
Object Oriented Testing

Validating Object Oriented Systems

• Do OO systems make validation harder or
easier?

• Does code reuse lead to validation reuse?
• Do we need to change existing techniques?

• If so, how?
• Do we need to develop new techniques?

What is an Object Oriented Programming
Language?
• Supports abstract data types (ADTs)

• Information hiding
• Encapsulation

• Supports inheritance
• Change to a parent type is reflected in the children
• Supports reuse
• Subtype or Subclass

• Subclass- reuse implementation information
• Subtype-child type must be a legal member of the

parent type
• Supports dynamic binding/dispatch or polymorphism

may have additional features, but at least should have these

Some terminology

• A class is a type
• Access methods
• Instance variables (attributes)

• Any access method may access the instance variables
• An object is an instance of a class

• May have multiple instances of a class, each with their
own instance variables

• Methods are invoked via messages
• Not referring to concurrency but to dynamic binding
• Actual method that is invoked may need to be determined at

runtime

Example: inheritance

class Table
create();
insert (int entry);
delete (int entry);
isEmpty() returns boolean;
isEntered(int entry) returns boolean;

endclass;

class UniqueTable extends Table
insert(int entry);

endclass;
Is UniqueTable a subtype or subclass of Table?

T ∈UniqueTable ⇒ T ∈ Table

Example:dynamic binding

t.insert(entry);

=>Which insert method gets
called depends on the type of t

Example: instance variables

class Table
int numberElements;
create();
insert (int entry);
delete (int entry);
isEmpty() returns boolean;
isEntered(int entry) returns boolean;

endclass;

Example: generic (parameterized class)

class Table (elemType)
int numberElements;
create();
insert (elemType entry);
delete (elemType entry);
isempty() returns boolean;
isentered(elemType entry) returns boolean;

endclass;

Some more terminology

• Single inheritance
• A class may inherit from only one parent

• Multiple inheritance
• A class may inherit from one or more parents
• Need to define what happens if there are conflicts

• E.g., each parent has an insert method
• Parent class is also called supertype/superclass
• Child class is also called a subtype/subclass

Validating Object Oriented Systems

• How are dynamic analysis approaches
affected?

• E.g., coverage criteria
• How are testing processes affected?

• Unit testing
• Integration testing
• Regression testing

• How are static analysis approaches affected?
• Dependency analysis

Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

Unit Testing Object-Oriented Systems
• procedural programming

• basic component: subroutine
• results: output data and out parameters

• object-oriented programming
• basic component:

class = owned data structures + set of operations
• objects are instances of classes
• Results: output data, out parameters and state

• data structures define the state of the object
• state is not directly accessible, but can only be
accessed using the access methods
(encapsulation)

Basic Unit for Testing

• the class is the natural unit for unit test case
design

• methods are meaningless apart from their class
• testing a class instance (an object) can validate
a class in isolation

• when individually validated classes are used to
create more complex classes in an application
system, the entire subsystem must be tested
as a whole before it can be considered to be
validated (integration testing)

Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

Encapsulation
• not a source of errors but may be an obstacle
to testing

• how to get at the concrete state of an object?
• break the encapsulation

• using features of the languages
• C++ friend
• Ada95 Child Unit

• use low level probes or debugging tools to manually
inspect

How to get at the concrete state of an
object?

• Use the abstraction
• State is inspected via access methods
• Scenarios--examine sequences of events

• t. create (); t. push (item); t. pop() = t. create ()
• Need to be able to define what equivalent sequences are

and need to determine equal states

• Use or provide hidden functions to examine the state
• Useful for debugging throughout the life of the system

• But, modified code may alter the behavior
• Especially true for languages that do not support strong

typing

Example: local state of an object
class Table

private int numberelements;
create();
insert (int entry);
delete (int entry);
isEmpty() returns boolean;
isEntered(int entry) returns boolean;

endclass;

class UniqueTable extends Table
insert(entry) returns table;

endclass;

ASTOOT

• Proposed by Phyllis Frankl and R.K. Doong
• Requires each class to provide its own
simplified “oracle”

• Determines if two instances of a class are
equivalent

• Uses a class’ algebraic specification to derive
alternative equivalent test cases

• A form of specification-based testing
• Uses an oracle to determine if the
implementation of the class satisfies the
specification of the class for the test cases

Algebraic Specification

• Specifies signatures of all the methods
• Specifies axioms that the class is supposed
to maintain

• expected results from combinations of method
invocations

• Usually need to consider all type compatible
combinations of the methods

Algebraic Specification :Stack Example

Class Stack
Signatures:
create: -> stack;
pop: stack -> stack;
push: stack x value -> stack;
top: stack -> value;
isEmpty: stack -> Boolean;

Algebraic Specification :Stack Example

Variables:
s: stack; val: value;

Axioms:
s.push(val).isEmpty = false;
s.push(val).pop = s;
create.isEmpty = true;
create.pop = error;
create.top = error;
s.push(val).top = val;

ASTOOT creates pairs of equivalent test cases

• Uses algebraic specifications to define
test cases
• Create test cases that are syntactically
correct sequences of access methods

• Can be either user defined or
automatically generated from the algebraic
specification

• Using algebraic specifications, simplify or
extend sequences to create “equivalent”
test cases

Example equivalent test cases

create(s);push(s,5) =
create(s);push(s,5);top(s) =
create(s);push(s,5);top(s);push(s,10);pop(s)

Kinds of Methods/Transformations

• Constructors (creators)-return initial objects
• Not all methods can be applied to an initial object
• Create(s); pop(s)

• Observers-return state information but do not
change the state

• A no op in terms of impact on state
• Identity function f(s) = s

• create(s);push(s,5);top(s);push(s,10);pop(s)
• Transformers-changes the value of at least one

element of the state
• Inverse functions s = f(s); f-1(s)
• create(s);push(s,5);top(s);push(s,10);pop(s)

Using the EQN test oracle

• Using EQN function, determine if the class
returns the same results for both test cases

• Tests whether the specification is defined
correctly

• Tests whether the implementation meets the
specifications

ASTOOT usage model

ADT

ADT
specification

Test case

Test
case

extender EQN

ADT Result’

Result

ASTOOT alternative usage model

ADT

ADT
specification

Test
case
pair

generator

EQN

Equivalent test cases

ADT
Result’

Result

EQN: Simplified oracle

• Requires that each class have an equivalence
function, EQN, that determines if two
instances of the same class are “equivalent”

• E.g. EQN(create;push(5);push(6);pop,
create;push(5))

would return true
• Can define EQN recursively using the access
methods

• Can define EQN using the underlying
implementation

Example: recursive definition of EQN

if IsEmpty(s1) and IsEmpty (s2) then true
elseif IsEmpty(s1) then false
elseif IsEmpty(s2) then false
elseif Top(s1)≠Top(s2) then false
else

EQN (Pop(s1),Pop(s2))
endif

Example:implementation based definition of
EQN

EQN(s1, s2) returns flag
s1,s2: stack;
flag := true;
If size(s1) ≠ size(s2) then flag := false;
i := firstIndex(s1);
while i≤size(s1) and flag =true do

if s1(i) ≠ s2(i) then flag := false
i := i+1;

endwhile;
return flag; size, firstIndex, and s1(I),

s2(1) are all hidden operations

Identical versus Observational Equivalence of
Instances
• Two objects are observationally equivalent, if they “look” the

same according to any sequence of access methods
• Example:

• Specification based definition of EQN only uses access methods
• evaluates if the two instances are observationally equivalence

• Implementation based definition of EQN
• evaluates if the two objects are identical in structure

How do we select the equivalent pairs?

• Basically an infinite number of equivalent
pairs

• Is there a subset of equivalent pairs that is
sufficient?

In general, can not determine observational
equivalence with a subset of the state, must
consider white box information

Example

ParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)}

ParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)}

ChildExample extendsParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{ message(“More”)

if(val==42) message(“Jackpot”)
} }

ChildExample extendsParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{ message(“More”)

if(val==42) message(“Jackpot”)
} }

Must Also Consider Non-Equivalent Pairs

• Equivalent pairs could be correct, but non-
equivalent relationships could produce
erroneous results

• May want to assure other types of relationships
• E.g., Bigger > Smaller

• Certain instances may not have multiple creation
paths

• One of a kind

Some observations about ASTOOT

• Exploiting abstract data type representations
• Assumes it is easy to create an algebraic specification
• Basis for EQN recursive definition
• Basis for test data generation

• Provides considerable automated support
• Test cases generation
• Result comparison

• Interesting way to use specifications to help derive
test cases

• Interesting way to define a test oracle in terms of
EQN (or other predefined relationships)

• Predecessor to JUnit approach

Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

Implications of Inheritance

• inherited features often require re-testing
• because a new context of usage results when features are

inherited
• multiple inheritance increases the number of

contexts to test

Which functions must be tested in a subclass?
class parent {
void foo(int x);
int range(); // returns between 1-10

}
class child extends parent {
int range(); // returns between 1-20
// inherits foo

}

• When testing child, we need to retest range
• Do we need to retest foo?

Suppose foo contained the line:
x = x / (20-range());

Retesting is necessary, but maybe we don’t have to retest
everything

Can tests for a parent class be reused for a
child class?
• parent.range() and child.range() are two
different functions with different
specifications and implementations

• tests are derived from the different
specifications and implementations

• but the functions are likely to be similar, so the
cleaner the OO design, the greater the overlap

• new tests are needed for child.range()
requirements that are not satisfied by the
parent.range test cases

• the simpler a test, the more likely it is to be
reusable in subclasses

Incremental testing of OO class structures

• Mary Jean Harrold and John D. McGregor

• Exploits the inheritance hierarchy to
minimize the amount of testing that must be
done

Incremental Inheritance based testing

• First test each base class (no parents)
• Test each method
• Test the interactions among methods

• Then consider all classes that use only
previously tested classes

• Child inherents its parent’s test suite
• Used as the basis for test planning
• Only need to develop new test cases for those
entities that are directly or indirectly changed

Incremental Inheritance based testing

• Saves time
• Reduces number of new test cases
• Reduces execution time since there are fewer test
cases

• Reduces number of test results that need to be
evaluated

• May increase the cost of selecting new test
cases

• Easily offset by reduction in human labor
• Actually a form of regression testing

• Minimizes the number of test cases needed to exercise
a modified class

Approaches to Inheritance Testing
• flattening inheritance

• each subclass is tested as if all inherited features
were newly defined

• tests used in the super-classes can be reused
• many tests are redundant

• incremental testing
• limit tests only to new/modified features
• determining what needs to be tested requires
automated support

Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

Example: generic (parameterized class)

class Table (elemType)
int numberElements;
create();
insert (elemType entry);
delete (elemType entry);
isempty() returns boolean;
isentered(elemType entry) returns boolean;

endclass;

Testing generics

• Basically a change in the underlying structure
• Need to apply white box testing techniques
that exercise this change

• Parameterization may or may not affect the
functionality of the access methods

• In Tableclass, elemType may have little impact on
the implementations of the access methods of
Table

• But, UniqueTable class would need to evaluate the
equivalence of elements and this could vary
depending on the representation of elemType

Example: generic (parameterized class)

class Table (elemType)
int numberElements;
create();
insert (elemType entry);
delete (elemType entry);
isempty() returns boolean;
isentered(elemType entry) returns boolean;

endclass;

class UniqueTable extends Table
insert(elemType entry);

endclass;

Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

Polymorphism

• in procedural programming, procedure calls
are statically bound

• each possible binding of a polymorphic
component requires a separate set of test
cases

• many server classes may need to be integrated
before a client class can be tested

• E.g., t.insert would need to be tested for
Table and UniqueTable

• may be hard to determine all such bindings
• complicates integration planning and testing

Example
polygon

triangle square pentagon ...

void resize()
{
...
data = polygon.area;
...
}

void resize()
{
...
data = polygon.area;
...
}

•Which implementation of
area is actually called?
•Need to test all bindings

Approaches to the Dynamic Binding Problem

• Try to reduce combinatorial explosion in the
number of possible combinations of
polymorphic calls

• Use static analysis (data flow analysis) to
determine possible bindings

• At most call sites, the average number of
“possible” bindings is 2

Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

• Need to re-examine all testing techniques and
processes

White-box vs. Black-box Testing of O-O

• In OO systems, inheritance can change both
the implementation and specification

• UniqueTable example
• Black box testing should focus on how the spec
has changed

• White box testing should focus on how the insert
implementation has changed

• Jackpot in previous example shows same
concerns

White box O-O Testing

• these techniques can be adapted to method
testing, but are not sufficient for class
testing

• conventional flow-graph approaches
• What about flow between methods?
• Do methods in a class have a special relationship
that deserves special consideration or are
standard interprocedural techniques adequate?

• Must deal with instance variables

Black-box O-O Testing

• conventional black-box methods are useful
for object-oriented systems

• Additional techniques
• Utilize assertions specifications integrated with
the implementation

• C++ and Java assertions, Eiffel pre/post-
conditions offer self-checking

• Utilize method (event) sequence information
• Usually don’t have history of method
invocations so can’t do this with assertions

Method Invocation Model for Testing

• Consider the “implied” contract about how
methods can be invoked

• Applies to a class in isolaton
• Applies to a cluster of classes

• Use state transition diagrams to represent
the contract

• Called a
• State model
• Event model

Method Invocation Model Testing

• derives test cases by modeling a class as a
state machine

• methods result in state transitions
• state model defines allowable transition
sequences

• e.g., an instance must be created before it can
be updated or deleted

• test cases are devised to
• Exercise each transition
• Exercise paths through the graph

• Usually a small number of acyclic or simple
cycle paths through the model

• Exercise different call stacks

Example: model of a stack

create push
Isempty=f

push, top,
popIsempty=t

isempty

push

Selecting Test Cases

1 2

43create push
Isempty=f

push, top,
popIsempty=t

push

isempty

•push, top, pop

•push, pop, top

•top, pop, push

•top, push, pop

•…

• Each transition/method
• Each simple path
• Each unique call stack

• Unique sequences of method calls
• Up to a certain length

• From the start state
• Any subsequence

Problems with Method Invocation Model Testing

• may take a lengthy sequence of operations to
get an object in a desired state

• may not be productive if a class is designed
to accept any possible sequence of method
activation

• control may be distributed over an entire
application or cluster

• system-wide control makes it difficult to
verify a class in isolation

• a global state model is needed to show how
classes interact

Footprint of a “modern” OO system is very
different
• More reuse

• More contexts to test each entity
• More unused code in a system

• More dynamism
• Data structures
• Dynamic binding
• Introspection

• More method calls, exceptions, concurrency

Summary: Impact of OO on testing processes

• Affects unit testing
• Changes what we mean by unit
• Changes concerns

• State of instance/class variables
• Sequences of methods calls

• Based on equivalence, ASTOOT
• Applies to a single class

• Based on a method invocation Contract
• Applies to a single or multiple classes

• Must test a class and its specializations
• E.g., Harrold and McGregor

Summary: Impact of OO on the testing process
(continued)
• Affects integration testing

• Need to test component interaction
• Need to test specific context

• Specialized classes via inheritance and generics
• Affects regression testing

• Changes may have greater impact because of
inheritance, dynamic binding

• May not affect system testing
• Requirements are not usually impacted

Summary: OO testing

• ADT’s
• well-defined interfaces and centralized focus help
with testing

• E.g. ASTOOT, algebraic specification based
• Inheritance and Generics

• Increases reuse and thus reuse of test results
• But, impact of change must be carefully
assessed and taken into account

• Dynamic binding
• Simplifies code but testing must consider all
possible bindings

Summary: OO testing

• Overall, OO simplifies design and coding
• Increases reuse
• Reduces faults (?)

• Various OO interactions must be validated
• Need automated support to determine these
interactions

• Need testing/analysis strategies that take these
interactions into account

	Object Oriented Testing
	Validating Object Oriented Systems
	What is an Object Oriented Programming Language?
	Some terminology
	Example: inheritance
	Example:dynamic binding
	Example: instance variables
	Example: generic (parameterized class)
	Some more terminology
	Validating Object Oriented Systems
	Issues in O-O testing
	Unit Testing Object-Oriented Systems
	Basic Unit for Testing
	Issues in O-O testing
	Encapsulation
	How to get at the concrete state of an object?
	Example: local state of an object
	ASTOOT
	Algebraic Specification
	Algebraic Specification :Stack Example
	Algebraic Specification :Stack Example
	ASTOOT creates pairs of equivalent test cases
	Example equivalent test cases
	Kinds of Methods/Transformations
	Using the EQN test oracle
	ASTOOT usage model
	ASTOOT alternative usage model
	EQN: Simplified oracle
	Example: recursive definition of EQN
	Example:implementation based definition of EQN
	Identical versus Observational Equivalence of Instances
	How do we select the equivalent pairs?
	Example
	Must Also Consider Non-Equivalent Pairs
	Some observations about ASTOOT
	Issues in O-O testing
	Implications of Inheritance
	Which functions must be tested in a subclass?
	Can tests for a parent class be reused for a child class?
	Incremental testing of OO class structures
	Incremental Inheritance based testing
	Incremental Inheritance based testing
	Approaches to Inheritance Testing
	Issues in O-O testing
	Example: generic (parameterized class)
	Testing generics
	Example: generic (parameterized class)
	Issues in O-O testing
	Polymorphism
	Example
	Approaches to the Dynamic Binding Problem
	Issues in O-O testing
	White-box vs. Black-box Testing of O-O
	White box O-O Testing
	Black-box O-O Testing
	Method Invocation Model for Testing
	Method Invocation Model Testing
	Example: model of a stack
	Selecting Test Cases
	Problems with Method Invocation Model Testing
	Footprint of a “modern” OO system is very different
	Summary: Impact of OO on testing processes
	Summary: Impact of OO on the testing process (continued)
	Summary: OO testing
	Summary: OO testing

