More Verification

Reading assignment

- L. D. Fosdick and L. J. Osterweil, "Data Flow Analysis in Software Reliability," ACM Computing Surveys, 8 (3), September 1976, pp. 306-330. (not required)
- K. M. Olender and L. J. Osterweil, "Interprocedural Static Analysis of Sequencing Constraints," ACM Transactions on Software Engineering and Methodology, 1 (1), January 1992, pp. 21-52.

Floyd's Inductive Verification Method

- Specify initial and final assertions to capture intent
- Place intermediate assertions so as to "cut" every program loop
- For each pair of assertions where there is at least one executable (assertion-free) path from the first to the second,
- assume that the first assertion is true
- show that for all (assertion-free, executable) paths from the first assertion to the second, that the second assertion is true
- This above establishes "partial correctness"
- Show that the program terminates
- This establishes "total correctness"

Wensley's Algorithm

Procedure Wensley (P : input, Q : input, E : input, Y : output)
--assume $0 \leq P<Q$, $0<E$
-- approximating $P / Q(=Y)$ with error $\leq E$
Declare P, Q, E, Y, A, B, D real;
$A:=0.0 ; \quad B:=Q / 2.0 ; \quad D:=1.0 ; \quad Y:=0.0 ;$
Do_While ($D>=E$)
If $(P-A-B>=0.0)$ then $\{Y:=Y+(D / 2.0) ; A:=A+B\}$;
$B:=B / 2.0 ; D:=D / 2.0 ;$
End_do:
End Wensley:

Flow Graph

What does Wensley's algorithm do?

- approximating $P / Q(=Y)$ with error $\leq E$
- on the kith iteration of the loop

$$
\begin{aligned}
y_{k}= & c_{1} \cdot 2^{-1}+c_{2} \cdot 2^{-2}+\ldots+c_{k} \cdot 2^{-k} \\
& c_{i} \in\{0,1\}
\end{aligned}
$$

What does Wensley's algorithm do?

- since $0 \leq P / Q<1$, then P / Q can be estimated as a sum of the series

$$
\begin{aligned}
& c_{1} \cdot 2^{-1}+c_{2} \cdot 2^{-2}+\ldots+c_{k} \cdot 2^{-k} \\
& c_{i} \in\{0,1\}
\end{aligned}
$$

- Y_{k} is the computed value of the quotient
- given $Y_{k} Q=A_{k}$ shows how close the computed quotient is to the real quotient
- D_{k} is the computed error
- $P-\left(A_{k}+B_{k}\right)$ then add 2-(k+1) to Y_{k+1}
(by setting $c_{k+1}=1$)

Assertions

Initial: $\quad A_{0}:\{(0 \leq P<Q) \wedge(0<E)\}$

computed quotient

Final: $\quad A_{F}:\{((P / Q-E)<Y \leq(P / Q))\}$

computed error

Intermediate:

$$
\begin{aligned}
A_{i}: & \left\{\left(A=Q^{\star} Y\right) \wedge\left(B=Q^{\star}(D / 2)\right)\right. \\
& \wedge\left(k \geq 0, k \text { integer } \wedge D=2^{-k}\right) \\
& \wedge((P / Q)-D)<Y \leq(P / Q)\}
\end{aligned}
$$

Y is within the computed error D of P / Q

Summary of Four Lemmas Needed

I. Initial assertion to A_{i}
II. $\quad A_{i}$, false branch, A_{i}
III. A_{i}, true branch, A_{i}
IV. $\quad A_{i}$, final assertion

Lemmas called verification conditions
$0 \leq k$ is the number of completed iterations

Lemma I: \boldsymbol{A}_{0} to \boldsymbol{A}_{i}

A_{0} : Initial Assertion

$$
\begin{aligned}
& (0 \leq P<Q) \wedge(0<E) \\
& \quad \text { Input } P, Q, E \\
& A \leftarrow 0 ; \\
& B \leftarrow Q / 2 ; \\
& D \leftarrow 1 ; \\
& \\
& Y \leftarrow 0 ; \\
& \Rightarrow A_{i}: \\
& A=Q * Y \\
& B=Q * D / 2 \\
& D=2^{-k}, k=0 \\
& P / Q-D<Y \leq P / Q
\end{aligned}
$$

Note, k=0

By symbolic execution (by s. e.)

Input P, Q, E

$$
\begin{aligned}
& \mathbf{A}=\mathbf{0} ; \\
& \mathbf{B}=\mathbf{Q} / \mathbf{2} \\
& \mathbf{D}=\mathbf{1} ; \\
& \mathbf{Y}=\mathbf{0} ;
\end{aligned}
$$

Lemma I: \boldsymbol{A}_{0} to $\boldsymbol{A}_{\mathrm{i}}$

A_{0} : Initial Assertion $(0 \leq P<Q) \Lambda(O<E)$ code $\left\{\begin{array}{l}A \leftarrow 0 ; \\ B \leftarrow Q / 2 ; \\ D \leftarrow 1 ; \\ y \leftarrow 0 ;\end{array}\right.$
$\Rightarrow A_{i}$:
$A=Q$ * Y
$B=Q * D / 2$
$D=2^{-k}, k=0$
$P / Q-D<Y \leq P / Q$

Proof: Given Input P, Q, E

1) $A=0$
(by s. e.)
$=Q^{*} 0$
$=Q^{*} Y$
(rewrite)
(by s.e.)
2) $\begin{aligned} B & =Q / 2 \\ & =Q^{*} 1 / 2 \\ & =Q * D / 2\end{aligned}$
(by sc.)
(rewrite)
(by s.e.)
3) $D=1$
(by s.e.)
4) $0 \leq P<Q$
$\Rightarrow 0 \leq P / Q<1 \quad$ (divide by $Q, Q>0$)
$\Rightarrow P / Q-1<0 \leq P / Q$ (rewrite)
$\Rightarrow P / Q-D<Y \leq P / Q$ (by s.e.)

Lemma II: $\boldsymbol{A}_{\underline{i}}$, false branch, $\boldsymbol{A}_{\underline{i}}$

```
A;
    A=Q*V
    B=Q*D/2
    D = 2-k for some integer k
    P/Q - D < Y \leq P/Q
    D \geqE
    P-A - B<0
    B}\leftarrowB/
    D}\leftarrowD/
A A
    A=Q * Y
    B=Q * D/2
    D=2-(k+1)
    P/Q - D < Y \leq P/Q
\[
\begin{aligned}
& A=Q^{*} Y \\
& B=Q^{*} D / 2 \\
& D=2^{-(k+1)} \\
& P / Q-D<Y \leq P / Q
\end{aligned}
\]
```


Proof of lemma II

- Need to establish that A_{i} is a correct after loop execution, based on assumption that A_{i} was correct before loop execution
- Notation:
- A, B, D, Y are original values of variables
- B^{\prime}, D^{\prime} are values after loop execution
- Symbolic execution gives:
- $D \geq E$
- $P-A-B<0$
- $B^{\prime}=B / 2$
- $D^{\prime}=D / 2$

Proof of Lemma II

$A=Q^{*} Y$
$B=Q * D / 2$
$D=2^{-k}$ for some integer k
$P / Q-D<Y \leq P / Q$
$D \geq E$
$P-A-B<0$
$B \leftarrow B / 2$
$D \leftarrow D / 2$
$A=Q^{*} Y$
$B^{\prime}=Q^{*} D^{\prime} / 2$
$D^{\prime}=2^{-(k+1)}$ for some integer k
$P / Q-D^{\prime}<Y \leq P / Q$
(Symbolic execution shows
$\left.D \geq E ; P-A-B<0 ; B^{\prime}=B / 2 ; D^{\prime}=D / 2\right)$ Proof:

1) $A=Q * Y$ (given)
2) $B^{\prime}=B / 2$
$=(Q$ * $D / 2) / 2$
(by s. e.)
(by given) (by s. e.)
3) $D^{\prime}=D / 2$
$=2-k / 2$
(by s. e.)
(by given)
$=2^{-k-1} \quad$ (rewrite)
$=2-(k+1)$

Proof of Lemma II

$A=Q^{*} Y$
$B=Q * D / 2$
$D=2^{-k}$ for some integer k
$P / Q-D<Y \leq P / Q$
$D \geq E$
$P-A-B<0$
$B \leftarrow B / 2$
$D \leftarrow D / 2$

$A=Q^{*} Y$
$B^{\prime}=Q^{*} D^{\prime} / 2$
$D^{\prime}=2^{-(k+1)}$ for some integer k

$$
\leftarrow \leftarrow \mathbb{C l}
$$

$$
P / Q-D^{\prime}<Y \leq P / Q
$$

$P / Q-D^{\prime}<Y \leq P / Q$
(Symbolic execution shows

$$
\left.B^{\prime}=B / 2 ; D^{\prime}=D / 2 ; D \geq E ; P-A-B<0\right)
$$

Proof (continued):
4)
a) $P-A-B<0$ (by s.e.)
$\Rightarrow P-Q * Y-Q * D / 2<0$
(by given)
$\Rightarrow P / Q-y-D / 2<0$
(divide by $Q>0$)
$\Rightarrow P / Q-D / 2<Y$ (rewrite)
$\Rightarrow P / Q-D^{\prime}<Y$
(by s.e.)
b) $Y \leq P / Q$
$\Rightarrow Y^{\prime} \leq P / Q$
(given)
(by sc.)

Lemma III: $A_{i}:$ True branch; A_{i}

$$
\begin{aligned}
& A i: A=Q^{*} y \\
& B=Q^{*} D / 2
\end{aligned}
$$

$D=2^{-k}$ for some integer k

$$
P / Q-D<Y \leq P / Q
$$

$$
\begin{aligned}
& D \geq E \\
& P-A-B \geq 0 \\
& Y \leftarrow Y+(D / 2.0) \\
& A \leftarrow A+B \\
& B \leftarrow B / 2 \\
& D \leftarrow D / 2
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A_{i}: \\
& A^{\prime}=Q^{*} Y^{\prime} \\
& B^{\prime}=Q^{*} D^{\prime} / 2
\end{aligned}
$$

$D^{\prime}=2^{-(k+1)}$ for some integer k

$$
P / Q-D^{\prime}<Y^{\prime} \leq P / Q
$$

From symbolic execution we know:

$$
\begin{aligned}
& A^{\prime}=A+B ; B^{\prime}=B / 2 ; \\
& D^{\prime}=D / 2 ; Y^{\prime}=Y+D / 2 ; \\
& P-A-B \geq 0 ; D \geq E
\end{aligned}
$$

Proof Lemma III

$A_{i}: A=Q^{*} y$
$B=Q^{*} D / 2$
$D=2^{-k}$ for some integer k $P / Q-D<V \leq P / Q$
$D \geq E$
$P-A-B \geq 0$
$Y \leftarrow Y+(D / 2.0)$
$A \leftarrow A+B$
$B \leftarrow B / 2$
$D \leftarrow D / 2$

$\Rightarrow \mathbf{A}_{\mathbf{i}}$:

$A^{\prime}=Q^{*} y^{\prime}$
$B^{\prime}=Q^{*} D^{\prime \prime} / 2$
$D^{\prime}=2^{-(k+1)}$ for some integer k $P / Q-D^{\prime \prime}<V^{\prime} \leq P / Q$

From symbolic execution we know:
$P-A-B \geq 0 ; D \geq E ; A^{\prime}=A+B$;
$B^{\prime}=B / 2 ; D^{\prime}=D / 2 ; y^{\prime}=Y+D / 2$

Proof:

$$
\text { 1) } \begin{array}{ll}
& A^{\prime}=A+B \\
& =Q^{*} y+Q^{*}(D / 2)
\end{array} \text { (by s.e.) } \text { (by given) } \begin{array}{ll}
=Q^{(y+D / 2)} & \text { (rewrite) } \\
=Q^{*} y^{\prime} & \text { (by s.e.) }
\end{array}
$$

$$
\text { 2) } \begin{aligned}
B^{\prime} & =B / 2 & & \text { (by s.e.) } \\
& =Q^{*} D / 2 / 2 & & \text { (by given) } \\
& =Q^{*} D^{\prime} / 2 & & \text { (by s.e.) }
\end{aligned}
$$

3) $D^{\prime}=D / 2$
(by s.e.)
$=2^{(-k-1)}$
(by given)
$=2^{-(k+1)}$ for some K

Proof Lemma III

Ai: $A=Q * Y$
$B=Q^{*} D / 2$
$D=2^{-k}$ for some integer k $P / Q-D<Y \leq P / Q$
$D \geq E$
$P-A-B \geq 0$
$Y \leftarrow Y+(D / 2.0)$
$A \leftarrow A+B$
$B \leftarrow B / 2$
$D \leftarrow D / 2$
$\Rightarrow \mathbf{A}_{\mathrm{i}}$:
$A^{\prime}=Q^{*} Y^{\prime}$
$B^{\prime}=Q^{*} D^{\prime} / 2$
$D^{\prime}=2^{-(k+1)}$ for some integer k $P / Q-D^{\prime}<Y^{\prime} \leq P / Q$

From symbolic execution we know:

$$
\begin{aligned}
& A^{\prime}=A+B ; B^{\prime}=B / 2 ; \\
& D^{\prime}=D / 2 ; y^{\prime}=Y+D / 2 ; \\
& P-A-B \geq 0 ; D \geq E
\end{aligned}
$$

Proof (continued):
4)
a) $P-A-B \geq 0$
(by s.e.)
$\Rightarrow P-Q * Y-Q *(D / 2) \geq 0$ (given)
$\Rightarrow P / Q-D / 2 \geq Y$
$\Rightarrow P / Q-D / 2 \geq Y^{\prime}-D / 2 \quad$ (by s.e.)
$\Rightarrow P / Q \geq Y^{\prime}$
(rewrite)

$$
\begin{aligned}
& \text { b) } P / Q-D<Y \\
& \Rightarrow P / Q-D<y^{\prime}-D / 2 \\
& \Rightarrow P / Q-D / 2<y^{\prime} \\
& \Rightarrow P / Q-D^{\prime}<y^{\prime}
\end{aligned}
$$

(by s.e.)
(rewrite)
(by s.e.)

Lemma IV $\boldsymbol{A}_{\underline{i}}, \boldsymbol{A}_{\boldsymbol{F}}$

- A_{i}, false, A_{F}

Lemma IV

$$
\begin{gathered}
A_{i}:\left(A=Q^{*} Y\right) \wedge\left(B=Q^{\star}(D / 2)\right) \\
\wedge(k \geq 0, k \text { integer } \wedge D=2-k) \\
\wedge((P / Q)-D)<Y \leq(P / Q) \\
D<E \quad] \operatorname{code} \\
\left.\Rightarrow A_{F}:(P / Q-E)<Y \leq(P / Q)\right)
\end{gathered}
$$

Proof:
$((P / Q)-D)<Y_{\leq}(P / Q)$ and $(D<E)$
$\Rightarrow((P / Q)-E)<((P / Q)-D)<Y_{\leq}(P / Q)$
$\Rightarrow\left((P / Q-E)<Y_{\leq}(P / Q)\right)$
(given and s.e.)
(rewrite)
(rewrite)

This is only partial correctness

- Must also prove termination
- In general, can not prove termination
- For most programs, can usually do it by showing that each loop must terminate
- For our example: given that ($\mathrm{E}>0$) observe that D decreases on each iteration and E does not change
Thus, eventually $D<E$ and the loop terminates

Social Processes and Proofs

 of Theorems and Programs- by Richard DeMillo, Richard Lipton, and Alan Perlis -CACM May 1979
- controversial paper
- changed funding program in U.S
- almost halted verification research
- verification community was guilty of overselling their product
- some say that the paper went overboard in refuting the claims of the verification community

What was the motivation?

- verification community hyperbole was negatively affecting other research
- language design
- e.g. Euclid did not include exception handling because there would not be any run time errors
- Testing \& Analysis
- any method that provides partial information was rejected as unnecessary
- symbolic execution
- testing

On the other hand

- Verification had a very positive impact on software engineering
- major argument for structured programming
- Djkstra's "goto's considered harmful" letter
- one-in one-out structures easier to reason about
- major impetus for abstract data types
- centralized all changes to data structures
- input/output assertions for all operations

Mathematics as a "social process"

- Belief in a proof is a social process
- Informally describe proof
- Distribute an informal write-up to colleagues
- Formal write-up is refereed
- Accepted paper gets read by wider audience
- Proof/Theorem is used
- Increases confidence
- Despite this, mathematical proofs are often wrong

Formal verification process

- Proofs of programs are not interesting and therefore will not go thru this social process
- Automatic verification is not feasible for most programs
- Search space is too large
- Need additional axioms, which will not be "socially" accepted

Specification Problem

- real programs are not captured by simple mathematical algorithms
- error processing issues
- user interface issues
- resulting specifications are
- large
- mathematically unappealing
- probably not complete
- hard to capture intent

Specification Problem

- specification \& program are not independent representations
- proof not 'mathematically' sound
- very labor intensive
- loop invariants - usually manual
- input and output assertions - manual
- verification conditions - can be automated

Software Tools Can Help

- Proof Checkers:
- Scrutinize the steps of a proof and determine if they are sound
- Identify the rule(s) of inference, axiom(s), etc. needed to justify each step
- How to know if the proof checker is right (verify it? with what?)

Software Tools Can Help

- Verification Assistants
- Facilitate precise expression of assertions
- Accept rules of inference
- Accept axioms
- Construct statements of needed lemmas
- Check proofs
- Assist in construction of proofs (theorem provers)

Human/computer collaboration

- most successful -- human/computer collaboration
- human architects the proof
- computer attempts the proof (generally by exhaustive search of space of possible axioms and inferences at each step)
- human intervention after computer has tried for a while

Verification Successes

- Model Checking
- IEEE future bus
- ISDN User Part Protocol
- HDLC (data link controller)
- Theorem Proving
- SRT division algorithm
- Motorola 68020 (compiler code generation)
- AMD5K86 (floating point division)

Is Proof More Cost-Effective than Testing?

- TSE, August 2000
- King, Hammond, Chapman, and Pryor
- Praxis Critical Systems
- Case Study
- Ship Helocopter Operating Limits Information Systems (SHOLIS)
- Safety critical system
- Must conform to UK DoD safety critical standards

Software System

- Written in a subset of Ada (called SPARK)
- Annotations for describing pre, post, assert, and return assertions
- Restrictive programming style
- No user-defined exceptions, aliasing (?), go to's, functions with side-effects, recursion, generics, tasks

Development process

- Requirements written in English, not s/w related
- Software Requirements Spec (SRS) written in Z and English
- 300 pages
- Software Design Spec (SDS) written in Z, English and some SPARK
- Added implementation details
- 200 pages ?
- Code written in SPARK

Code annotations

- Assertions
- Pre, post, assert, return
- Additional info
- Global, derives, own, and inherit
- Extends Ada typing
- Checked by Spark tools
- Z used to define annotations

Code

- 133 KLOCS
- 13K declarations
- 14 K executable stmts
- 54K annotations
- 20K SPARK proof annotations
- 32K blank or comments lines

Z proofs at the SRS and SDS level

- Proof by rigorous arguments with some automated assistance
- 150 Proofs, about 500 pages
- Add and proved safety properties

Code proofs

- Automated
- Examiner--creates the verification conditions
- 9000 verification conditions
- Simplifier
- discharged 76\% of the verification conditions
- Proof Checker
- discharged most of the remaining 24\%
- Some discharged by informal justification
- Proved all loops terminiated

Fault detection

Validation phase	\% faults found	\% Effort
Specs	3.25	5
Z proof	16	2.5
HL design	1.5	2
LL design	26.25	17
Unit test	15.75	25
Integration	1.25	1
Code proof	5.25	4.5
System test	21.5	9.5
Acceptance	1.25	1.5
Other	8	32

Overall

- 19 person year effort
- Lessons learned
- Limits to formality
- Top level proofs too large
- Only did important safety properties
- Low level proofs interact with outside devices
- Target compiler ran under different assumptions than the SPARK compiler
- E.g., memory management and floating pt.
- Claim: Using proofs led to a simpler system design

Observations about Formal Verification

- Most proofs are simple but some proofs are long, tedious \& hard
- assertions are hard to get right
- invariants are difficult to get right
- need to support overall proof strategy
- proofs themselves often require deep program insight
- Often require axioms about the domain

Deeper Issues

- unsuccessful proof attempt \Rightarrow ???
- incorrect software
- incorrect assertions
- incorrect placement of assertions
- inept prover
- any combination (or all) of the above
although failed proofs often indicate which of the above is likely to be the problem (especially to an astute prover)

Deeper Issues

- undecidability of predicate calculus -- no way to be sure when you have a false theorem
- there is no sure way to know when you should quit trying to prove a theorem (and change something)
- proofs are generally much longer than the software being verified
- suggests that errors in the proof are more likely than errors in the software being verified

Current Status:

- have verified some non-trivial programs or important parts of programs
- e.g., protocol verification, SHOLIS
- improved theorem provers
- improved specification languages
- verification and testing/analysis research now viewed more as a continuum
testing finite state verification

Current Status

- Software systems are becoming
- More complex
- Distributed
- need:
- Good people that are well-trained
- Techniques that good people can use
- Research trends
- Finite state verification for well-trained practitioners
- Finite state verification combined with theorem proving based verification

