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Intent

• Usually, originates with requirements, refined 
through design and implementation

• formalized by specifications
• Often expressed as formulas in mathematical logic

• different types of intent
• E.g.,performance, functional behavior
• each captured with different types of formalisms
• specification of behavior/functionality

• what functions does the software compute?
• Often expressed using predicate logic



Compare behavior to intent

• can be done informally- by human eye
• Cleanroom
• Inspections

• can be done selectively
• Checking assertions during execution

• can be done formally
• With theorem proving

• Usually with automated support
• Called Proof of Correctness or Formal Verification

• Proof of “correctness” is dangerously misleading

• With static analysis for restricted classes of properties



Theorem Proving based Verification

• Behavior inferred from semantically rich 
program model

• generally requires most of the semantics of the 
programming language

• employs symbolic execution
• Intent captured by predicate calculus 
specifications (or another mathematically 
formal notation)
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Floyd Method of Inductive Assertions

• Show that given input assertions, after 
executing the program, program satisfies 
output assertions
• show that each program fragment behaves as 
intended

• use induction to prove that all fragments, 
including loops, behave as intended

• show that the program must terminate 



Mathematical Induction

• goal: prove that a given property 
holds for all elements of a set

• approach:
• show property holds for "first" element
• show that if property holds for element i, 
then it must also hold for element i + 1

• often used when direct analytic 
techniques are too hard or complex



Example: How many edges in Cn

Theorem:
let Cn = (Vn, En) be a complete, unordered 
graph on n nodes,

then |En| = n * (n-1)/2



Example: How many edges in Cn

• to show that this property holds for 
the entire set of complete graphs, 
{Ci}, by induction:

1. show the property is true for C1
2. show if the property is true for Cn ,then 

the property is true for Cn+1



Example: How many edges in Cn

show the property is true for C1:
graph has one node, 0 edges

|E1|   = n(n-1)/2 = 1(0)/2 = 0



Example: How many edges in Cn
assume true for Cn: |En| = n(n-1)/2
graph Cn+1 has one more node, but n more edges (one from 

the new node to each of the n old nodes)
Thus, want to show |En+1| = |En|+n =(n+1)(n)/2

Proof: |En+1| = |En|+n =  n(n-1)/2 + n   by substitution
= n(n-1)/2 +2n/2 by rewriting
= (n(n-1)+2n)/2 by simplification
= (n(n-1+2))/2 by simplification
= n(n+1)/2 by simplification
= (n+1)(n)/2 by rewriting



Floyd’s Method of inductive verification 
(informal description)
• Place assertions at the start, final, and  
intermediate points in the code.

• Any path is composed of sequences of 
program fragments that start with an 
assertion, are followed by some assertion 
free code, and end with an assertion

• As, C1, A2, C2, A3,…An-1, Cn-1, Af

• Show that for every executable path, if As
is assumed true and the code is executed, 
then Af is true



Pictorially: A single path

STRAIGHT-LINE CODE
Ci

Ai Ai+1

intermediate assertions

initial assertion

final assertion



Must be sure:
assuming Ai, 
then executing Code Ci,
necessarily  ⇒ Ai + 1

by forward substitution 
⇒ symbolic execution

STRAIGHT-LINE CODE
Ci

Ai Ai+1



Why does this work?
suppose P is an arbitrary path through the program
can denote it by

P = A0 C1 A1 C2 A2...Cn An

where
A0 - Initial assertion
An - Final assertion
Ai   - Intermediate assertions
Ci - Loop free, uninterrupted, 

straight-line code

If it has been shown that
∀ i, 1 ≤ i < n: AiCi ⇒ Ai+1

Then, by transitivity
A0......⇒An



Obvious problems

• How do we do this for a path?
• How do we do this for all paths?

• Infinite number of paths
• Must find a way to deal with loops



How to handle loops -- unroll them
input asssertion

n do_while predicate1
n+1 if predicate2
n+2 then code ;
n+3 else code ;
n+4        end;
n+5  output assertion ;

n 
n+1 

n+2 n+3 

n+5 

n+4

input asssertion

output asssertion

n 
n+1 

n+2 n+3 

n+5 

n+4

output asssertion

n 
n+1 n+5 

output asssertion

loop invariant



Better -- find loop invariant (AI ) A0

AI

Af

subpaths to consider:
C1: Initial assertion A0 to final assertion Af

C2: Initial assertion A0 to AI

C3: AI to AI

C4: AI to final assertion Af

Basically an inductive proof



Consider all paths through a loop A0

AI

Af

subpaths to consider:
C1: A0 to Af

C2: A0 to AI

C3: AI, false branch, AI

C4: AI, true branch, AI

C5: AI, false branch, Af

C6: AI, true branch, Af



Assertions

• specification that is intended to be true at a 
given site in the program

• Use three types of assertions:
• initial : sited before the initial statement
• final : sited after the final statement
• intermediate: sited at various internal program locations 

subject to the rule:
• every loop iteration shall pass through the site of at 

least one intermediate assertion
• a "loop invariant” is true on every iteration thru the loop 



Floyd’s Inductive Verification Method 
(more carefully stated) 

• specify initial and final assertions to capture intent 
• place intermediate assertions so as to "cut" every 

program loop
• For each pair of assertions where there is at least one 

executable (assertion-free) path from the first to the 
second, 

• assume that the first assertion is true 
• show that for all (assertion-free, executable) paths from the 

first assertion to the second, that the second assertion is true
• This establishes “partial correctness”

• Show that the program terminates
• This establishes “total correctness”



Floyd-Hoare axiomatic proof method
assertions are preconditions and postconditions
on some statement or sequence of statements

P{S}Q
if  P is true before S is executed and S is 
executed then Q is true

P is the precondition; 
Q is the postcondition

Also written {P} S {Q}



Floyd-Hoare axiomatic proof method

• as in Floyd's inductive assertion method,  we 
construct a sequence of assertions, each of 
which can be inferred from previously proved 
assertions and the rules and axioms about 
the statements and operations of the 
program

• to prove P{S}Q, we need some axioms and 
rules about the programming language



Hoare axioms and proof rules
take a simple programming language that deals 
only with integers and has  the following types 
of constructs:

• assignment statement
x:= f

• composition of a sequence of statements
S1, S2

• conditional (alternative statements)
if B then S1 else S2

• iteration    
while B do S



Axioms and proof rules
• axiom of assignment

P {x:=f} Q, 
where Q is obtained from P by substituting f for all occurences

of x in P (symbolic execution)
• rule of composition

P {S1, S2 } Q => ∃ P1 , P{S1}P1 Λ P1{S2}Q
Using Hoare's notation, this is written as

P{S1}P1, P1{S2}Q
P {S1,S2} Q



Proof Rules (continued)

• rule for the alternative statement
P{if B then S1 else S2 }Q ⇒ 

P{B ∧ S1}Q ∧ P{~B ∧ S2}Q 
• Hoare's notation

P{B ∧ S1}Q, P{~B ∧ S2}Q 
P{if B then S1 else S2 }Q

B?

S1

P

Q

S2



Proof Rules  (continued)

rule of iteration
P {while B do S }Q ⇒

P{~B}Q ∧ ∃ I ∋ P {B ∧ S} I 
∧ I{B ∧ S } I ∧ I{~B }Q

P{~B}Q ,P {B∧S} I , I{B ∧ S } I, I{~B }Q
P {while B do S }Q

B?

S

P

I

Q



weakest precondition
• in Hoare technique P{S}Q

suppose P = {x≥0}
Q = {z = x+y}

• then we can prove P{S1}Q and P{S2}Q, but we can also prove 
true{S2}Q

• S2 is provable for any x, y, but S1 is provable only for x≥0

S1:
read x,y;
z:= y
while x >0 do 

z:= z+1; 
x:= x-1;

endwhile;

S2:
read x,y;
z:= x+y;



Dijkstra’s Axiomatic Semantics

• In general, there are many correct pre- and 
post-conditions for a given program

• Seek the strongest post condition and the 
weakest precondition
oP ⇒ P’; P is stronger than P’ and P’ is 
weaker than P

P

Q



Rules of consequence

• If P ⇒P’ and Q’⇒Q and P’{S}Q’ then P{S}Q

P{S}Q’, Q’⇒Q
P{S}Q

P⇒P’, P’{S}Q 
P{S}Q

P⇒P’, P’{S}Q’, Q’⇒Q
P{S}Q



Formal Verification Process

• determine input, output and loop invariant 
assertions

• identify all paths between two assertions 
(with no intervening assertions) and form the 
corresponding verification condition or lemma

• prove each verification condition (partial 
correctness)

• prove that the program terminates
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