
More Verification



Reading assignment

• L. D. Fosdick and L. J. Osterweil, "Data Flow 
Analysis in Software Reliability,” ACM 
Computing Surveys, 8 (3), September 1976, 
pp. 306-330. (not required)

• K. M. Olender and L. J. Osterweil, 
"Interprocedural Static Analysis of Sequencing 
Constraints,” ACM Transactions on Software 
Engineering and Methodology, 1 (1), January 
1992, pp. 21-52. 



Floyd’s Inductive Verification Method 
• Specify initial and final assertions to capture intent 
• Place intermediate assertions so as to "cut" every 

program loop
• For each pair of assertions where there is at least one 

executable (assertion-free) path from the first to the 
second, 

• assume that the first assertion is true 
• show that for all (assertion-free, executable) paths from the 

first assertion to the second, that the second assertion is true
• This above establishes “partial correctness”
• Show that the program terminates

• This establishes “total correctness”



Wensley's Algorithm

Procedure Wensley (P: input, Q: input, E: input, Y: output)
--assume 0≤ P<Q, 0< E 
-- approximating P/Q (=Y) with error ≤ E
Declare P, Q, E, Y, A, B, D real;
A :=0.0;   B :=Q / 2.0;  D :=1.0;   Y := 0.0;
Do_While (D>=E)

If (P - A - B >= 0.0) then {Y := Y+(D / 2.0); A := A+B};
B :=B / 2.0;   D := D / 2.0;
End_do;

End Wensley;



Flow Graph
Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0
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What does Wensley's algorithm do?
• approximating P/Q (=Y) with error ≤ E
• on the kth iteration of the loop

Yk = c1·2-1+c2·2-2+ ... +ck·2-k

ci ∈ {0,1}

Ak = c1Q·2-1+c2Q·2-2+...+ck·Q2-k

ci ∈ {0,1}
= Q·Yk ≈ P 

Bk =  Q·2-k  next term

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0
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Dk =  2-k



What does Wensley's algorithm do?

• since 0≤P/Q<1, then P/Q can be estimated 
as a sum of the series          

c1·2-1 + c2·2-2 + ... + ck·2-k

ci ∈{0,1}

• Yk is the computed value of the quotient
• given YkQ = Ak shows how close the 
computed quotient is to the real quotient

• Dk is the computed error
• P-(Ak + Bk) then add 2-(k+1) to Yk+1 

(by setting ck+1= 1)



Assertions

Initial: A0: {(0≤P<Q) ∧ (0< E)}
computed quotient

computed error

Y is within the computed error D of P/Q

Final: AF: {((P/Q-E)<Y≤(P/Q))}

Intermediate:
Ai:   {(A=Q*Y)∧(B=Q*(D/2))                 

∧ (k≥0, k integer ∧ D=2-k )      
∧ ((P/Q)-D)<Y≤(P/Q)}



Summary of Four Lemmas Needed
Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0
Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

Ai

AF

A0

I.  Initial assertion to Ai

II.  Ai, false branch, Ai

III. Ai, true branch, Ai

IV. Ai, final assertion

Lemmas called verification conditions
0 ≤ k is the number of completed iterations



Lemma I: A0 to Ai
A0: Initial Assertion 

(0 ≤ P < Q) ∧ (0 < E)
Input P, Q, E
A←0;
B←Q/2;
D←1;
Y←0;

 ⇒ Ai:
A = Q * Y
B = Q * D/2
D = 2-k, k = 0
P/Q - D < Y ≤ P/Q

code

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

Ai

A0

Note, k = 0



By symbolic execution (by s. e.)

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

Ai

A0

A = 0;
B = Q/2;
D = 1;
Y = 0;



Lemma I: A0 to Ai

A0: Initial Assertion 
(0 ≤ P < Q) Λ (0 < E)

A←0;
B←Q/2;
D←1;
Y←0;

 ⇒ Ai:
A = Q * Y
B = Q * D/2
D = 2-k ,k=0
P/Q - D < Y ≤ P/Q

code

Proof: Given Input P, Q, E
1) A = 0                 (by s. e.)

= Q * 0            (rewrite)
= Q * Y            (by s. e.) 

2) B = Q/2              (by s. e.)
= Q * 1/2 (rewrite)
= Q * D/2         (by s. e.)

3) D = 1                  (by s. e.)
= 2-0

4)  0 ≤ P <Q              (given)
=> 0 ≤ P/Q <1     (divide by Q, Q>0)
=> P/Q - 1 < 0 ≤ P/Q   (rewrite) 
=> P/Q - D < Y ≤ P/Q   (by s. e.)



Lemma II: A , false branch, Ai i

Ai:
A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E

P - A - B < 0
B ← B/2
D ← D/2

⇒Ai:
A = Q * Y
B = Q * D/2
D = 2-(k+1)

P/Q - D < Y ≤ P/Q

code

D ≥ E

P-A-B  ≥ 0.0

B ← B/2.0
D ← D/2.0

Ai

F



Proof of lemma II
• Need to establish that Ai is a correct after loop 

execution, based on assumption that Ai was correct 
before loop execution

• Notation:
• A, B, D, Y are original values of variables
• B’, D’ are values after loop execution

• Symbolic execution gives:
• D ≥ E
• P - A - B < 0
• B’= B/2
• D’ = D/2

D ≥ E

P-A-B ≥0.0

B ← B/2.0
D ← D/2.0

AI



Proof of Lemma II 
A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E
P - A - B < 0
B ← B/2
D ← D/2

A = Q * Y
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y ≤ P/Q

(Symbolic execution shows 
D≥E;  P-A-B<0; B’= B/2; D’ = D/2)
Proof:
1) A = Q * Y          (given)

2) B’ = B/2             (by s. e.)
= (Q * D/2)/2   (by given)
= (Q * D’/2)     (by s. e.)

3) D’ = D/2           (by s. e.)
= 2-k/2         (by given)
= 2-k-1 (rewrite)
= 2-(k+1)              (rewrite)

code



Proof of Lemma II 
A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E
P - A - B < 0
B ← B/2
D ← D/2

A = Q * Y
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y ≤ P/Q

(Symbolic execution shows 
B’= B/2; D’=D/2; D≥E; P - A - B < 0 )

Proof (continued):

4) 
a)  P-A-B < 0        (by s. e.)          
=> P - Q * Y -Q * D/2 < 0  

(by given)
=> P/Q - Y - D/2 < 0 

(divide by Q > 0)
=> P/Q - D/2 < Y     (rewrite)
=> P/Q - D’ < Y       (by s. e.)

b)  Y≤ P/Q              (given)
=>  Y’≤ P/Q             (by s. e.)



Lemma III:  A ; True branch; Ai i

From symbolic execution we know:
A’ = A + B;  B’ = B / 2;                      
D’ = D / 2; Y’ = Y + D / 2;
P - A - B ≥ 0; D ≥ E

D ≥ E

P-A-B  ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A1

AF

Ai: A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y≤ P/Q

D ≥ E
P - A - B ≥ 0
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

⇒ Ai:
A’ = Q * Y’
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y’ ≤ P/Q



Proof Lemma III

Proof:
1)  A’ = A + B (by s.e.)

= Q*Y + Q*(D/2)  (by given) 
= Q(Y + D/2)       (rewrite)
= Q * Y’ (by s.e.)

2)  B’ = B/2           (by s.e.)
= Q * D/2/2   (by given) 
= Q * D’/2     (by s.e.)

3)  D’ = D/2            (by s.e.)
= 2(-k-1)                (by given)
= 2-(k+1) for some K 

Ai: A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y≤ P/Q

D ≥ E
P - A - B ≥ 0
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

⇒ Ai:
A’ = Q * Y’
B’ = Q * D’’/2
D’ = 2-(k+1) for some integer k
P/Q - D’’ < Y’ ≤ P/Q

From symbolic execution we know:
P - A - B ≥ 0; D ≥ E ; A’ = A + B;  
B’ = B / 2;  D’ = D / 2; Y’ = Y + D / 2



Proof Lemma III

Proof (continued):
4)
a) P - A - B ≥ 0              (by s.e. ) 
⇒ P - Q *Y - Q * (D/2) ≥ 0 (given) 
⇒ P/Q - D/2 ≥Y               (rewrite) 
⇒ P/Q - D/2 ≥ Y’ - D/2     (by s.e.)
⇒ P/Q ≥ Y’ (rewrite)

b) P/Q - D < Y                  (given) 
⇒ P/Q - D < Y’ - D/2         (by s.e.) 
⇒ P/Q - D/2 < Y’ (rewrite)
⇒ P/Q - D’ < Y’ (by s.e.)

Ai: A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y≤ P/Q

D ≥ E
P - A - B ≥ 0
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

⇒ Ai:
A’ = Q * Y’
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y’ ≤ P/Q

From symbolic execution we know:
A’ = A + B;  B’ = B / 2;                              
D’ = D / 2; Y’ = Y + D / 2;
P - A - B ≥ 0; D ≥ E



Lemma IV Ai,AF

• Ai, false, AF

D ≥ E

P-A-B < 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A i

AF



Lemma IV

Ai: (A=Q*Y)∧(B=Q*(D/2))                   
∧ (k≥0, k integer ∧ D=2-k )      

∧ ((P/Q)-D)<Y≤(P/Q)
D < E   ] code
⇒ AF: ((P/Q-E)<Y≤(P/Q))

Proof:
((P/Q)-D)<Y≤(P/Q) and (D < E)        (given and s.e.)
⇒ ((P/Q)-E)<((P/Q)-D)<Y≤(P/Q) (rewrite)
⇒ ((P/Q-E)<Y≤(P/Q)) (rewrite)



This is only partial correctness

• Must also prove termination
• In general, can not prove termination
• For most programs, can usually do it
by showing that each loop must terminate

• For our example:
given that (E>0) 
observe that D decreases 

on each iteration and 
E does not change

Thus, eventually D<E 
and the loop terminates

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A1

A0

AF



Social Processes and Proofs 
of Theorems and Programs

• by Richard DeMillo, Richard Lipton, and Alan 
Perlis -CACM May 1979 

• controversial paper
• changed funding program in U.S
• almost halted verification research

• verification community was guilty of 
overselling their product

• some say that the paper went overboard in 
refuting the claims of the verification 
community



What was the motivation?

• verification community hyperbole was 
negatively affecting other research
• language design

• e.g. Euclid did not include exception handling 
because there would not be any run time errors

• Testing & Analysis
• any method that provides partial information 
was rejected as unnecessary

• symbolic execution
• testing



On the other hand

• Verification had a very positive impact on 
software engineering
• major argument for structured programming

• Djkstra's "goto's considered harmful" letter
• one-in one-out structures easier to reason 
about

• major impetus for abstract data types
• centralized all changes to data structures
• input/output assertions for all operations



Mathematics as a "social process"

• Belief in a proof is a social process
• Informally describe proof
• Distribute an informal write-up to colleagues
• Formal write-up is refereed
• Accepted paper gets read by wider audience
• Proof/Theorem is used 
• Increases confidence 

• Despite this, mathematical proofs are often 
wrong



Formal verification process 

• Proofs of programs are not interesting and 
therefore will not go thru this social process

• Automatic verification is not feasible for 
most programs
• Search space is too large
• Need additional axioms, which will not be 
"socially" accepted



Specification Problem

• real programs are not captured by simple 
mathematical algorithms
• error processing issues
• user interface issues

• resulting specifications are
• large
• mathematically unappealing
• probably not complete
• hard to capture intent



Specification Problem

• specification & program are not independent 
representations
• proof not 'mathematically' sound

• very labor intensive
• loop invariants - usually manual
• input and output assertions - manual 
• verification conditions - can be automated



Software Tools Can Help

• Proof Checkers:
• Scrutinize the steps of a proof and determine if 
they are sound

• Identify the rule(s) of inference, axiom(s), etc. 
needed to justify each step

• How to know if the proof checker is right (verify 
it?  with what? .....)



Software Tools Can Help

• Verification Assistants
• Facilitate precise expression of assertions
• Accept rules of inference
• Accept axioms
• Construct statements of needed lemmas
• Check proofs
• Assist in construction of proofs (theorem provers)



Human/computer collaboration

• most successful  -- human/computer 
collaboration

• human architects the proof
• computer attempts the proof (generally by 
exhaustive search of space of possible axioms 
and inferences at each step)

• human intervention after computer has tried 
for a while



Verification Successes

• Model Checking
• IEEE future bus
• ISDN User Part Protocol
• HDLC (data link controller)

• Theorem Proving
• SRT division algorithm
• Motorola 68020 (compiler code generation)
• AMD5K86 (floating point division)



Is Proof More Cost-Effective than Testing?

• TSE, August 2000
• King, Hammond, Chapman, and Pryor
• Praxis Critical Systems
• Case Study

• Ship Helocopter Operating Limits Information 
Systems (SHOLIS)

• Safety critical system
• Must conform to UK DoD safety critical 
standards



Software System

• Written in a subset of Ada (called SPARK)
• Annotations for describing pre, post, assert, 
and return assertions

• Restrictive programming style
• No user-defined exceptions, aliasing (?), go 
to’s,functions with side-effects, recursion, 
generics, tasks  



Development process

• Requirements written in English, not s/w 
related

• Software Requirements Spec (SRS) written in 
Z and English
• 300 pages

• Software Design Spec (SDS) written in Z, 
English and some SPARK
• Added implementation details
• 200 pages ?

• Code written in SPARK



Code annotations

• Assertions
• Pre, post, assert, return

• Additional info
• Global, derives, own, and inherit
• Extends Ada typing
• Checked by Spark tools

• Z used to define annotations



Code

• 133 KLOCS
• 13K declarations
• 14K executable stmts
• 54K annotations
• 20K SPARK proof annotations
• 32K blank or comments lines



Z proofs at the SRS and SDS level

• Proof by rigorous arguments with some 
automated assistance

• 150 Proofs, about 500 pages
• Add and proved safety properties



Code proofs

• Automated 
• Examiner--creates the verification conditions

• 9000 verification conditions
• Simplifier

• discharged 76% of the verification conditions
• Proof Checker

• discharged most of the remaining 24%
• Some discharged by informal justification

• Proved all loops terminiated



Fault detection 
Validation 
phase

% faults 
found

% Effort

Unit test 15.75 25

Integration 1.25 1

Code proof 5.25 4.5

System test 21.5 9.5

Acceptance 1.25 1.5

Other 8 32

Specs 3.25 5

Z proof 16 2.5

HL design 1.5 2

LL design 26.25 17



Overall

• 19 person year effort
• Lessons learned

• Limits to formality
• Top level proofs too large

• Only did important safety properties
• Low level proofs interact with outside devices
• Target compiler ran under different assumptions 
than the SPARK compiler

• E.g., memory management and floating pt.
• Claim: Using proofs led to a simpler system design



Observations about Formal Verification

• Most proofs are simple but some proofs are long, 
tedious & hard

• assertions are hard to get right
• invariants are difficult to get right  

• need to support overall proof strategy
• proofs themselves often require deep program 
insight
• Often require axioms about the domain 



Deeper Issues
• unsuccessful proof attempt ⇒ ???

• incorrect software
• incorrect assertions
• incorrect placement of assertions
• inept prover
• any combination (or all) of the above

although failed proofs often indicate which of the above is likely 
to be the problem (especially to an astute prover)



Deeper Issues

• undecidability of predicate calculus -- no way 
to be sure when you have a false theorem
• there is no sure way to know when you should quit 
trying to prove a theorem (and change something)

• proofs are generally much longer than the 
software being verified
• suggests that errors in the proof are more likely 
than errors in the software being verified



Current Status:

• have verified some non-trivial programs or 
important parts of programs 
• e.g., protocol verification, SHOLIS

• improved theorem provers
• improved specification languages
• verification and testing/analysis research now 
viewed more as a continuum

testing      finite state verification      verification  



Current Status

• Software systems are becoming
• More complex
• Distributed

• need:
• Good people that are well-trained
• Techniques that good people can use

• Research trends
• Finite state verification for well-trained practitioners 
• Finite state verification combined with theorem proving 

based verification
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