to large systems

TestTube approach

• Monitors the entities each test case
exercises

• Dynamic slice/dependence
• Identifies changed entities
• Selects those test cases that exercised at
least one of the changed entities

• Hypothesis: Works well if entities are
coarse-grained

• Entities: Functions, types, variables, macros

Defining entities

• For a test case t can determine the set of
functions tf that are exercised and the set of
non-functions tv that affect those functions

• Functions--can determine effect by monitoring
• Non-functions--non-executing entities:
declarations, macros,etc.

• Can be computed using static analysis
• Difficult for languages such as C and C++

• Must deal with aliasing problems

Proposition

• Let t be a test case for Program P. If the
changes to P do not affect any of the
entities in tf or tv then there is no need to
test t

Experimental results: SFIO

• SFIO(Safe, Fast Input/Output)
• 11,000 LOCS
• 706 entities: 481 macros, 175 function defs, 18
defs of global variables, 32 type defs

• 39 test cases
• Observations:

• Reduction in test case size depended on the
change

• Those components that were least likely to change
required the most test cases

• Core functionality versus feature functionality

Experimental results: Incl

• Incl
• 1700 LOCS
• 91 entities: 37 macros, 32 function defs, 14 defs
of global variables, 8 type defs

• 8 test cases
• Observations:

• Version 2 only required 4 test cases

Results depended on where a change was made

• Changes to leaf
components required few
test cases

• Changes to root node
required all test cases

• Less likely to change the
root

a

b c

d

f

e

Summary comments on TestTube

• Demonstrated that a relatively simple
technique could be effective

• Overhead was reasonable
• Claimed to be safe but didn’t deal with some of
the harder issues

• Testing additions to the code

Another experiment

• Where the Bugs Are

Thomas Ostrand, Elaine Weyuker, and Robert
Bell
AT&T

• 2004
• Provides information about two “real” systems
from AT&T

Contributions

• Studied release data over several years
• 2 systems
• Inventory control, 17 releases over 4 years, full lifecycle

info
• Provisioning System, 9 releases, over 2 years, post unit

testing info only
• Used the data to develop a model to predict where

the errors would be in a new release
• Could predict which 20% of the files would have 80%

of the bugs
• Used a simply prediction model (LOC) and still could

predict where 75% of the bugs would be found

Observations

• Could not use the error severity levels for
predictions because they were unreliable

• Value was often political, not technical
• About 3/4 of the faults were found during
unit testing

• LOCS & # files increased with each release
• Fault density (faults/KLOCS) decreased with
each release

Prediction Model

• LOC and the file's change status were the
strongest individual predictors in the model

• Number of changes since the last release did
not improve the model

File Prediction => 80% of the faults

LOC almost as good a predictor as the full model

Prediction only using faults found after unit
testing

Provisioning System

Prediction by Model

Conclusion from Study

• Applied to two programs with similar results
• Appears to generalize

• Post-unit testing information was adequate
for prediction

• LOC and change info was not as good as the
more complicated prediction algorithm but it
was pretty good

• Remember: Not a safe technique

Regression testing Conclusion

• Regression testing a problem for some
programs

• Want to reduce test suite size but not fault
detection

• Need prediction models to select test cases
• Prediction models

• Safe selection techniques might still return too
many test cases

• Need to combine with priority techniques
• Simple selection techniques, such as LOC and
change info might be sufficient

Suggested regression testing process

• Determine the set of safe test cases
• This can be run as a background job
• Cost is basically irrelevant

• Select from these safe test cases
• % selected depends on resources available
• Rerun selected test cases

• Cost of executing test cases
• Cost of evaluating the results

• Can often be automated

• Select new test cases to exercise new
functionality

How to select a subset of the safe test cases?

• Priority
• LOCs and exposed faults previously
• Exercised components that were faulty
• Executes changed components that have not been re-

executed yet?
• Coverage criteria

• Recent work by Gregg Rothermel evaluates priority
selection

• Regression testing-- Real and important problem

	Regression Testing
	Reading Assignment
	Clarification on JUnit
	Why is regression testing a problem?
	Regression Testing
	Regression Testing
	Automated support for Regression testing
	Test environment or infrastructure support
	Test environment or infrastructure support
	Test data selection support
	Selective retest goals
	Retest selection
	Steps in regression testing
	Steps in regression testing (continued)
	Analyzing Regression Testing Selection Techniques
	Criteria for evaluating selective retesting
	Retest selection
	Criteria for evaluating selective retesting
	Program dependence must consider
	Measuring Inclusiveness
	Modification-traversing
	Retest selection
	Four Different Major Approaches
	Four Different Major Approaches(continued)
	Modifications, deletions, additions
	An Empirical Study
	Program studied
	Test pools, test suites, test cases
	Regression testing techniques studied
	Regression testing techniques studied (continued)
	Test case size reduction
	Fault detection effectiveness
	Fault detection effectiveness : safe versus data flow
	Fault detection effectiveness : safe versus random
	Summary of regression testing experiment
	Summary of regression testing experiment
	Another experiment: TestTube
	TestTube approach
	Defining entities
	Proposition
	Experimental results: SFIO
	Experimental results: Incl
	Results depended on where a change was made
	Summary comments on TestTube
	Another experiment
	Contributions
	Observations
	Prediction Model
	
	File Prediction => 80% of the faults
	LOC almost as good a predictor as the full model
	Prediction only using faults found after unit testing
	Provisioning System
	Prediction by Model
	Conclusion from Study
	Regression testing Conclusion
	Suggested regression testing process
	How to select a subset of the safe test cases?

