More Verification

Reading assignment

- L. D. Fosdick and L. J. Osterweil, "Data Flow Analysis in Software Reliability," ACM Computing Surveys, 8 (3), September 1976, pp. 306-330. (not required)
- K. M. Olender and L. J. Osterweil, "Interprocedural Static Analysis of Sequencing Constraints," ACM Transactions on Software Engineering and Methodology, 1 (1), January 1992, pp. 21-52.

Floyd's Inductive Verification Method

- Specify initial and final assertions to capture intent
- Place intermediate assertions so as to "cut" every program loop
- For each pair of assertions where there is at least one executable (assertion-free) path from the first to the second,
 - assume that the first assertion is true
 - show that for all (assertion-free, executable) paths from the first assertion to the second, that the second assertion is true
- This above establishes "partial correctness"
- Show that the program terminates
 - This establishes "total correctness"

Wensley's Algorithm

```
Procedure Wensley (P: input, Q: input, E: input, Y: output)
--assume 0≤ P<Q, 0< E
-- approximating P/Q (=Y) with error \leq E
Declare P, Q, E, Y, A, B, D real;
A := 0.0; B := Q / 2.0; D := 1.0; Y := 0.0;
Do_While (D>=E)
   If (P - A - B \ge 0.0) then \{Y := Y + (D / 2.0); A := A + B\};
   B := B / 2.0; D := D / 2.0;
   End_do;
End Wensley;
```


What does Wensley's algorithm do?

- approximating P/Q (=Y) with error ≤ E
- on the kth iteration of the loop

$$\begin{array}{l} \mathsf{A}_{\mathsf{k}} &= \mathsf{c}_{1} \mathsf{Q} \cdot 2^{-1} + \mathsf{c}_{2} \mathsf{Q} \cdot 2^{-2} + \ldots + \mathsf{c}_{\mathsf{k}} \cdot \mathsf{Q} 2^{-\mathsf{k}} \\ & \mathsf{c}_{\mathsf{i}} \in \{0, 1\} \\ &= \mathsf{Q} \cdot \mathsf{Y}_{\mathsf{k}} \approx \mathsf{P} \end{array}$$

$$B_k = Q \cdot 2^{-k}$$
 next term

 $D_{k} = 2^{-k}$

What does Wensley's algorithm do?

- since $0 \le P/Q \le 1$, then P/Q can be estimated as a sum of the series $c_1 \cdot 2^{-1} + c_2 \cdot 2^{-2} + \ldots + c_k \cdot 2^{-k} = c_i \in \{0, 1\}$
 - ${\, \bullet \,} Y_k$ is the computed value of the quotient
 - given $Y_kQ = A_k$ shows how close the computed quotient is to the real quotient
 - D_k is the computed error
 - P-(A_k + B_k) then add 2^{-(k+1)} to Y_{k+1} (by setting c_{k+1} = 1)

Initial: $A_0: \{(0 \le P \le Q) \land (0 \le E)\}$

computed quotient

computed error

Intermediate: A_i: {(A=Q*Y)∧(B=Q*(D/2)) ∧ (k≥0, k integer ∧ D=2^{-k}) ∧ ((P/Q)-D)<Y≤(P/Q)} Y is within the computed error D of P/Q

Summary of Four Lemmas Needed

Lemmas called verification conditions $0 \le k$ is the number of completed iterations

By symbolic execution (by s. e.)

 $\mathbf{A}=\mathbf{0};$ B = Q/2;**D** = 1; Y = 0;

Lemma I: A ₀ to A _i		
	Proof: Given Input P, Q, E	
A ₀ : Initial Assertion		(by s. e.)
(0 ≤ P < Q) ∧ (0 < E)	= Q * 0 = Q * Y	(rewrite) (by s. e.)
A←0;	2) $B = Q/2$	(by s. e.)
code	= Q * 1/2 = Q * D/2	(rewrite) (by s. e.)
$\Rightarrow A_i:$ $A = Q * Y$	3) D = 1 = 2 ⁻⁰	(by s. e.)
A = Q + Y B = Q + D/2 $D = 2^{-k} , k=0$ $P/Q - D < Y \le P/Q$	4) $0 \le P < Q$ => $0 \le P/Q < 1$ (c => $P/Q - 1 < 0 \le P/$ => $P/Q - D < Y \le P/$	livide by Q, Q>0) Q (rewrite)

Lemma II: A_i, false branch, A_i

Proof of lemma II

- Need to establish that A_i is a correct after loop execution, based on assumption that A_i was correct before loop execution
- Notation:
 - A, B, D, Y are original values of variables
 - B', D' are values after loop execution
- Symbolic execution gives:
 - D ≥ E
 - P A B < 0
 - B'= B/2
 - D' = D/2

Proof of Lemma II

A = Q * Y B = Q * D/2 $D = 2^{-k} \text{ for some integer } k$ $P/Q - D < Y \leq P/Q$

$$D \ge E$$

P - A - B < 0
B \leftarrow B/2
D \leftarrow D/2

A = Q * Y B' = Q * D'/2 D' = $2^{-(k+1)}$ for some integer k P/Q - D' < Y \leq P/Q (Symbolic execution shows $D \ge E$; P-A-B<O; B'= B/2; D' = D/2) **Proof**: 1) A = Q * Y(given) 2) B' = B/2(by s. e.) = (Q * D/2)/2 (by given) = (Q * D'/2) (by s. e.) 3) D' = D/2 (by s. e.) $= 2^{-k}/2$ (by given) $= 2^{-k-1}$ (rewrite) $= 2^{-(k+1)}$ (rewrite)

Proof of Lemma II $\mathbf{A} = \mathbf{Q} \star \mathbf{Y}$ B = Q * D/2 $D = 2^{-k}$ for some integer k $P/Q - D < Y \leq P/Q$ D ≥ E P - A - B < O $B \leftarrow B/2$ $D \leftarrow D/2$ $\mathbf{A} = \mathbf{Q} \star \mathbf{Y}$ B' = Q * D'/2 $D' = 2^{-(k+1)}$ for some integer k P/Q - D' < Y ≤ P/Q

(Symbolic execution shows B'= B/2; D'=D/2; D≥E; P - A - B < 0)

Proof (continued):

- -

4)
a)
$$P-A-B < 0$$
 (by s. e.)
=> $P - Q * Y - Q * D/2 < 0$
(by given)
=> $P/Q - Y - D/2 < 0$
(divide by $Q > 0$)
=> $P/Q - D/2 < Y$ (rewrite)
=> $P/Q - D' < Y$ (by s. e.)
b) $Y \le P/Q$ (given)
=> $Y' \le P/Q$ (by s. e.)

 $\Rightarrow A_i:$ A' = Q * Y' B' = Q * D'/2 D' = 2^{-(k+1)} for some integer k P/Q - D' < Y' \leq P/Q From symbolic execution we know:

A' = A + B; B' = B / 2; D' = D / 2; Y' = Y + D / 2; $P - A - B \ge 0; D \ge E$

Proof Lemma III

Ai: A = Q * Y B = Q * D/2 $D = 2^{-k}$ for some integer k $P/Q - D < Y \le P/Q$

 $D \ge E$ $P - A - B \ge 0$ $Y \leftarrow Y + (D/2.0)$ $A \leftarrow A + B$ $B \leftarrow B/2$ $D \leftarrow D/2$

 $\Rightarrow A_i:$ A' = Q * Y' B' = Q * D''/2 $D' = 2^{-(k+1)} \text{ for some integer } k$ $P/Q - D'' < Y' \leq P/Q$

From symbolic execution we know: $P - A - B \ge 0$; $D \ge E$; A' = A + B; B' = B / 2; D' = D / 2; Y' = Y + D / 2

Proof: 1) A' = A + B (by s.e.) = $Q^*Y + Q^*(D/2)$ (by given) = Q(Y + D/2) (rewrite) = Q * Y' (by s.e.) 2) B' = B/2 (by s.e.) = Q * D/2/2 (by given) = Q * D'/2 (by s.e.) 3) D' = D/2 (by s.e.) $= 2^{(-k-1)}$ (by given) = $2^{-(k+1)}$ for some K

Proof Lemma III

Ai: A = Q * Y B = Q * D/2 D = 2^{-k} for some integer k P/Q - D < Y \leq P/Q

 $D \ge E$ $P - A - B \ge 0$ $Y \leftarrow Y + (D/2.0)$ $A \leftarrow A + B$ $B \leftarrow B/2$ $D \leftarrow D/2$

 $\Rightarrow A_i:$ A' = Q * Y' B' = Q * D'/2 $D' = 2^{-(k+1)} \text{ for some integer } k$ $P/Q - D' < Y' \leq P/Q$

From symbolic execution we know: A' = A + B; B' = B / 2; D' = D / 2; Y' = Y + D / 2; P - A - B ≥ 0; D ≥ E

Proof (continued):

Δ

a)
$$P - A - B \ge 0$$
 (by s.e.)
 $\Rightarrow P - Q *Y - Q * (D/2) \ge 0$ (given)
 $\Rightarrow P/Q - D/2 \ge Y$ (rewrite)
 $\Rightarrow P/Q - D/2 \ge Y' - D/2$ (by s.e.)
 $\Rightarrow P/Q \ge Y'$ (rewrite)

b)
$$P/Q - D < Y$$
 (given)
 $\Rightarrow P/Q - D < Y' - D/2$ (by s.e.)
 $\Rightarrow P/Q - D/2 < Y'$ (rewrite)
 $\Rightarrow P/Q - D' < Y'$ (by s.e.)

Lemma IV A_i, A_F

• A_i, false, A_F

$$\begin{array}{l} A_i: (A=Q^*Y) \land (B=Q^*(D/2)) \\ \land (k \ge 0, \ k \ integer \ \land D=2^{-k} \) \\ \land ((P/Q)-D) < Y \le (P/Q) \end{array}$$
$$D < E \] \ code \\ \Rightarrow \ A_F: ((P/Q-E) < Y \le (P/Q)) \end{array}$$

Proof: ((P/Q)-D) $\langle Y \leq (P/Q) \text{ and } (D < E)$ $\Rightarrow ((P/Q)-E) \langle ((P/Q)-D) \langle Y \leq (P/Q)$ $\Rightarrow ((P/Q-E) \langle Y \leq (P/Q))$

(given and s.e.) (rewrite) (rewrite)

This is only partial correctness

- Must also prove termination
 - In general, can not prove termination
 - For most programs, can usually do it by showing that each loop must terminate

 For our example: given that (E>0) observe that D decreases on each iteration and E does not change Thus, eventually D<E and the loop terminates

Social Processes and Proofs of Theorems and Programs

- by Richard DeMillo, Richard Lipton, and Alan Perlis -CACM May 1979
- controversial paper
 - changed funding program in U.S
 - almost halted verification research
- verification community was guilty of overselling their product
- some say that the paper went overboard in refuting the claims of the verification community

What was the motivation?

- verification community hyperbole was negatively affecting other research
 - language design
 - e.g. Euclid did not include exception handling because there would not be any run time errors
 - Testing & Analysis
 - any method that provides partial information was rejected as unnecessary
 - symbolic execution
 - testing

On the other hand

- Verification had a very positive impact on software engineering
 - major argument for structured programming
 - Djkstra's "goto's considered harmful" letter
 - one-in one-out structures easier to reason about
 - major impetus for abstract data types
 - centralized all changes to data structures
 - input/output assertions for all operations

Mathematics as a "social process"

- Belief in a proof is a social process
 - Informally describe proof
 - Distribute an informal write-up to colleagues
 - Formal write-up is refereed
 - Accepted paper gets read by wider audience
 - Proof/Theorem is used
 - Increases confidence

 Despite this, mathematical proofs are often wrong

Formal verification process

- Proofs of programs are not interesting and therefore will not go thru this social process
- Automatic verification is not feasible for most programs
 - Search space is too large
 - Need additional axioms, which will not be "socially" accepted

Specification Problem

- real programs are not captured by simple mathematical algorithms
 - error processing issues
 - user interface issues
- resulting specifications are
 - large
 - mathematically unappealing
 - probably not complete
 - hard to capture intent

Specification Problem

- specification & program are not independent representations
 - proof not 'mathematically' sound
- very labor intensive
 - loop invariants usually manual
 - input and output assertions manual
 - verification conditions can be automated

Software Tools Can Help

- Proof Checkers:
 - Scrutinize the steps of a proof and determine if they are sound
 - Identify the rule(s) of inference, axiom(s), etc.
 needed to justify each step
 - How to know if the proof checker is right (verify it? with what?)

Software Tools Can Help

- Verification Assistants
 - Facilitate precise expression of assertions
 - Accept rules of inference
 - Accept axioms
 - Construct statements of needed lemmas
 - Check proofs
 - Assist in construction of proofs (theorem provers)

Human/computer collaboration

- most successful -- human/computer collaboration
 - human architects the proof
 - computer attempts the proof (generally by exhaustive search of space of possible axioms and inferences at each step)
 - human intervention after computer has tried for a while

Verification Successes

- Model Checking
 - IEEE future bus
 - ISDN User Part Protocol
 - HDLC (data link controller)
- Theorem Proving
 - SRT division algorithm
 - Motorola 68020 (compiler code generation)
 - AMD5K86 (floating point division)

Is Proof More Cost-Effective than Testing?

- TSE, August 2000
- King, Hammond, Chapman, and Pryor
- Praxis Critical Systems
- Case Study
 - Ship Helocopter Operating Limits Information Systems (SHOLIS)
 - Safety critical system
 - Must conform to UK DoD safety critical standards

Software System

- Written in a subset of Ada (called SPARK)
- Annotations for describing pre, post, assert, and return assertions
- Restrictive programming style
 - No user-defined exceptions, aliasing (?), go to's, functions with side-effects, recursion, generics, tasks

Development process

- Requirements written in English, not s/w related
- Software Requirements Spec (SRS) written in Z and English
 - 300 pages
- Software Design Spec (SDS) written in Z, English and some SPARK
 - Added implementation details
 - 200 pages ?
- Code written in SPARK

Code annotations

- Assertions
 - Pre, post, assert, return
- Additional info
 - Global, derives, own, and inherit
 - Extends Ada typing
 - Checked by Spark tools
- Z used to define annotations

• 133 KLOCS

- 13K declarations
- 14K executable stmts
- 54K annotations
- 20K SPARK proof annotations
- 32K blank or comments lines

Z proofs at the SRS and SDS level

- Proof by rigorous arguments with some automated assistance
- 150 Proofs, about 500 pages
- Add and proved safety properties

<u>Code proofs</u>

- Automated
- Examiner -- creates the verification conditions
 - 9000 verification conditions
- Simplifier
 - discharged 76% of the verification conditions
- Proof Checker
 - discharged most of the remaining 24%
 - Some discharged by informal justification
- Proved all loops terminiated

Fault detection

Validation phase	% faults found	% Effort
Specs	3.25	5
Z proof	16	2.5
HL design	1.5	2
LL design	26.25	17
Unit test	15.75	25
Integration	1.25	1
Code proof	5.25	4.5
System test	21.5	9.5
Acceptance	1.25	1.5
Other	8	32

<u>Overall</u>

- 19 person year effort
- Lessons learned
 - Limits to formality
 - Top level proofs too large
 - Only did important safety properties
 - Low level proofs interact with outside devices
 - Target compiler ran under different assumptions than the SPARK compiler
 - E.g., memory management and floating pt.
 - Claim: Using proofs led to a simpler system design

Observations about Formal Verification

- Most proofs are simple but some proofs are long, tedious & hard
- assertions are hard to get right
- invariants are difficult to get right
 - need to support overall proof strategy
- proofs themselves often require deep program insight
 - Often require axioms about the domain

Deeper Issues

- unsuccessful proof attempt \Rightarrow ???
 - incorrect software
 - incorrect assertions
 - incorrect placement of assertions
 - inept prover
 - any combination (or all) of the above

although failed proofs often indicate which of the above is likely to be the problem (especially to an astute prover)

Deeper Issues

- undecidability of predicate calculus -- no way to be sure when you have a false theorem
 - there is no sure way to know when you should quit trying to prove a theorem (and change something)
- proofs are generally much longer than the software being verified
 - suggests that errors in the proof are more likely than errors in the software being verified

Current Status:

- have verified some non-trivial programs or important parts of programs
 - e.g., protocol verification, SHOLIS
- improved theorem provers
- improved specification languages
- verification and testing/analysis research now viewed more as a continuum

Current Status

- Software systems are becoming
 - More complex
 - Distributed
- need:
 - Good people that are well-trained
 - Techniques that good people can use
- Research trends
 - Finite state verification for well-trained practitioners
 - Finite state verification combined with theorem proving based verification