Symbolic Evaluation/Execution

Today's Reading Material

 L. A. Clarke and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems and Software, 5 (1), January 1985, pp.15-35.

Symbolic Evaluation/Execution

- Creates a functional representation of a path of an executable component
- For a path Pi
 - D[Pi] is the domain for path Pi
 - C[Pi] is the computation for path Pi

Functional Representation of an Executable Component

 $\mathsf{P}\,:\,\mathsf{X}\,\to\,\mathsf{Y}$ Ρ P is composed of partial functions corresponding to the executable paths $P = \{P_1, ..., P_r\}$ $P_i : X_i \rightarrow Y$

Functional Representation of an Executable Component

X_i is the domain of path P_i Denoted D[P_i]

 $X = D[P_1] \cup ... \cup D[P_r] = D[P]$ $D[P_i] \cap D[P_j] = \emptyset, i \neq j$

Representing Computation

- Symbolic names represent the input values
- the path value PV of a variable for a path describes the value of that variable in terms of those symbolic names
- the computation of the path C[P] is described by the path values of the outputs for the path

Representing Conditionals

- an interpreted branch condition or interpreted predicate is represented as an inequality or equality condition
- the path condition PC describes the domain of the path and is the conjunction of the interpreted branch conditions
- the domain of the path D[P] is the set of imput values that satisfy the PC for the path

Example program

procedure Contrived is X, Y, Z : integer; 1 read X, Y; 2 if $X \ge 3$ then **3** Z := X+Y; else **4 Z** := 0; endif; 5 if Y > 0 then 6 Y := Y + 5; endif; 7 if X - Y < 0 then 8 write Z; else 9 write Y; endif; end Contrived;

Stmt	PV	PC
1	X← x Y ← y	true
2,3	Z ← x+y	true ∧ x≥3 = x≥3
5,6	Y ← y+5	x≥3 ∧ y>0
7,9	=	x≥3 ∧ y>0 ∧ x-(y+5)≥0 = x≥3 ∧ y>0 ∧ (x-y)≥5

Presenting the	results		
	Statements	Ρ٧	PC
procedure Contrived is X, Y, Z : integer; read X, Y; if X ≥ 3 then Z := X+Y;	1	X← x Y ← y	true
else Z := 0; endif; if Y > 0 then	2,3	Z ← x+y	true ∧ x≥3 = x≥3
Y := Y + 5; endif; if X - Y < 0 then write Z;	5,6	Y ← y+5	x≥3 ∧ y>0
else write Y; endif end Contrived	7,9		x≥3 ∧ y>0 ∧ x-(y+5)≥0 = x≥3 ∧ y>0 ∧ (x-y)≥5

P = 1, 2, 3, 5, 6, 7, 9 D[P] = { $(x,y) | x \ge 3 \land y > 0 \land x - y \ge 5$ C[P] = PV.Y = y +5

Evaluating another path

procedure Contrived is X, Y, Z : integer; 1 read X, Y; 2 if $X \ge 3$ then **3** Z := X+Y; else 4 Z := 0; endif; 5 if Y > 0 then 6 Y := Y + 5; endif; 7 if X - Y < 0 then 8 write Z; else 9 write Y; endif; end Contrived;

Stmts PV PC 1 X←x true $Y \leftarrow y$ $Z \leftarrow x+y$ true $\land x \ge 3 = x \ge 3$ 2,3 5,7 x≥3 ∧ y≤0 7,8 x≥3 ∧ y≤0 ∧ x-y < 0

	procedure EXAMPLE is	Stmts	PV	PC
	X, Y, Z :integer;			
1	read X, Y;			
2	if X ≥ 3 then	1	X←X	true
3	Z := X+Y;		Y _ v	
	else		I 🔨 Y	
4	Z := 0;			
	endif;	23	7 v+v	$true \land \mathbf{v} \ge 3 = \mathbf{v} \ge 3$
5	if Y > 0 then	2,5	Z — X · y	
6	Y := Y + 5;			
	endif;			
7	if X - Y < 0 then			
8	write Z;	5,7		x≥3 ∧ y≤0
	else			-
9	write Y;			
	endif			
	end EXAMPLE	7,8		x≥3 ∧ y≤0 ∧ x-y < 0

P = 1, 2, 3, 5, 7, 8 $D[P] = \{ (x,y) \mid x \ge 3 \land y \le 0 \land x - y < 0 \}$ <u>infeasible path!</u>

what about loops?

• Symbolic evaluation requires a full path description

•Example Paths
•P= 1, 2, 3, 5
•P= 1, 2, 3, 4, 2, 3, 5
•P= 1, 2, 3, 4, 2, 3, 4, 2, 3, 5
•Etc.

Symbolic Testing

- Path Computation provides [concise] functional representation of behavior for entire Path Domain
- Examination of Path Domain and Computation often useful for detecting program errors
- Particularly beneficial for scientific applications or applications w/o oracles

Simple Symbolic Evaluation

- Provides symbolic representations given path Pi
 - path condition PC =
 - path domain D[Pi] ={(x1, x1, ..., x1)|pc true }
 - path values
 - path computation C[Pi] =
- PV.X1=

P = 1, 2, 3, 5, 6, 7, 9

$$D[P] = \{ (x,y) \mid x \ge 3 \land y \ge 0 \land x - y \ge 5 \}$$

 $C[P] = PV.Y = y + 5$

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Simplification

- Reduces path condition to a canonical form
- Simplifier often determines consistency

$$PC = (x \ge 5) \text{ and } (x < 0)$$

 May want to display path computation in simplified and unsimplified form

$$PV.X = x + (x + 1) + (x + 2) + (x + 3)$$

= 4 * x + 6

- strategy = solve a system of constraints
 - theorem prover
 - consistency
 - algebraic, e.g., linear programming
 - consistency and find solutions
 - solution is an example of automatically generated test data

... but, in general we cannot solve an arbitrary system of constraints!

Fault Detection

- Implicit fault conditions
 - E.g. Subscript value out of bounds
 - E.g. Division by zero e.g., Q:=N/D
 - Create assertion to represent the fault and conjoin with the pc
 - Division by zero $assert(divisor \neq 0)$
 - Determine consistency PC_P and (PV.divisor = 0)
 - if consistent then error possible
 - Must check the assertion at the point in the path where the construct occurs

Checking user-defined assertions

- example
 - Assert (A > B)
 - PC and (PV.A) \leq PV.B)
 - if consistent then assertion not valid

Comparing Fault Detection Approaches

- assertions can be inserted as executable instructions and checked during execution
 - dependent on test data selected (*dynamic testing*)
- use symbolic evaluation to evaluate consistency
 - dependent on path, but not on the test data
 - looks for violating data in the path domain

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Path Selection

- User selected
- Automated selection to satisfy some criteria
 - e.g., exercise all statements at least once
- Because of infeasible paths, best if path selection done incrementally

Incremental Path Selection

- PC and PV maintained for partial path
- Inconsistent partial path can often be salvaged

Path Selection (continued)

Can be used in conjunction with other static analysis techniques to determine path feasibility

- Testing criteria generates a path that needs to be tested
- Symbolic evaluation determines if the path is feasible
 - Can eliminate some paths from consideration

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Test Data Generation

- Simple test date selection: Select test data that satisfies the path condition pc
- Error based test date selection
 - Try to select test cases that will help reveal faults
 - Use information about the path domain and path values to select test data

a = 1 combined with min and max values of b b = -1 combined with min and max values for a

Enhanced Symbolic Evaluation Capabilities

- Creates symbolic representations of the Path Domains and Computations
 - "Symbolic Testing"
- Determine if paths are feasible
- Automatic fault detection
 - system defined
 - user assertions
- Automatic path selection
- Automatic Test Data Generation

An Enhanced Symbolic Evaluation System

Problems

- Information explosion
- Impracticality of all paths
- Path condition consistency
- Aliasing
 - elements of a compound type
 e.g., arrays and records
 - pointers

Alias Problem

constraints on subscript value due to path condition

Escalating problem

- Read I
- X := A[I]
- Y := X + Z

- PV.X = unknown
- PV.Y = unknown + PV.Z = unknown

Can often determine array element

Symbolic Evaluation Approaches

- symbolic evaluation
 - With some enhancements
 - Data independent
 - Path dependent
- dynamic symbolic evaluation
 - Data dependent --> path dependent
- global symbolic evaluation
 - Data independent
 - Path independent

Dynamic Symbolic Execution

- Data dependent
- Provided information
 - Actual value:

X := 25.5

• Symbolic expression:

Derived expression:

Dynamic Analysis combined with Symbolic Execution

- Actual output values
- Symbolic representations for each path executed
 - path domain
 - path computation
- Fault detection
 - data dependent
 - path dependent (if accuracy is available)

Dynamic Symbolic Execution

Advantages

- No path condition consistency determination
- No path selection problem
- No aliasing problem (e.g., array subscripts)
- Disadvantages
 - Test data selection (path selection) left to user
 - Fault detection is often data dependent

Applications

- Debugging
- Symbolic representations used to support path and data selection

Symbolic Evaluation Approaches

- simple symbolic evaluation
- dynamic symbolic evaluation
- global symbolic evaluation
 - Data and path independent
 - Loop analysis technique classifies paths that differ only by loop iterations
 - Provides global symbolic representation for each class of paths

Global Symbolic Evaluation

- Loop Analysis
 - creates recurrence relations for variables and loop exit condition
 - solution is a closed form expression representing the loop
 - then, loop expression evaluated as a single node

Global Symbolic Evaluation

2 classes of paths: P₁:(s,(1,2),4,(5,(6,7),8),f) P₂: (s,3,4,(5,(6,7),8),f)

global analysis case D[P₁]: C[P₁] D[P₂]: C[P₂] Endcase

- analyze the loops first
- consider all partial paths up to a node

Loop analysis example

Loop Analysis Example

- Recurrence Relations $AREA_{k} = AREA_{k-1} + A_{0}$ $X_{k} = X_{k-1} + 1$
- Loop Exit Condition
 lec(k)= (X_k > B₀)

Loop Analysis Example (continued)

- solved recurrence relations $AREA(k) = AREA_0 + \sum_{i=x_0}^{x_0+k-1} A_0$ $X(k) = X_0 + k$
- solved loop exit condition
 lec(k) = (X₀ + k > B₀)
- loop expression

$$k_e = \min \{k \mid X_0 + k > B_0 \text{ and } k \ge 0\}$$

$$AREA : = AREA_{0} + X_{0} + K_{e} +$$

 loop expression $k_e = \min \{k \mid X_0 + k > B_0 \text{ and } k \ge 0\}$ $AREA : = AREA_0 + x_0 + k_0 - 1$ $X := X_0 + k_e \qquad \sum A_0$ global representation for input (a,b) $X_0 = a$, $A_0 = a$, $B_0 = b$, $AREA_0 = 0$ $a + k_o > b = = > k_o > b - a$ read A.B $K_{o} = b - a + 1$ AREA :=0 X = a + (b - a + 1) = b + 1AREA = = (b-a+1) a <u>write</u> ARF b a

Loop analysis example

Find path computation and path domain for all classes of paths

- P1 = (1, 2, 3, 4, 7)
- D[P1] = a > b
- C[P1] = (AREA=0) and (X=a)

Find path computation and path domain for all classes of paths

Example

procedure	RECTANGLE (A,B: in real; H: in real range -1.0 1.0;
F: in arra	y [02] of real; AREA: out real; ERROR: out boolean) is
RECTA	NGLE approximates the area under the guadratic equation
F[0] +	F[1]*X + F[2]*X**2 From X=A to X=B in increments of H.
	V v. mool:
	A, V. real,
s begin	
	 check for valid input
1	if H > B - A then
2	ERROR := true;
	• else
3	ERROR := false;
4	X := A;
5	AREA := F[0] + F[1]*X + F[2]*X*2;
6	while X + H ≤ B loop
7	X := X + H;
8	У ∶= F[0] + F[1]*X + F[2]*X**2;
9	AREA := AREA + Y;
	end loop;
10	AREA := AREA*H;
	endif;
end R	ECTANGLE

Symbolic Representation of Rectangle

P ₁	(s,1,2,f)	s
D[P ₁]	(a - b + h > 0.0)	H > B - A 1
C [P ₁]	AREA = ? ERROR = true	ERROR := true; 2
P ₂	(s,1,3,4,5,6,10,f)	ERROR := false; 3 ↓ X := A; 4 ▽
D [P ₂]	(a - b + h <= 0.0) and (a - b + h > 0.0) = = false *** infeasible path ***	AREA := F[0] + F[1]*X + F[2]*X**2
		X + H ≤ B 6
P ₃	(s,1,3,4,5,(6,7,8,9),10,11,f)	X := X + H; 7
D [P ₃]	(a-b+h <= 0.0)	Y := F[0] + F[1]*X + F[2]*X**2: 8
C[P ₃]	AREA = a*f[1]*j+2.0*a*f[2]*h+f[0]*h +sum < i :=1 int (-a/h+b/h) (a*f[1]*h+a**2*f[2]*h +2.0*a*f[2]*h**2*i+f[0]*h	AREA := AREA + Y; 9 AREA := AREA*H 10
	$+I[1]^{n**2*1+I[2]*n**3*1**2} >$ ERROR = false	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Global Symbolic Evaluation

- Advantages
 - global representation of routine
 - no path selection problem
- Disadvantages
 - has all problems of
 - Symbolic Execution PLUS
 - inability to solve recurrence relations
 - (interdependencies, conditionals)
- Applications
 - has all applications of
 - Symbolic Execution plus
 - Verification
 - Program Optimization

Why hasn't symbolic evaluation become widely used?

- expensive to create representations
- expensive to reason about expressions
- imprecision of results
 - current computing power and better user interface capabilities may make it worth reconsidering

Partial Evaluation

- Similar to (Dynamic) Symbolic Evaluation
- Provide some of the input values
 - If input is x and y, provide a value for x
- Create a representation that incorporates those values and that is equivalent to the original representation if it were given the same values as the preset values

• P(x, y) = P'(x', y)

Why is partial evaluation useful?

- In compilers
 - May create a faster representation
 - E.g., if you know the maximum size for a platform or domain, hardcode that into the system
 - More than just constant propagation
 - Do symbolic manipulations with the computations

Example with Ackermann's function

•
$$AO(n) = n+1$$

Specialization using partial evaluation

Why is Partial Evaluation Useful in Analysis

- Often can not reason about dynamic information
 - Instantiates a particular configuration of the system that is easier to reason about
 - E.g., the number of tasks in a concurrent system; the maximum size of a vector
- Look at several configurations and try to generalize results
 - Induction
 - Often done informally

Reference on Partial Evaluation

 Neil Jones, An Introduction to Partial Evaluation, ACM Computing Surveys, September 1996