Formal Verification

Basic Verification Strategy compare behavior to intent

Intent

- Usually, originates with requirements, refined through design and implementation
- formalized by specifications
 - · Often expressed as formulas in mathematical logic
- different types of intent
 - E.g., performance, functional behavior
 - each captured with different types of formalisms
 - specification of behavior/functionality
 - what functions does the software compute?
 - Often expressed using predicate logic

Compare behavior to intent

- can be done informally- by human eye
 - Cleanroom
 - Inspections
- can be done selectively
 - Checking assertions during execution
- can be done formally
 - With theorem proving
 - Usually with automated support
 - Called Proof of Correctness or Formal Verification
 - Proof of "correctness" is dangerously misleading
 - With static analysis for restricted classes of properties

Theorem Proving based Verification

- Behavior inferred from semantically rich program model
 - generally requires most of the semantics of the programming language
 - employs symbolic execution
- Intent captured by predicate calculus specifications (or another mathematically formal notation)

Theorem-Proving based Verification Strategy

Floyd Method of Inductive Assertions

- Show that given input assertions, after executing the program, program satisfies output assertions
 - show that each program fragment behaves as intended
 - use induction to prove that all fragments, including loops, behave as intended
- show that the program must terminate

Mathematical Induction

- goal: prove that a given property holds for all elements of a set
- approach:
 - show property holds for "first" element
 - show that if property holds for element i, then it must also hold for element i + 1
- often used when direct analytic techniques are too hard or complex

Example: How many edges in C_n

Theorem:

let $C_n = (V_n, E_n)$ be a complete, unordered graph on n nodes,

then
$$|E_n| = n * (n-1)/2$$

Example: How many edges in C_n

- to show that this property holds for the entire set of complete graphs, $\{C_i\}$, by induction:
 - 1. show the property is true for C_1
 - 2. show if the property is true for \boldsymbol{C}_n ,then the property is true for \boldsymbol{C}_{n+1}

Example: How many edges in C_n show the property is true for C1: graph has one node, 0 edges

$$|\mathbf{E}_1| = \mathbf{n}(\mathbf{n}-1)/2 = \mathbf{1}(\mathbf{0})/2 = \mathbf{0}$$

Example: How many edges in C_n

assume true for C_n : $|E_n| = n(n-1)/2$

graph \mathbf{C}_{n+1} has one more node, but n more edges (one from the new node to each of the n old nodes)

Thus, want to show $|\mathbf{E}_{n+1}| = |\mathbf{E}_n| + n = (n+1)(n)/2$

Proof: $|E_{n+1}| = |E_n| + n = n(n-1)/2 + n$

= n(n-1)/2 + 2n/2

= (n(n-1)+2n)/2

= (n(n-1+2))/2

= n(n+1)/2

= (n+1)(n)/2

by substitution

by rewriting

by simplification

by simplification

by simplification

by rewriting

Floyd's Method of inductive verification (informal description)

- Place assertions at the start, final, and intermediate points in the code.
- Any path is composed of sequences of program fragments that start with an assertion, are followed by some assertion free code, and end with an assertion
 - A_s , C_1 , A_2 , C_2 , A_3 ,... A_{n-1} , C_{n-1} , A_f
- Show that for every executable path, if $A_{\rm s}$ is assumed true and the code is executed, then $A_{\rm f}$ is true

Pictorially: A single path intermediate assertions initial assertion final assertion $\mathbf{A_i}$ \mathbf{A}_{i+1}

STRAIGHT-LINE CODE

Must be sure:

assuming A_i , then executing Code C_i , necessarily \Rightarrow A_i+1

Why does this work?

suppose P is an arbitrary path through the program can denote it by

$$P = A_0 C_1 A_1 C_2 A_2...C_n A_n$$

where

- A_0 Initial assertion
- A_n Final assertion
- A_i Intermediate assertions
- C_i Loop free, uninterrupted, straight-line code

If it has been shown that

$$\forall$$
 i, $1 \leq i < n$: $A_iC_i \Rightarrow A_{i+1}$

Then, by transitivity

$$\mathsf{A}_0$$
..... $\Rightarrow \mathsf{A}_\mathsf{n}$

Obvious problems

- How do we do this for a path?
- How do we do this for all paths?
 - Infinite number of paths
 - Must find a way to deal with loops

How to handle loops -- unroll them

Better -- find loop invariant (AI)

subpaths to consider:

 $C_{1:}$ Initial assertion A_0 to final assertion A_f

 C_2 . Initial assertion A_0 to A_I

 C_{3} : A_{I} to A_{I}

 $C_{4:}$ A_{I} to final assertion A_{f}

Basically an inductive proof

Consider all paths through a loop

subpaths to consider:

 $C_{1:}$ A_0 to A_f

 $C_{2:}$ A_0 to A_I

 C_3 . A_I , false branch, A_I

 C_4 . A_I , true branch, A_I

 $C_{5:}$ A_{I} , false branch, A_{f}

 $C_{6:}$ A_{I} , true branch, A_{f}

Assertions

- specification that is intended to be true at a given site in the program
- Use three types of assertions:
 - initial: sited before the initial statement
 - final: sited after the final statement
 - intermediate: sited at various internal program locations subject to the rule:
 - every loop iteration shall pass through the site of at least one intermediate assertion
 - a "loop invariant" is true on every iteration thru the loop

Floyd's Inductive Verification Method (more carefully stated)

- specify initial and final assertions to capture intent
- place intermediate assertions so as to "cut" every program loop
- For each pair of assertions where there is at least one executable (assertion-free) path from the first to the second,
 - assume that the first assertion is true
 - show that for all (assertion-free, executable) paths from the first assertion to the second, that the second assertion is true
 - This establishes "partial correctness"
- Show that the program terminates
 - This establishes "total correctness"

Floyd-Hoare axiomatic proof method

assertions are preconditions and postconditions on some statement or sequence of statements $P\{S\}Q$

if P is true before S is executed and S is executed then Q is true

P is the precondition;

Q is the postcondition

Floyd-Hoare axiomatic proof method

- as in Floyd's inductive assertion method, we construct a sequence of assertions, each of which can be inferred from previously proved assertions and the rules and axioms about the statements and operations of the program
- to prove P{S}Q, we need some axioms and rules about the programming language

Hoare axioms and proof rules

take a simple programming language that deals only with integers and has the following types of constructs:

assignment statementx:= f

- composition of a sequence of statements
 51, 52
- conditional (alternative statements) if B then S1 else S2
- iterationwhile B do S

Axioms and proof rules

axiom of assignment

$$P \{x:=f\} Q$$

where Q is obtained from P by substituting f for all occurences of x in P (symbolic execution)

rule of composition

P
$$\{51, 52\}$$
 Q => \exists P1 , P $\{51\}$ P1 Λ P1 $\{52\}$ Q Using Hoare's notation, this is written as

Proof Rules (continued)

- rule for the alternative statement P{if B then S1 else S2 }Q \Rightarrow P{B \land S1}Q \land P{ \sim B \land S2}Q
- Hoare's notation

P{B
$$\wedge$$
 S1}Q, P{ \sim B \wedge S2}Q
P{if B then S1 else S2 }Q

Proof Rules (continued)

rule of iteration

$$P{\sim B}Q$$
, $P{B \land S}I$, $I{B \land S}I$, $I{\sim B}Q$
 $P{while B do S}Q$

weakest precondition

• in Hoare technique P{S}Q

```
S1:
read x,y;
z:= y
while x >0 do
z:= z+1;
x:= x-1;
endwhile;
```

```
suppose P = \{x \ge 0\}

Q = \{z = x+y\}
```

- then we can prove P{S1}Q and P{S2}Q, but we can also prove true{S2}Q
- 52 is provable for any x, y, but 51 is provable only for $\times \geq 0$

Dijkstra's Axiomatic Semantics

- In general, there are many correct pre- and post-conditions for a given program
- Seek the strongest post condition and the weakest precondition
 - oP \Rightarrow P'; P is stronger than P' and P' is weaker than P

Rules of consequence

• If $P \Rightarrow P'$ and $Q' \Rightarrow Q$ and $P'\{S\}Q'$ then $P\{S\}Q$

Formal Verification Process

- determine input, output and loop invariant assertions
- identify all paths between two assertions (with no intervening assertions) and form the corresponding verification condition or lemma
- prove each verification condition (partial correctness)
- prove that the program terminates