
More Verification

Reading assignment

• L. D. Fosdick and L. J. Osterweil, "Data Flow
Analysis in Software Reliability,” ACM
Computing Surveys, 8 (3), September 1976,
pp. 306-330. (not required)

• K. M. Olender and L. J. Osterweil,
"Interprocedural Static Analysis of Sequencing
Constraints,” ACM Transactions on Software
Engineering and Methodology, 1 (1), January
1992, pp. 21-52.

Floyd’s Inductive Verification Method
• Specify initial and final assertions to capture intent
• Place intermediate assertions so as to "cut" every

program loop
• For each pair of assertions where there is at least one

executable (assertion-free) path from the first to the
second,

• assume that the first assertion is true
• show that for all (assertion-free, executable) paths from the

first assertion to the second, that the second assertion is true
• This above establishes “partial correctness”
• Show that the program terminates

• This establishes “total correctness”

Wensley's Algorithm

Procedure Wensley (P: input, Q: input, E: input, Y: output)
--assume 0≤ P<Q, 0< E
-- approximating P/Q (=Y) with error ≤ E
Declare P, Q, E, Y, A, B, D real;
A :=0.0; B :=Q / 2.0; D :=1.0; Y := 0.0;
Do_While (D>=E)

If (P - A - B >= 0.0) then {Y := Y+(D / 2.0); A := A+B};
B :=B / 2.0; D := D / 2.0;
End_do;

End Wensley;

Flow Graph
Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A i

A
0

AF

T
T

What does Wensley's algorithm do?
• approximating P/Q (=Y) with error ≤ E
• on the kth iteration of the loop

Yk = c1·2-1+c2·2-2+ ... +ck·2-k

ci ∈ {0,1}

Ak = c1Q·2-1+c2Q·2-2+...+ck·Q2-k

ci ∈ {0,1}
= Q·Yk ≈ P

Bk = Q·2-k next term

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A1

A
0

A
F

T

T

Dk = 2-k

What does Wensley's algorithm do?

• since 0≤P/Q<1, then P/Q can be estimated
as a sum of the series

c1·2-1 + c2·2-2 + ... + ck·2-k

ci ∈{0,1}

• Yk is the computed value of the quotient
• given YkQ = Ak shows how close the
computed quotient is to the real quotient

• Dk is the computed error
• P-(Ak + Bk) then add 2-(k+1) to Yk+1

(by setting ck+1= 1)

Assertions

Initial: A0: {(0≤P<Q) ∧ (0< E)}
computed quotient

computed error

Y is within the computed error D of P/Q

Final: AF: {((P/Q-E)<Y≤(P/Q))}

Intermediate:
Ai: {(A=Q*Y)∧(B=Q*(D/2))

∧ (k≥0, k integer ∧ D=2-k)
∧ ((P/Q)-D)<Y≤(P/Q)}

Summary of Four Lemmas Needed
Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0
Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

Ai

AF

A0

I. Initial assertion to Ai

II. Ai, false branch, Ai

III. Ai, true branch, Ai

IV. Ai, final assertion

Lemmas called verification conditions
0 ≤ k is the number of completed iterations

Lemma I: A0 to Ai
A0: Initial Assertion

(0 ≤ P < Q) ∧ (0 < E)
Input P, Q, E
A←0;
B←Q/2;
D←1;
Y←0;

 ⇒ Ai:
A = Q * Y
B = Q * D/2
D = 2-k, k = 0
P/Q - D < Y ≤ P/Q

code

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

Ai

A0

Note, k = 0

By symbolic execution (by s. e.)

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

Ai

A0

A = 0;
B = Q/2;
D = 1;
Y = 0;

Lemma I: A0 to Ai

A0: Initial Assertion
(0 ≤ P < Q) Λ (0 < E)

A←0;
B←Q/2;
D←1;
Y←0;

 ⇒ Ai:
A = Q * Y
B = Q * D/2
D = 2-k ,k=0
P/Q - D < Y ≤ P/Q

code

Proof: Given Input P, Q, E
1) A = 0 (by s. e.)

= Q * 0 (rewrite)
= Q * Y (by s. e.)

2) B = Q/2 (by s. e.)
= Q * 1/2 (rewrite)
= Q * D/2 (by s. e.)

3) D = 1 (by s. e.)
= 2-0

4) 0 ≤ P <Q (given)
=> 0 ≤ P/Q <1 (divide by Q, Q>0)
=> P/Q - 1 < 0 ≤ P/Q (rewrite)
=> P/Q - D < Y ≤ P/Q (by s. e.)

Lemma II: A , false branch, Ai i

Ai:
A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E

P - A - B < 0
B ← B/2
D ← D/2

⇒Ai:
A = Q * Y
B = Q * D/2
D = 2-(k+1)

P/Q - D < Y ≤ P/Q

code

D ≥ E

P-A-B ≥ 0.0

B ← B/2.0
D ← D/2.0

Ai

F

Proof of lemma II
• Need to establish that Ai is a correct after loop

execution, based on assumption that Ai was correct
before loop execution

• Notation:
• A, B, D, Y are original values of variables
• B’, D’ are values after loop execution

• Symbolic execution gives:
• D ≥ E
• P - A - B < 0
• B’= B/2
• D’ = D/2

D ≥ E

P-A-B ≥0.0

B ← B/2.0
D ← D/2.0

AI

Proof of Lemma II
A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E
P - A - B < 0
B ← B/2
D ← D/2

A = Q * Y
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y ≤ P/Q

(Symbolic execution shows
D≥E; P-A-B<0; B’= B/2; D’ = D/2)
Proof:
1) A = Q * Y (given)

2) B’ = B/2 (by s. e.)
= (Q * D/2)/2 (by given)
= (Q * D’/2) (by s. e.)

3) D’ = D/2 (by s. e.)
= 2-k/2 (by given)
= 2-k-1 (rewrite)
= 2-(k+1) (rewrite)

code

Proof of Lemma II
A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y ≤ P/Q

D ≥ E
P - A - B < 0
B ← B/2
D ← D/2

A = Q * Y
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y ≤ P/Q

(Symbolic execution shows
B’= B/2; D’=D/2; D≥E; P - A - B < 0)

Proof (continued):

4)
a) P-A-B < 0 (by s. e.)
=> P - Q * Y -Q * D/2 < 0

(by given)
=> P/Q - Y - D/2 < 0

(divide by Q > 0)
=> P/Q - D/2 < Y (rewrite)
=> P/Q - D’ < Y (by s. e.)

b) Y≤ P/Q (given)
=> Y’≤ P/Q (by s. e.)

Lemma III: A ; True branch; Ai i

From symbolic execution we know:
A’ = A + B; B’ = B / 2;
D’ = D / 2; Y’ = Y + D / 2;
P - A - B ≥ 0; D ≥ E

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A1

AF

Ai: A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y≤ P/Q

D ≥ E
P - A - B ≥ 0
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

⇒ Ai:
A’ = Q * Y’
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y’ ≤ P/Q

Proof Lemma III

Proof:
1) A’ = A + B (by s.e.)

= Q*Y + Q*(D/2) (by given)
= Q(Y + D/2) (rewrite)
= Q * Y’ (by s.e.)

2) B’ = B/2 (by s.e.)
= Q * D/2/2 (by given)
= Q * D’/2 (by s.e.)

3) D’ = D/2 (by s.e.)
= 2(-k-1) (by given)
= 2-(k+1) for some K

Ai: A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y≤ P/Q

D ≥ E
P - A - B ≥ 0
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

⇒ Ai:
A’ = Q * Y’
B’ = Q * D’’/2
D’ = 2-(k+1) for some integer k
P/Q - D’’ < Y’ ≤ P/Q

From symbolic execution we know:
P - A - B ≥ 0; D ≥ E ; A’ = A + B;
B’ = B / 2; D’ = D / 2; Y’ = Y + D / 2

Proof Lemma III

Proof (continued):
4)
a) P - A - B ≥ 0 (by s.e.)
⇒ P - Q *Y - Q * (D/2) ≥ 0 (given)
⇒ P/Q - D/2 ≥Y (rewrite)
⇒ P/Q - D/2 ≥ Y’ - D/2 (by s.e.)
⇒ P/Q ≥ Y’ (rewrite)

b) P/Q - D < Y (given)
⇒ P/Q - D < Y’ - D/2 (by s.e.)
⇒ P/Q - D/2 < Y’ (rewrite)
⇒ P/Q - D’ < Y’ (by s.e.)

Ai: A = Q * Y
B = Q * D/2
D = 2-k for some integer k
P/Q - D < Y≤ P/Q

D ≥ E
P - A - B ≥ 0
Y ← Y+(D/2.0)
A ← A+B
B ← B/2
D ← D/2

⇒ Ai:
A’ = Q * Y’
B’ = Q * D’/2
D’ = 2-(k+1) for some integer k
P/Q - D’ < Y’ ≤ P/Q

From symbolic execution we know:
A’ = A + B; B’ = B / 2;
D’ = D / 2; Y’ = Y + D / 2;
P - A - B ≥ 0; D ≥ E

Lemma IV Ai,AF

• Ai, false, AF

D ≥ E

P-A-B < 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A i

AF

Lemma IV

Ai: (A=Q*Y)∧(B=Q*(D/2))
∧ (k≥0, k integer ∧ D=2-k)

∧ ((P/Q)-D)<Y≤(P/Q)
D < E] code
⇒ AF: ((P/Q-E)<Y≤(P/Q))

Proof:
((P/Q)-D)<Y≤(P/Q) and (D < E) (given and s.e.)
⇒ ((P/Q)-E)<((P/Q)-D)<Y≤(P/Q) (rewrite)
⇒ ((P/Q-E)<Y≤(P/Q)) (rewrite)

This is only partial correctness

• Must also prove termination
• In general, can not prove termination
• For most programs, can usually do it
by showing that each loop must terminate

• For our example:
given that (E>0)
observe that D decreases

on each iteration and
E does not change

Thus, eventually D<E
and the loop terminates

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B ≥ 0.0 Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A1

A0

AF

Social Processes and Proofs
of Theorems and Programs

• by Richard DeMillo, Richard Lipton, and Alan
Perlis -CACM May 1979

• controversial paper
• changed funding program in U.S
• almost halted verification research

• verification community was guilty of
overselling their product

• some say that the paper went overboard in
refuting the claims of the verification
community

What was the motivation?

• verification community hyperbole was
negatively affecting other research
• language design

• e.g. Euclid did not include exception handling
because there would not be any run time errors

• Testing & Analysis
• any method that provides partial information
was rejected as unnecessary

• symbolic execution
• testing

On the other hand

• Verification had a very positive impact on
software engineering
• major argument for structured programming

• Djkstra's "goto's considered harmful" letter
• one-in one-out structures easier to reason
about

• major impetus for abstract data types
• centralized all changes to data structures
• input/output assertions for all operations

Mathematics as a "social process"

• Belief in a proof is a social process
• Informally describe proof
• Distribute an informal write-up to colleagues
• Formal write-up is refereed
• Accepted paper gets read by wider audience
• Proof/Theorem is used
• Increases confidence

• Despite this, mathematical proofs are often
wrong

Formal verification process

• Proofs of programs are not interesting and
therefore will not go thru this social process

• Automatic verification is not feasible for
most programs
• Search space is too large
• Need additional axioms, which will not be
"socially" accepted

Specification Problem

• real programs are not captured by simple
mathematical algorithms
• error processing issues
• user interface issues

• resulting specifications are
• large
• mathematically unappealing
• probably not complete
• hard to capture intent

Specification Problem

• specification & program are not independent
representations
• proof not 'mathematically' sound

• very labor intensive
• loop invariants - usually manual
• input and output assertions - manual
• verification conditions - can be automated

Software Tools Can Help

• Proof Checkers:
• Scrutinize the steps of a proof and determine if
they are sound

• Identify the rule(s) of inference, axiom(s), etc.
needed to justify each step

• How to know if the proof checker is right (verify
it? with what?)

Software Tools Can Help

• Verification Assistants
• Facilitate precise expression of assertions
• Accept rules of inference
• Accept axioms
• Construct statements of needed lemmas
• Check proofs
• Assist in construction of proofs (theorem provers)

Human/computer collaboration

• most successful -- human/computer
collaboration

• human architects the proof
• computer attempts the proof (generally by
exhaustive search of space of possible axioms
and inferences at each step)

• human intervention after computer has tried
for a while

Verification Successes

• Model Checking
• IEEE future bus
• ISDN User Part Protocol
• HDLC (data link controller)

• Theorem Proving
• SRT division algorithm
• Motorola 68020 (compiler code generation)
• AMD5K86 (floating point division)

Is Proof More Cost-Effective than Testing?

• TSE, August 2000
• King, Hammond, Chapman, and Pryor
• Praxis Critical Systems
• Case Study

• Ship Helocopter Operating Limits Information
Systems (SHOLIS)

• Safety critical system
• Must conform to UK DoD safety critical
standards

Software System

• Written in a subset of Ada (called SPARK)
• Annotations for describing pre, post, assert,
and return assertions

• Restrictive programming style
• No user-defined exceptions, aliasing (?), go
to’s,functions with side-effects, recursion,
generics, tasks

Development process

• Requirements written in English, not s/w
related

• Software Requirements Spec (SRS) written in
Z and English
• 300 pages

• Software Design Spec (SDS) written in Z,
English and some SPARK
• Added implementation details
• 200 pages ?

• Code written in SPARK

Code annotations

• Assertions
• Pre, post, assert, return

• Additional info
• Global, derives, own, and inherit
• Extends Ada typing
• Checked by Spark tools

• Z used to define annotations

Code

• 133 KLOCS
• 13K declarations
• 14K executable stmts
• 54K annotations
• 20K SPARK proof annotations
• 32K blank or comments lines

Z proofs at the SRS and SDS level

• Proof by rigorous arguments with some
automated assistance

• 150 Proofs, about 500 pages
• Add and proved safety properties

Code proofs

• Automated
• Examiner--creates the verification conditions

• 9000 verification conditions
• Simplifier

• discharged 76% of the verification conditions
• Proof Checker

• discharged most of the remaining 24%
• Some discharged by informal justification

• Proved all loops terminiated

Fault detection
Validation
phase

% faults
found

% Effort

Unit test 15.75 25

Integration 1.25 1

Code proof 5.25 4.5

System test 21.5 9.5

Acceptance 1.25 1.5

Other 8 32

Specs 3.25 5

Z proof 16 2.5

HL design 1.5 2

LL design 26.25 17

Overall

• 19 person year effort
• Lessons learned

• Limits to formality
• Top level proofs too large

• Only did important safety properties
• Low level proofs interact with outside devices
• Target compiler ran under different assumptions
than the SPARK compiler

• E.g., memory management and floating pt.
• Claim: Using proofs led to a simpler system design

Observations about Formal Verification

• Most proofs are simple but some proofs are long,
tedious & hard

• assertions are hard to get right
• invariants are difficult to get right

• need to support overall proof strategy
• proofs themselves often require deep program
insight
• Often require axioms about the domain

Deeper Issues
• unsuccessful proof attempt ⇒ ???

• incorrect software
• incorrect assertions
• incorrect placement of assertions
• inept prover
• any combination (or all) of the above

although failed proofs often indicate which of the above is likely
to be the problem (especially to an astute prover)

Deeper Issues

• undecidability of predicate calculus -- no way
to be sure when you have a false theorem
• there is no sure way to know when you should quit
trying to prove a theorem (and change something)

• proofs are generally much longer than the
software being verified
• suggests that errors in the proof are more likely
than errors in the software being verified

Current Status:

• have verified some non-trivial programs or
important parts of programs
• e.g., protocol verification, SHOLIS

• improved theorem provers
• improved specification languages
• verification and testing/analysis research now
viewed more as a continuum

testing finite state verification verification

Current Status

• Software systems are becoming
• More complex
• Distributed

• need:
• Good people that are well-trained
• Techniques that good people can use

• Research trends
• Finite state verification for well-trained practitioners
• Finite state verification combined with theorem proving

based verification

	More Verification
	Reading assignment
	Floyd’s Inductive Verification Method
	Wensley's Algorithm
	Flow Graph
	What does Wensley's algorithm do?
	What does Wensley's algorithm do?
	Assertions
	Summary of Four Lemmas Needed
	Lemma I: A0 to Ai
	By symbolic execution (by s. e.)
	Lemma I: A0 to Ai
	Lemma II: Ai, false branch, Ai
	Proof of lemma II
	Proof of Lemma II
	Proof of Lemma II
	Lemma III: Ai; True branch; Ai
	Proof Lemma III
	Proof Lemma III
	Lemma IV Ai,AF
	Lemma IV
	This is only partial correctness
	Social Processes and Proofs of Theorems and Programs
	What was the motivation?
	On the other hand
	Mathematics as a "social process"
	Formal verification process
	Specification Problem
	Specification Problem
	Software Tools Can Help
	Software Tools Can Help
	Human/computer collaboration
	Verification Successes
	Is Proof More Cost-Effective than Testing?
	Software System
	Development process
	Code annotations
	Code
	Z proofs at the SRS and SDS level
	Code proofs
	Fault detection
	Overall
	Observations about Formal Verification
	Deeper Issues
	Deeper Issues
	Current Status:
	Current Status

