
Formal Verification

Model of system
behavior

intent

Verifier

System

compare behavior to intent
Basic Verification Strategy

results

Intent

• Usually, originates with requirements, refined
through design and implementation

• formalized by specifications
• Often expressed as formulas in mathematical logic

• different types of intent
• E.g.,performance, functional behavior
• each captured with different types of formalisms
• specification of behavior/functionality

• what functions does the software compute?
• Often expressed using predicate logic

Compare behavior to intent

• can be done informally- by human eye
• Cleanroom
• Inspections

• can be done selectively
• Checking assertions during execution

• can be done formally
• With theorem proving

• Usually with automated support
• Called Proof of Correctness or Formal Verification

• Proof of “correctness” is dangerously misleading

• With static analysis for restricted classes of properties

Theorem Proving based Verification

• Behavior inferred from semantically rich
program model

• generally requires most of the semantics of the
programming language

• employs symbolic execution
• Intent captured by predicate calculus
specifications (or another mathematically
formal notation)

Theorem-Proving based Verification Strategy

System

Model of system
behavior

intent

Theorem prover

results

inferred using
symbolic
execution

predicate logic assertions

Floyd Method of Inductive Assertions

• Show that given input assertions, after
executing the program, program satisfies
output assertions
• show that each program fragment behaves as
intended

• use induction to prove that all fragments,
including loops, behave as intended

• show that the program must terminate

Mathematical Induction

• goal: prove that a given property
holds for all elements of a set

• approach:
• show property holds for "first" element
• show that if property holds for element i,
then it must also hold for element i + 1

• often used when direct analytic
techniques are too hard or complex

Example: How many edges in Cn

Theorem:
let Cn = (Vn, En) be a complete, unordered
graph on n nodes,

then |En| = n * (n-1)/2

Example: How many edges in Cn

• to show that this property holds for
the entire set of complete graphs,
{Ci}, by induction:

1. show the property is true for C1
2. show if the property is true for Cn ,then

the property is true for Cn+1

Example: How many edges in Cn

show the property is true for C1:
graph has one node, 0 edges

|E1| = n(n-1)/2 = 1(0)/2 = 0

Example: How many edges in Cn
assume true for Cn: |En| = n(n-1)/2
graph Cn+1 has one more node, but n more edges (one from

the new node to each of the n old nodes)
Thus, want to show |En+1| = |En|+n =(n+1)(n)/2

Proof: |En+1| = |En|+n = n(n-1)/2 + n by substitution
= n(n-1)/2 +2n/2 by rewriting
= (n(n-1)+2n)/2 by simplification
= (n(n-1+2))/2 by simplification
= n(n+1)/2 by simplification
= (n+1)(n)/2 by rewriting

Floyd’s Method of inductive verification
(informal description)
• Place assertions at the start, final, and
intermediate points in the code.

• Any path is composed of sequences of
program fragments that start with an
assertion, are followed by some assertion
free code, and end with an assertion

• As, C1, A2, C2, A3,…An-1, Cn-1, Af

• Show that for every executable path, if As
is assumed true and the code is executed,
then Af is true

Pictorially: A single path

STRAIGHT-LINE CODE
Ci

Ai Ai+1

intermediate assertions

initial assertion

final assertion

Must be sure:
assuming Ai,
then executing Code Ci,
necessarily ⇒ Ai + 1

by forward substitution
⇒ symbolic execution

STRAIGHT-LINE CODE
Ci

Ai Ai+1

Why does this work?
suppose P is an arbitrary path through the program
can denote it by

P = A0 C1 A1 C2 A2...Cn An

where
A0 - Initial assertion
An - Final assertion
Ai - Intermediate assertions
Ci - Loop free, uninterrupted,

straight-line code

If it has been shown that
∀ i, 1 ≤ i < n: AiCi ⇒ Ai+1

Then, by transitivity
A0......⇒An

Obvious problems

• How do we do this for a path?
• How do we do this for all paths?

• Infinite number of paths
• Must find a way to deal with loops

How to handle loops -- unroll them
input asssertion

n do_while predicate1
n+1 if predicate2
n+2 then code ;
n+3 else code ;
n+4 end;
n+5 output assertion ;

n
n+1

n+2 n+3

n+5

n+4

input asssertion

output asssertion

n
n+1

n+2 n+3

n+5

n+4

output asssertion

n
n+1 n+5

output asssertion

loop invariant

Better -- find loop invariant (AI) A0

AI

Af

subpaths to consider:
C1: Initial assertion A0 to final assertion Af

C2: Initial assertion A0 to AI

C3: AI to AI

C4: AI to final assertion Af

Basically an inductive proof

Consider all paths through a loop A0

AI

Af

subpaths to consider:
C1: A0 to Af

C2: A0 to AI

C3: AI, false branch, AI

C4: AI, true branch, AI

C5: AI, false branch, Af

C6: AI, true branch, Af

Assertions

• specification that is intended to be true at a
given site in the program

• Use three types of assertions:
• initial : sited before the initial statement
• final : sited after the final statement
• intermediate: sited at various internal program locations

subject to the rule:
• every loop iteration shall pass through the site of at

least one intermediate assertion
• a "loop invariant” is true on every iteration thru the loop

Floyd’s Inductive Verification Method
(more carefully stated)

• specify initial and final assertions to capture intent
• place intermediate assertions so as to "cut" every

program loop
• For each pair of assertions where there is at least one

executable (assertion-free) path from the first to the
second,

• assume that the first assertion is true
• show that for all (assertion-free, executable) paths from the

first assertion to the second, that the second assertion is true
• This establishes “partial correctness”

• Show that the program terminates
• This establishes “total correctness”

Floyd-Hoare axiomatic proof method
assertions are preconditions and postconditions
on some statement or sequence of statements

P{S}Q
if P is true before S is executed and S is
executed then Q is true

P is the precondition;
Q is the postcondition

Also written {P} S {Q}

Floyd-Hoare axiomatic proof method

• as in Floyd's inductive assertion method, we
construct a sequence of assertions, each of
which can be inferred from previously proved
assertions and the rules and axioms about
the statements and operations of the
program

• to prove P{S}Q, we need some axioms and
rules about the programming language

Hoare axioms and proof rules
take a simple programming language that deals
only with integers and has the following types
of constructs:

• assignment statement
x:= f

• composition of a sequence of statements
S1, S2

• conditional (alternative statements)
if B then S1 else S2

• iteration
while B do S

Axioms and proof rules
• axiom of assignment

P {x:=f} Q,
where Q is obtained from P by substituting f for all occurences

of x in P (symbolic execution)
• rule of composition

P {S1, S2 } Q => ∃ P1 , P{S1}P1 Λ P1{S2}Q
Using Hoare's notation, this is written as

P{S1}P1, P1{S2}Q
P {S1,S2} Q

Proof Rules (continued)

• rule for the alternative statement
P{if B then S1 else S2 }Q ⇒

P{B ∧ S1}Q ∧ P{~B ∧ S2}Q
• Hoare's notation

P{B ∧ S1}Q, P{~B ∧ S2}Q
P{if B then S1 else S2 }Q

B?

S1

P

Q

S2

Proof Rules (continued)

rule of iteration
P {while B do S }Q ⇒

P{~B}Q ∧ ∃ I ∋ P {B ∧ S} I
∧ I{B ∧ S } I ∧ I{~B }Q

P{~B}Q ,P {B∧S} I , I{B ∧ S } I, I{~B }Q
P {while B do S }Q

B?

S

P

I

Q

weakest precondition
• in Hoare technique P{S}Q

suppose P = {x≥0}
Q = {z = x+y}

• then we can prove P{S1}Q and P{S2}Q, but we can also prove
true{S2}Q

• S2 is provable for any x, y, but S1 is provable only for x≥0

S1:
read x,y;
z:= y
while x >0 do

z:= z+1;
x:= x-1;

endwhile;

S2:
read x,y;
z:= x+y;

Dijkstra’s Axiomatic Semantics

• In general, there are many correct pre- and
post-conditions for a given program

• Seek the strongest post condition and the
weakest precondition
oP ⇒ P’; P is stronger than P’ and P’ is
weaker than P

P

Q

Rules of consequence

• If P ⇒P’ and Q’⇒Q and P’{S}Q’ then P{S}Q

P{S}Q’, Q’⇒Q
P{S}Q

P⇒P’, P’{S}Q
P{S}Q

P⇒P’, P’{S}Q’, Q’⇒Q
P{S}Q

Formal Verification Process

• determine input, output and loop invariant
assertions

• identify all paths between two assertions
(with no intervening assertions) and form the
corresponding verification condition or lemma

• prove each verification condition (partial
correctness)

• prove that the program terminates

	Formal Verification
	Basic Verification Strategy
	Intent
	Compare behavior to intent
	Theorem Proving based Verification
	Theorem-Proving based Verification Strategy
	Floyd Method of Inductive Assertions
	Mathematical Induction
	Example: How many edges in Cn
	Example: How many edges in Cn
	Example: How many edges in Cn
	Example: How many edges in Cn
	Floyd’s Method of inductive verification (informal description)
	Pictorially: A single path
	Must be sure:
	Why does this work?
	Obvious problems
	How to handle loops -- unroll them
	Better -- find loop invariant (AI)
	Consider all paths through a loop
	Assertions
	Floyd’s Inductive Verification Method (more carefully stated)
	Floyd-Hoare axiomatic proof method
	Floyd-Hoare axiomatic proof method
	Hoare axioms and proof rules
	Axioms and proof rules
	Proof Rules (continued)
	Proof Rules (continued)
	weakest precondition
	Dijkstra’s Axiomatic Semantics
	Rules of consequence
	Formal Verification Process

