
Symbolic Evaluation/Execution



Today’s Reading Material

• L. A. Clarke and D. J. Richardson, 
"Applications of Symbolic Evaluation," Journal 
of Systems and Software, 5 (1), January 
1985, pp.15-35. 



Symbolic Evaluation/Execution

• Creates a functional representation of a path 
of an executable component

• For a path Pi
• D[Pi]  is the domain for path Pi
• C[Pi]  is the computation for path Pi



Functional Representation 
of an Executable Component

P : X → Y

P is composed of partial functions 
corresponding to the  executable paths 

P = {P1,...,Pr }
Pi : Xi → Y

P



Functional Representation 
of an Executable Component

Xi is the domain of path Pi
Denoted D[ Pi]

X = D[P1] ∪...∪D[Pr] = D[P]
D[Pi] ∩ D[Pj] = Ø, i ≠ j

Pj

Pl

Pi

Pk

Xi

Xk
Xl

Xj



Representing Computation

• Symbolic names represent the input values
• the path value PV of a variable for a path 
describes the value of that variable in terms 
of those symbolic names

• the computation of the path C[P] is described 
by the path values of the outputs for the 
path



Representing Conditionals

• an interpreted branch condition or 
interpreted predicate is represented as an 
inequality or equality condition

• the path condition PC describes the domain 
of the path and is the conjunction of the 
interpreted branch conditions

• the domain of the path D[P] is the set of 
imput values that satisfy the PC for the path



Example program

procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmt PV PC

1    X← x true
Y ← y

2,3    Z ← x+y    true ∧ x≥3 = x≥3

5,6    Y ← y+5     x≥3 ∧ y>0

7,9   x≥3 ∧ y>0 ∧ x-(y+5)≥0  
= x≥3 ∧ y>0 ∧ (x-y)≥5



procedure Contrived is
X, Y, Z  : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end Contrived

Statements PV PC

1 X← x true
Y ← y

2,3                Z ← x+y true ∧ x≥3 = x≥3

5,6                Y ← y+5 x≥3 ∧ y>0

7,9   x≥3 ∧ y>0 ∧ x-(y+5)≥0 =    
x≥3 ∧ y>0 ∧ (x-y)≥5

Presenting the results

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y) | x≥3 ∧ y>0 ∧ x-y≥5}
C[P] = PV.Y = y +5



Results (feasible path)

y

y>0

x≥3 (x-y) ≥ 5

x

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y)|x≥3∧y>0∧x-y≥5}
C[P] = PV.Y = y +5



Evaluating another path
procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmts   PV PC

1 X← x true
Y ← y

2,3     Z ← x+y    true ∧ x≥3 = x≥3

5,7                       x≥3 ∧ y≤0

7,8   x≥3 ∧ y≤0 ∧ x-y < 0 



Stmts PV         PC

1 X← x true
Y ← y

2,3        Z ← x+y        true ∧ x≥3 = x≥3

5,7                  x≥3 ∧ y≤0

7,8   x≥3 ∧ y≤0 ∧ x-y < 0 

procedure EXAMPLE is
X, Y, Z  : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end EXAMPLE

P = 1, 2, 3, 5, 7, 8
D[P] = { (x,y) | x≥3 ∧ y≤0  ∧ x-y<0}

infeasible path!



Results (infeasible path)

y

y ≤ 0

x ≥ 3 (x-y) < 0

x



what about loops?

• Symbolic evaluation requires a full path 
description

1

2

3

4

5

•Example Paths

•P= 1, 2, 3, 5    

•P= 1, 2, 3, 4, 2, 3, 5 

•P= 1, 2, 3, 4, 2, 3, 4, 2, 3, 5

•Etc.



Symbolic Testing

• Path Computation provides [concise] functional 
representation of behavior for entire Path 
Domain

• Examination of Path Domain and Computation 
often useful for detecting program errors

• Particularly beneficial for 
scientific  applications 
or applications w/o
oracles •



Simple Symbolic Evaluation

• Provides symbolic representations given path Pi
• path condition    PC =
• path domain D[Pi] ={(x1, x1, ... ,x1)|pc true }
• path values PV.X1=
• path computation   C[Pi] =

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y) | x≥3 ∧ y>0 ∧ x-y≥5}
C[P] = PV.Y = y +5



Additional Features:

• Simplification
• Path Condition Consistency
• Fault Detection
• Path Selection
• Test Data Generation



Simplification

• Reduces path condition to a canonical form

• Simplifier often determines consistency

PC = ( x >= 5 ) and ( x < 0 ) 

• May want to display path computation in 
simplified and unsimplified form

PV.X =  x + (x +1) + (x + 2) + (x + 3) 
=  4 * x + 6



Path Condition Consistency

• strategy = solve a system of constraints
• theorem prover 

• consistency 
• algebraic, e.g., linear programming

• consistency and find solutions
• solution is an example of automatically 
generated test data

... but, in general we cannot solve an arbitrary 
system of constraints!



Fault Detection
• Implicit fault conditions

• E.g. Subscript value out of bounds 
• E.g. Division by zero e.g., Q:=N/D

• Create assertion to represent the fault and 
conjoin with the pc

• Division by zero assert(divisor ≠ 0)
• Determine consistency

PCP and (PV.divisor = 0)
• if consistent then error possible

• Must check the assertion at the point in the path 
where the construct occurs



Checking user-defined assertions

• example
• Assert (A > B)
• PC and (PV.A) ≤ PV.B)
• if consistent then assertion not valid



Comparing Fault Detection Approaches 
• assertions can be inserted as executable 
instructions and checked during execution

• dependent on test data selected
(dynamic testing )

• use symbolic evaluation to evaluate 
consistency

• dependent on path, but not on the test data
• looks for violating data in the path domain



Additional Features:

• Simplification
• Path Condition Consistency
• Fault Detection
• Path Selection
• Test Data Generation



Path Selection

• User selected

• Automated selection to satisfy some criteria
• e.g., exercise all statements at least once

• Because of infeasible paths, best if path 
selection done incrementally



Incremental Path Selection
• PC and PV maintained for partial path
• Inconsistent partial path can often be salvaged

PC•
•
•

↓
T

FT

FX>0

X>3
pc’’’= pc’ and (x>3) 

= pc and (x≤0) and (x>3) 
INCONSISTENT!
infeasible path

pc” = pc’ and (x≤3) 
= pc and (x≤0) and (x≤3) 

CONSISTENT [if pc’ is consistent]

pc’ = pc and  (x≤0) 



Path Selection (continued)

 Can be used in conjunction with other static analysis 
techniques to determine path feasibility

• Testing criteria generates a path that needs to 
be tested

• Symbolic evaluation determines if the path is 
feasible

• Can eliminate some paths from consideration



Additional Features:

• Simplification
• Path Condition Consistency
• Fault Detection
• Path Selection
• Test Data Generation



Test Data Generation

• Simple test date selection: Select test data 
that satisfies the path condition pc

• Error based test date selection
• Try to select test cases that will help reveal 
faults

• Use information about the path domain and path 
values to select test data

• e.g.,  PV.X = a * (b + 2);

a = 1 combined with min and max values of b
b = -1 combined with min and max values for a



Enhanced Symbolic Evaluation Capabilities

• Creates symbolic representations of the Path 
Domains and Computations

• “Symbolic Testing”
• Determine if paths are feasible
• Automatic fault detection

• system defined
• user assertions

• Automatic path selection
• Automatic Test Data Generation



An Enhanced Symbolic Evaluation System

fault
conditions

path
condition

path
values

simplified
path values

fault
report path

domain
test
data

path
computation

Symbolic
Execution

Path
Selection

Inequality
Solver

Simplifier

component User input

Detect inconsistency

Detect inconsistency



Problems

• Information explosion

• Impracticality of all paths

• Path condition consistency

• Aliasing 
• elements of a compound type
e.g., arrays and records

• pointers



Alias Problem

Indeterminate subscript

constraints on 
subscript value due 
to path conditionY:=A(I) Z:=A(I) 

I > 2

read I, A(I)

A(2) := 5

X := A(2)



Escalating problem

• Read I
• X := A[I] PV.X = unknown 
• Y := X + Z          PV.Y = unknown + PV.Z

= unknown



Can often determine array element

Y:=A(I) 

I:= I+1

I≤3

I:= 0

. subscript value 

.   is constant

.



Symbolic Evaluation Approaches

• symbolic evaluation
• With some enhancements
• Data independent
• Path dependent

• dynamic symbolic evaluation
• Data dependent--> path dependent

• global symbolic evaluation
• Data independent
• Path independent



Dynamic Symbolic Execution

• Data dependent
• Provided information

• Actual value:
X := 25.5

• Symbolic expression:
X := Y * (A + 1.9);

• Derived expression:

A 1.9

Y

X

+

*(25.5)

(5.1)

(3.1)

=



Dynamic Analysis combined with 
Symbolic Execution 
• Actual output values
• Symbolic representations for each path 
executed

• path domain
• path computation

• Fault detection
• data dependent
• path dependent (if accuracy is available)



Dynamic Symbolic Execution
• Advantages

• No path condition consistency determination
• No path selection problem
• No aliasing problem (e.g., array subscripts)

• Disadvantages
• Test data selection (path selection) left to user
• Fault detection is often data dependent

• Applications
• Debugging
• Symbolic representations used to support path and 
data selection



Symbolic Evaluation Approaches

• simple symbolic evaluation
• dynamic symbolic evaluation
• global symbolic evaluation

• Data and path independent
• Loop analysis technique classifies paths that 
differ only by loop iterations

• Provides global symbolic representation for each 
class of paths 



Global Symbolic Evaluation

• Loop Analysis
• creates recurrence relations for variables 
and loop exit condition

• solution is a closed form expression 
representing the loop

• then, loop expression evaluated as a single 
node



Global Symbolic Evaluation

2 classes of paths:
P1:(s,(1,2),4,(5,(6,7),8),f)
P2: (s,3,4,(5,(6,7),8),f)

global analysis
case

D[P1]: C[P1]
D[P2]: C[P2]

Endcase

• analyze the loops first
• consider all partial 

paths up to a node

s

1

2
3

4

5

6

7

8

f



Loop analysis example

read A, B

Area := 0

X :=  A

X ≤ B
f                                        t

write AREA                           AREA:= AREA+A

X:= X+1



Loop Analysis Example

• Recurrence Relations
AREAk = AREAk-1 + A0

Xk = Xk-1 + 1

• Loop Exit Condition
lec(k)= (Xk > B0) X ≤ B

T

AREA:= AREA+A

X:= X+1



Loop Analysis Example (continued)

• solved recurrence relations
AREA(k) = AREA0 + 
X(k) = X0 + k

• solved loop exit condition
lec(k) = (X0 + k > B0)

• loop expression
ke = min {k | X0 + k > B0 and k≥0}

AREA : = AREA0 + 
X : = X0 + ke

Σ
X0 + k - 1

i = X 0

A0

0 

0
Σ
X + ke - 1

i = X
A0



• loop expression
ke = min {k | X0 + k > B0 and k≥0}

AREA : = AREA0 + 
X : = X0 + ke

• global representation for input (a,b)
X0 = a, A0=a, B0 = b, AREA0 = 0
a + ke > b ==> ke > b - a
Ke = b - a +1
X = a +(b-a+1) = b+1

AREA =       = (b-a+1) a

Σ
X0 + ke- 1

i = X0

A0

Σ
b

i = a

a

read A,B

AREA :=0

X :=A

write AREA



Loop analysis example

read A, B

Area:= 0

X:=  A

X ≤ B
f                                        t

write AREA                            AREA:= AREA+A

X:= X+1



Find path computation and path domain for all 
classes of paths
• P1 = (1, 2, 3, 4, 7)
• D[P1] = a > b 
• C[P1] = (AREA=0) and (X=a)

read A,B

AREA :=0

X :=A

write AREA

X ≤ B



Find path computation and path domain for all 
classes of paths
• P2 = (1, 2, 3, 4, (5, 6), 7)

• D[P2] = (b>a)
• C[P2] = (AREA = (b-a+1) a )
ke =b - a +1
X : = b + 1

X0 = a 
B0 = b 
A0 = a
Ke = b - a +1
X = b+1
AREA = (b-a+1) a read A, B

Area:= 0

X:=  A

X ≤ B
f                                       t

write AREA                            AREA:= AREA+A

X:= X+1



Example
procedure RECTANGLE (A,B: in real; H: in real range -1.0 ... 1.0;
F: in array [0..2] of real; AREA: out real; ERROR: out boolean) is
-- RECTANGLE approximates the area under the quadratic equation
-- F[0] + F[1]*X + F[2]*X**2 From X=A to X=B in increments of H.

X,Y: real;
s begin

• --check for valid input
1 if H > B - A then
2 ERROR := true;

• else
3 ERROR := false;
4 X := A;
5 AREA := F[0] + F[1]*X + F[2]*X*2;
6 while X + H ≤ B loop
7 X := X + H;
8 Y := F[0] + F[1]*X + F[2]*X**2;
9 AREA := AREA + Y;

end loop;
10 AREA := AREA*H;

endif;
end RECTANGLE



s

1

2

3

4

5

6

7

8

9

10

f

H > B - A

ERROR := false;

X := A;

ERROR := true;

AREA := F[0] + F[1]*X + F[2]*X**2

X + H ≤ B

X := X + H;

Y := F[0] + F[1]*X + F[2]*X**2;

AREA := AREA + Y;

AREA := AREA*H



Symbolic Representation of Rectangle
(s,1,2,f)

(a - b + h > 0.0)

AREA = ?
ERROR = true

(s,1,3,4,5,6,10,f)

(a - b + h <= 0.0) and (a - b + h > 0.0)
= = false
*** infeasible path ***

(s,1,3,4,5,(6,7,8,9),10,11,f)

(a-b+h <= 0.0)

AREA = a*f[1]*j+2.0*a*f[2]*h+f[0]*h
     +sum < i :=1 ... int (-a/h+b/h) |
     (a*f[1]*h+a**2*f[2]*h
     +2.0*a*f[2]*h**2*i+f[0]*h
       +f[1]*h**2*i+f[2]*h**3*i**2) >
ERROR = false

P1     

D[P1]

C[P1]

P2

D[P2]

P3

D[P3]

C[P3]

s

1

2

3

4

5

6

7

8

9

10

f

H > B - A

ERROR := false;

X := A;

ERROR := true;

AREA := F[0] + F[1]*X + F[2]*X**2

X + H ≤ B

X := X + H;

Y := F[0] + F[1]*X + F[2]*X**2;

AREA := AREA + Y;

AREA := AREA*H



Global Symbolic Evaluation

• Advantages
• global representation of routine
• no path selection problem

• Disadvantages
• has all problems of

• Symbolic Execution PLUS
• inability to solve recurrence relations 

• (interdependencies, conditionals)
• Applications

• has all applications of
• Symbolic Execution plus

• Verification
• Program Optimization



Why hasn’t symbolic evaluation become widely used? 

• expensive to create representations
• expensive to reason about expressions
• imprecision of results

• current computing power and better user 
interface capabilities may make it worth 
reconsidering



Partial Evaluation

• Similar to (Dynamic) Symbolic Evaluation
• Provide some of the input values

• If input is x and y, provide a value for x
• Create a representation that incorporates 
those values and that is equivalent to the 
original representation if it were given the 
same values as the preset values

• P(x, y) = P’(x’, y) 



Partial Evaluator

Partial evaluator

static input

program

Specialized programDynamic input output



Why is partial evaluation useful?

• In compilers
• May create a faster representation
• E.g., if you know the maximum size for a 
platform or domain, hardcode that into the 
system

• More than just constant propagation
• Do symbolic manipulations with the 
computations



Example with Ackermann’s function

• A(m,n) = if m = 0 then n+1 else
if n = 0 then A(m-1, 1) else
A(m-1,A(m,n-1))

• A0(n) = n+1
• A1(n) = if n = 0 then A0(1) else

A0(A1(n-1))
• A2(n) = if n = 0 then A1(1) else

A1(A2(n-1))



Specialization using partial evaluation

Y:=A(I) Z:=A(2) 

I > 2

read I, A(I)

A(2) := 5

Y:=A(I) Z:=5 

?

read I, A(I)

A(2) := 5

I>2

I=2
I<2

Z:=eval(A(2))



Why is Partial Evaluation Useful in Analysis

• Often can not reason about dynamic 
information

• Instantiates a particular configuration of the 
system that is easier to reason about

• E.g., the number of tasks in a concurrent system;
the maximum size of a vector

• Look at several configurations and try to 
generalize results

• Induction
• Often done informally



Reference on Partial Evaluation

• Neil Jones, An Introduction to Partial 
Evaluation, ACM Computing Surveys, 
September 1996
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