Formal Verification
Basic Verification Strategy

compare behavior to intent

System

Model of system behavior

Verifier

intent

results
Intent

• Usually, originates with requirements, refined through design and implementation

• formalized by specifications
 • Often expressed as formulas in mathematical logic

• different types of intent
 • E.g., performance, functional behavior
 • each captured with different types of formalisms
 • specification of behavior/functionality
 • what functions does the software compute?
 • Often expressed using predicate logic
Compare behavior to intent

- can be done informally—by human eye
 - Cleanroom
 - Inspections

- can be done selectively
 - Checking assertions during execution

- can be done formally
 - With theorem proving
 - Usually with automated support
 - Called Proof of Correctness or Formal Verification
 - Proof of “correctness” is dangerously misleading
 - With static analysis for restricted classes of properties
Theorem Proving based Verification

• Behavior inferred from semantically rich program model
 • generally requires most of the semantics of the programming language
 • employs symbolic execution
• Intent captured by predicate calculus specifications (or another mathematically formal notation)
Theorem-Proving based Verification Strategy

System

Model of system behavior

Theorem prover

intent

predicate logic assertions

inferred using symbolic execution

results
Floyd Method of Inductive Assertions

- Show that given *input assertions*, after executing the program, program satisfies *output assertions*
 - show that each program fragment behaves as intended
 - use induction to prove that all fragments, including loops, behave as intended
- show that the program must terminate
Mathematical Induction

- **goal**: prove that a given property holds for all elements of a set

- **approach**:
 - show property holds for "first" element
 - show that if property holds for element \(i \), then it must also hold for element \(i + 1 \)

- often used when direct analytic techniques are too hard or complex
Example: How many edges in C_n

Theorem:

let $C_n = (V_n, E_n)$ be a complete, unordered graph on n nodes,

then $|E_n| = n \times (n-1)/2$
Example: How many edges in C_n

- to show that this property holds for the entire set of complete graphs, \{C_i\}, by induction:
 1. show the property is true for C_1
 2. show if the property is true for C_n, then the property is true for C_{n+1}

Example: How many edges in C_n show the property is true for C_1: graph has one node, 0 edges

\[|E_1| = \frac{n(n-1)}{2} = \frac{1(0)}{2} = 0 \]
Example: How many edges in C_n

assume true for C_n: $|E_n| = n(n-1)/2$

graph C_{n+1} has one more node, but n more edges (one from the new node to each of the n old nodes)

Thus, want to show $|E_{n+1}| = |E_n| + n = (n+1)(n)/2$

Proof: $|E_{n+1}| = |E_n| + n = n(n-1)/2 + n$

by substitution

$= n(n-1)/2 + 2n/2$

by rewriting

$= (n(n-1)+2n)/2$

by simplification

$= (n(n-1+2))/2$

by simplification

$= n(n+1)/2$

by simplification

$= (n+1)(n)/2$

by rewriting
Floyd's Method of inductive verification (informal description)

- Place assertions at the start, final, and intermediate points in the code.
- Any path is composed of sequences of program fragments that start with an assertion, are followed by some assertion free code, and end with an assertion.
 - \(A_s, C_1, A_2, C_2, A_3, \ldots A_{n-1}, C_{n-1}, A_f \)
- Show that for every executable path, if \(A_s \) is assumed true and the code is executed, then \(A_f \) is true.
Pictorially: A single path

initial assertion

intermediate assertions

final assertion

STRAIGHT-LINE CODE

$A_i \rightarrow C_i \rightarrow A_{i+1}$
Must be sure:
assuming A_i,
then executing Code C_i,
necessarily $\Rightarrow A_i + 1$

by forward substitution
\Rightarrow symbolic execution
Why does this work?

Suppose \(P \) is an arbitrary path through the program can denote it by

\[
P = A_0 \ C_1 \ A_1 \ C_2 \ A_2 \ldots \ C_n \ A_n
\]

where

- \(A_0 \) - Initial assertion
- \(A_n \) - Final assertion
- \(A_i \) - Intermediate assertions
- \(C_i \) - Loop free, uninterrupted, straight-line code

If it has been shown that

\[
\forall \ i, \ 1 \leq i < n: \ A_i C_i \Rightarrow A_{i+1}
\]

Then, by transitivity

\[
A_0 \ldots \Rightarrow A_n
\]
Obvious problems

• How do we do this for a path?
• How do we do this for all paths?
 • Infinite number of paths
 • Must find a way to deal with loops
How to handle loops -- unroll them

\[\text{input assertion} \]

\[
n \quad \text{do}_\text{while predicate1} \\
n+1 \quad \text{if predicate2} \\
n+2 \quad \text{then code ;} \\
n+3 \quad \text{else code ;} \\
n+4 \quad \text{end;} \\
n+5 \quad \text{output assertion ;} \\
\]
Better -- find loop invariant \((A_I)\)

subpaths to consider:

\(C_1\): Initial assertion \(A_0\) to final assertion \(A_f\)

\(C_2\): Initial assertion \(A_0\) to \(A_I\)

\(C_3\): \(A_I\) to \(A_I\)

\(C_4\): \(A_I\) to final assertion \(A_f\)

Basically an inductive proof
Consider all paths through a loop

subpaths to consider:

C₁: A₀ to A₉
C₂: A₀ to A₁
C₃: A₁, false branch, A₁
C₄: A₁, true branch, A₁
C₅: A₁, false branch, A₉
C₆: A₁, true branch, A₉
Assertions

- specification that is intended to be true at a given site in the program

- Use three types of assertions:
 - **initial**: sited before the initial statement
 - **final**: sited after the final statement
 - **intermediate**: sited at various internal program locations

 subject to the rule:
 - every loop iteration shall pass through the site of at least one intermediate assertion
 - a "loop invariant" is true on every iteration thru the loop
Floyd's Inductive Verification Method
(more carefully stated)

• specify initial and final assertions to capture intent
• place intermediate assertions so as to "cut" every program loop
• For each pair of assertions where there is at least one executable (assertion-free) path from the first to the second,
 • assume that the first assertion is true
 • show that for all (assertion-free, executable) paths from the first assertion to the second, that the second assertion is true
 • This establishes “partial correctness”
• Show that the program terminates
 • This establishes “total correctness”
Floyd-Hoare axiomatic proof method

assertions are preconditions and postconditions on some statement or sequence of statements

\[P \{S\} Q \]

if P is true before S is executed and S is executed then Q is true

P is the precondition;
Q is the postcondition

Also written \{P\} S \{Q\}
Floyd-Hoare axiomatic proof method

- as in Floyd's inductive assertion method, we construct a sequence of assertions, each of which can be inferred from previously proved assertions and the rules and axioms about the statements and operations of the program
- to prove $P(S)Q$, we need some axioms and rules about the programming language
Hoare axioms and proof rules

take a simple programming language that deals only with integers and has the following types of constructs:

• assignment statement
 \(x := f \)

• composition of a sequence of statements
 \(S_1, S_2 \)

• conditional (alternative statements)
 if \(B \) then \(S_1 \) else \(S_2 \)

• iteration
 while \(B \) do \(S \)
Axioms and proof rules

• axiom of assignment
 \[P \{ x:=f \} Q, \]
 where \(Q \) is obtained from \(P \) by substituting \(f \) for all occurrences of \(x \) in \(P \) (symbolic execution)

• rule of composition
 \[P \{ S_1, S_2 \} Q \Rightarrow \exists \ P_1, \ P(S_1)P_1 \land P_1(S_2)Q \]
 Using Hoare's notation, this is written as

\[
\begin{align*}
P(S_1)P_1, \ P_1(S_2)Q \\
P \{ S_1, S_2 \} \ Q
\end{align*}
\]
Proof Rules (continued)

• rule for the alternative statement
 \[P\{\text{if } B \text{ then } S_1 \text{ else } S_2 \} Q \Rightarrow P\{B \land S_1\} Q \land P\{\neg B \land S_2\} Q \]

• Hoare's notation

\[\frac{P\{B \land S_1\} Q, \ P\{\neg B \land S_2\} Q}{P\{\text{if } B \text{ then } S_1 \text{ else } S_2 \} Q} \]
Proof Rules (continued)

rule of iteration

\[P \{ \text{while } B \text{ do } S \} Q \Rightarrow P\{\neg B\}Q \land \exists I \exists P \{ B \land S \} I \land I\{ B \land S \} I \land I\{ \neg B \} Q \]

\[P\{\neg B\}Q, P \{ B \land S \} I, I\{ B \land S \} I, I\{ \neg B \} Q \]

\[P \{ \text{while } B \text{ do } S \} Q \]
weakest precondition

- in Hoare technique $P\{S\}Q$

$S1$:
read x, y
$z := y$
while $x > 0$ do
 $z := z + 1$
 $x := x - 1$
endwhile;

$S2$:
read x, y
$z := x + y$

suppose $P = \{x \geq 0\}$
$Q = \{z = x + y\}$
- then we can prove $P\{S1\}Q$ and $P\{S2\}Q$, but we can also prove $true\{S2\}Q$
- $S2$ is provable for any x, y, but $S1$ is provable only for $x \geq 0$
Dijkstra's Axiomatic Semantics

- In general, there are many correct pre- and post-conditions for a given program
- Seek the strongest post condition and the weakest precondition
 - $P \Rightarrow P'$; P is **stronger** than P' and P' is **weaker** than P
Rules of consequence

- If $P \Rightarrow P'$ and $Q' \Rightarrow Q$ and $P'\{S\}Q'$ then $P\{S\}Q$

\[
\begin{align*}
\text{P}\{S\}Q' , \ Q' \Rightarrow Q \\
\hline
\text{P}\{S\}Q \\
\text{P}\Rightarrow P' , \ P'\{S\}Q \\
\hline
\text{P}\{S\}Q \\
\text{P}\Rightarrow P' , \ P'\{S\}Q' , \ Q' \Rightarrow Q \\
\hline
\text{P}\{S\}Q
\end{align*}
\]
Formal Verification Process

• determine input, output and loop invariant assertions
• identify all paths between two assertions (with no intervening assertions) and form the corresponding verification condition or lemma
• prove each verification condition (partial correctness)
• prove that the program terminates