
Object Oriented Testing



Validating Object Oriented Systems

• Do OO systems make validation harder or 
easier?

• Does code reuse lead to validation reuse?
• Do we need to change existing techniques?

• If so, how?
• Do we need to develop new techniques?



What is an Object Oriented Programming 
Language?
• Supports abstract data types (ADTs)

• Information hiding
• Encapsulation

• Supports inheritance
• Change to a parent type is reflected in the children
• Supports reuse
• Subtype or Subclass

• Subclass- reuse implementation information
• Subtype-child type must be a legal member of the 

parent type
• Supports dynamic binding/dispatch or polymorphism

may have additional features, but at least should have these



Some terminology

• A class is a type
• Access methods
• Instance variables (attributes)

• Any access method may access the instance variables
• An object is an instance of a class

• May have multiple instances of a class, each with their 
own instance variables

• Methods are invoked via messages
• Not referring to concurrency but to dynamic binding
• Actual method that is invoked may need to be determined at 

runtime



Example: inheritance

class Table
create( ); 
insert (int entry);
delete (int entry);
isEmpty() returns boolean;
isEntered(int entry) returns boolean;

endclass;

class UniqueTable extends Table
insert(int entry);

endclass;
Is UniqueTable a subtype or subclass of Table?

T ∈UniqueTable ⇒ T ∈ Table



Example:dynamic binding

t.insert(entry);

=>Which insert method gets 
called depends on the type of t



Example: instance variables

class Table
int numberElements;
create( ); 
insert (int entry);
delete (int entry);
isEmpty() returns boolean;
isEntered(int entry) returns boolean;

endclass;



Example: generic (parameterized class)

class Table (elemType)
int numberElements;
create( ); 
insert (elemType entry);
delete (elemType entry);
isempty() returns boolean;
isentered(elemType entry) returns boolean;

endclass;



Some more terminology

• Single inheritance
• A class may inherit from only one parent

• Multiple inheritance
• A class may inherit from one or more parents
• Need to define what happens if there are conflicts

• E.g., each parent has an insert method
• Parent class is also called supertype/superclass
• Child class is also called a subtype/subclass



Validating Object Oriented Systems

• How are dynamic analysis approaches 
affected?

• E.g., coverage criteria
• How are testing processes affected?

• Unit testing
• Integration testing
• Regression testing

• How are static analysis approaches affected?
• Dependency analysis



Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes



Unit Testing Object-Oriented Systems
• procedural programming

• basic component: subroutine
• results: output data and out parameters 

• object-oriented programming
• basic component: 

class = owned data structures + set of operations
• objects are instances of classes
• Results: output data, out parameters and state 

• data structures define the state of the object
• state is not directly accessible, but can only be 
accessed using the access methods 
(encapsulation)



Basic Unit for Testing

• the class is the natural unit for unit test case 
design

• methods are meaningless apart from their class
• testing a class instance (an object) can validate 
a class in isolation

• when individually validated classes are used to 
create more complex classes in an application 
system, the entire subsystem  must be tested 
as a whole before it can be considered to be 
validated (integration testing)



Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes



Encapsulation
• not a source of errors but may be an obstacle 
to testing

• how to get at the concrete state of an object?
• break the encapsulation

• using features of the languages
• C++ friend
• Ada95 Child Unit

• use low level probes or debugging tools to manually 
inspect



How to get at the concrete state of an 
object?

• Use the abstraction
• State is inspected via access methods
• Scenarios--examine sequences of events

• t. create ( ); t. push (item); t. pop( ) = t. create ( )
• Need to be able to define what equivalent sequences are 

and need to determine equal states

• Use or provide hidden functions to examine the state
• Useful for debugging throughout the life of the system

• But, modified code may alter the behavior
• Especially true for languages that do not support strong 

typing



Example: local state of an object
class Table

private int numberelements;
create( ); 
insert (int entry);
delete (int entry);
isEmpty() returns boolean;
isEntered(int entry) returns boolean;

endclass; 

class UniqueTable extends Table
insert(entry) returns table;

endclass;



ASTOOT

• Proposed by Phyllis Frankl and R.K. Doong
• Requires each class to provide its own 
simplified “oracle”

• Determines if two instances of a class are 
equivalent

• Uses a class’ algebraic specification to derive 
alternative equivalent test cases

• A form of specification-based testing
• Uses an oracle to determine if the 
implementation of the class satisfies the 
specification of the class for the test cases



Algebraic Specification

• Specifies signatures of all the methods
• Specifies axioms that the class is supposed 
to maintain

• expected results from combinations of method 
invocations

• Usually need to consider all type compatible 
combinations of the methods



Algebraic Specification :Stack Example

Class Stack 
Signatures:
create: -> stack;
pop: stack -> stack;
push: stack x value -> stack;
top: stack -> value;
isEmpty: stack -> Boolean;



Algebraic Specification :Stack Example

Variables:
s: stack; val: value;

Axioms: 
s.push(val).isEmpty = false;
s.push(val).pop = s;
create.isEmpty = true;
create.pop = error;
create.top = error;
s.push(val).top = val;



ASTOOT creates pairs of equivalent test cases

• Uses algebraic specifications to define 
test cases 
• Create test cases that are syntactically 
correct sequences of access methods

• Can be either user defined or 
automatically generated from the algebraic 
specification

• Using algebraic specifications, simplify or 
extend sequences to create “equivalent”
test cases



Example equivalent test cases

create(s);push(s,5) = 
create(s);push(s,5);top(s) =
create(s);push(s,5);top(s);push(s,10);pop(s)



Kinds of Methods/Transformations

• Constructors (creators)-return initial objects
• Not all methods can be applied to an initial object
• Create(s); pop(s)

• Observers-return state information but do not 
change the state

• A no op in terms of impact on state
• Identity function f(s) = s     

• create(s);push(s,5);top(s);push(s,10);pop(s)
• Transformers-changes the value of at least one 

element of the state
• Inverse functions  s = f(s); f-1(s)
• create(s);push(s,5);top(s);push(s,10);pop(s)



Using the EQN test oracle

• Using EQN function, determine if the class 
returns the same results for both test cases

• Tests whether the specification is defined 
correctly

• Tests whether the implementation meets the 
specifications



ASTOOT usage model
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ASTOOT alternative usage model
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EQN: Simplified oracle

• Requires that each class have an equivalence 
function,  EQN, that determines if two 
instances of the same class are “equivalent”

• E.g. EQN( create;push(5);push(6);pop, 
create;push(5))

would return true
• Can define EQN recursively using the access 
methods

• Can define EQN using the underlying 
implementation



Example: recursive definition of EQN

if IsEmpty(s1) and IsEmpty (s2) then true
elseif IsEmpty(s1) then false
elseif IsEmpty(s2) then false
elseif Top(s1)≠Top(s2) then false
else

EQN (Pop(s1),Pop(s2))
endif



Example:implementation based definition of 
EQN 

EQN(s1, s2) returns flag
s1,s2: stack;
flag := true;
If size(s1) ≠ size(s2) then flag := false;
i := firstIndex(s1);
while i≤size(s1) and flag =true do

if s1(i) ≠ s2(i) then flag := false
i := i+1;

endwhile;
return flag; size, firstIndex, and s1(I), 

s2(1) are all hidden operations



Identical versus Observational Equivalence of 
Instances
• Two objects are observationally equivalent, if they “look” the 

same according to any sequence of access methods
• Example:

• Specification based definition of EQN only uses access methods
• evaluates if the two instances are observationally equivalence

• Implementation based definition of EQN 
• evaluates if the two objects are identical in structure



How do we select the equivalent pairs?

• Basically an infinite number of equivalent 
pairs

• Is there a subset of equivalent pairs that is 
sufficient?

In general, can not determine observational 
equivalence with a subset of the state, must 
consider white box information



Example

ParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)}

ParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)}

ChildExample extendsParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{   message(“More”)

if(val==42) message(“Jackpot”)
}  }

ChildExample extendsParentExample{
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{   message(“More”)

if(val==42) message(“Jackpot”)
}  }



Must Also Consider Non-Equivalent Pairs

• Equivalent pairs could be correct, but non-
equivalent relationships could produce 
erroneous results

• May want to assure other types of relationships
• E.g., Bigger > Smaller

• Certain instances may not have multiple creation 
paths

• One of a kind



Some observations about ASTOOT

• Exploiting abstract data type representations
• Assumes it is easy to create an algebraic specification
• Basis for EQN recursive definition
• Basis for test data generation

• Provides considerable automated support
• Test cases generation
• Result comparison

• Interesting way to use specifications to help derive 
test cases

• Interesting way to define a test oracle in terms of 
EQN (or other predefined relationships)

• Predecessor to JUnit approach



Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes



Implications of Inheritance

• inherited features often require re-testing
• because a new context of usage results when features are 

inherited
• multiple inheritance increases the number of 

contexts to test



Which functions must be tested in a subclass? 
class parent {
void foo(int x);
int range(); // returns between 1-10

}
class child extends parent {
int range(); // returns between 1-20
// inherits foo

}

• When testing child, we need to retest range
• Do we need to retest foo?

Suppose foo contained the line:
x = x / (20-range( ) );

Retesting is necessary, but maybe we don’t have to retest 
everything



Can tests for a parent class be reused for a 
child class?
• parent.range() and child.range() are two 
different functions with different 
specifications and implementations

• tests are derived from the different 
specifications and implementations

• but the functions are likely to be similar, so the 
cleaner the OO design, the greater the overlap

• new tests are needed for child.range() 
requirements that are not satisfied by the 
parent.range test cases

• the simpler a test, the more likely it is to be 
reusable in subclasses



Incremental testing of OO class structures

• Mary Jean Harrold and John D. McGregor

• Exploits the inheritance hierarchy to 
minimize the amount of testing that must be 
done



Incremental Inheritance based testing

• First test each base class (no parents)
• Test each method
• Test the interactions among methods

• Then consider all classes that use only 
previously tested classes

• Child inherents its parent’s test suite 
• Used as the basis for test planning
• Only need to develop new test cases for those 
entities that are directly or indirectly changed



Incremental Inheritance based testing

• Saves time
• Reduces number of new test cases
• Reduces execution time since there are fewer test 
cases

• Reduces number of test results that need to be 
evaluated 

• May increase the cost of selecting new test 
cases

• Easily offset by reduction in human labor
• Actually a form of regression testing

• Minimizes the number of test cases needed to exercise 
a modified class



Approaches to Inheritance Testing
• flattening inheritance

• each subclass is tested as if all inherited features 
were newly defined

• tests used in the super-classes can be reused
• many tests are redundant

• incremental testing
• limit tests only to new/modified features
• determining what needs to be tested requires 
automated support



Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes



Example: generic (parameterized class)

class Table (elemType)
int numberElements;
create( ); 
insert (elemType entry);
delete (elemType entry);
isempty() returns boolean;
isentered(elemType entry) returns boolean;

endclass;



Testing generics

• Basically a change in the underlying structure
• Need to apply white box testing techniques 
that exercise this change

• Parameterization may or may not affect the 
functionality of the access methods

• In Tableclass, elemType may have little impact on 
the implementations of the access methods of 
Table

• But, UniqueTable class would need to evaluate the 
equivalence of elements and this could vary 
depending on the representation of elemType



Example: generic (parameterized class)

class Table (elemType)
int numberElements;
create( ); 
insert (elemType entry);
delete (elemType entry);
isempty() returns boolean;
isentered(elemType entry) returns boolean;

endclass;

class UniqueTable extends Table
insert(elemType entry);

endclass;



Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes



Polymorphism

• in procedural programming, procedure calls 
are statically bound

• each possible binding of a polymorphic 
component requires a separate set of test 
cases

• many server classes may need to be integrated 
before a client class can be tested 

• E.g., t.insert would need to be tested for 
Table and UniqueTable

• may be hard to determine all such bindings
• complicates integration planning and testing



Example
polygon

triangle square pentagon ...

void resize( )
{
...
data = polygon.area;
...
}

void resize( )
{
...
data = polygon.area;
...
}

•Which implementation of 
area is actually called?
•Need to test all bindings



Approaches to the Dynamic Binding Problem

• Try to reduce combinatorial explosion in the 
number of possible combinations of 
polymorphic calls 

• Use static analysis (data flow analysis) to 
determine possible bindings

• At most call sites, the average number of 
“possible” bindings is 2



Issues in O-O testing

• basic unit for unit testing
• implications of encapsulation
• implications of inheritance
• implications of genericity
• implications of polymorphism/dynamic binding
• implications for testing processes

• Need to re-examine all testing techniques and 
processes



White-box vs. Black-box Testing of O-O

• In OO systems, inheritance can change both 
the implementation and specification

• UniqueTable example
• Black box testing should focus on how the spec 
has changed

• White box testing should focus on how the insert 
implementation has changed

• Jackpot in previous example shows same 
concerns



White box O-O Testing

• these techniques can be adapted to method 
testing, but are not sufficient for class 
testing

• conventional flow-graph approaches
• What about flow between methods?
• Do methods in a class have a special relationship 
that deserves special consideration or are 
standard interprocedural techniques adequate?

• Must deal with instance variables



Black-box O-O Testing

• conventional black-box methods are useful 
for object-oriented systems

• Additional techniques
• Utilize assertions specifications integrated with 
the implementation

• C++ and Java assertions, Eiffel pre/post-
conditions offer self-checking

• Utilize method (event) sequence information
• Usually don’t have history of method 
invocations so can’t do this with assertions



Method Invocation Model for Testing

• Consider the “implied” contract about how 
methods can be invoked

• Applies to a class in isolaton
• Applies to a cluster of classes

• Use state transition diagrams to represent 
the contract

• Called a 
• State model
• Event model



Method Invocation Model Testing

• derives test cases by modeling a class as a 
state machine

• methods result in state transitions
• state model defines allowable transition 
sequences

• e.g., an instance must be created before it can 
be updated or deleted

• test cases are devised to 
• Exercise each transition
• Exercise paths through the graph

• Usually a small number of acyclic or simple 
cycle paths through the model

• Exercise different call stacks



Example: model of a stack

create push
Isempty=f

push, top, 
popIsempty=t

isempty

push



Selecting Test Cases

1 2

43create push
Isempty=f

push, top, 
popIsempty=t

push

isempty

•push, top, pop

•push, pop, top

•top, pop, push

•top, push, pop

•…

• Each transition/method
• Each simple path
• Each unique call stack

• Unique sequences of method calls 
• Up to a certain length

• From the start state
• Any subsequence



Problems with Method Invocation Model Testing

• may take a lengthy sequence of operations to 
get an object in a desired state

• may not be productive if a class is designed 
to accept any possible sequence of method 
activation

• control may be distributed over an entire 
application or cluster

• system-wide control makes it difficult  to 
verify a class in isolation

• a global state model is needed to show how 
classes interact



Footprint of a “modern” OO system is very 
different
• More reuse

• More contexts to test each entity
• More unused code in a system

• More dynamism
• Data structures
• Dynamic binding
• Introspection

• More method calls, exceptions, concurrency



Summary: Impact of OO on testing processes

• Affects unit testing
• Changes what we mean by unit
• Changes concerns

• State of instance/class variables
• Sequences of methods calls

• Based on equivalence,  ASTOOT 
• Applies to a single class

• Based on a method invocation Contract
• Applies to a single or multiple classes

• Must test a class and its specializations
• E.g., Harrold and McGregor



Summary: Impact of OO on the testing process 
(continued)
• Affects integration testing

• Need to test component interaction
• Need to test specific context

• Specialized classes via inheritance and generics 
• Affects regression testing

• Changes may have greater impact because of 
inheritance, dynamic binding

• May not affect system testing
• Requirements are not usually impacted



Summary: OO testing

• ADT’s
• well-defined interfaces and centralized focus help 
with testing

• E.g. ASTOOT, algebraic specification based  
• Inheritance and Generics

• Increases reuse and thus reuse of test results
• But, impact of change must be carefully 
assessed and taken into account

• Dynamic binding
• Simplifies code but testing must consider all 
possible bindings



Summary: OO testing

• Overall, OO simplifies design and coding
• Increases reuse
• Reduces faults (?)

• Various OO interactions must be validated
• Need automated support to determine these 
interactions

• Need testing/analysis strategies that take these 
interactions into account
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