
Symbolic Evaluation/Execution

Today’s Reading Material

• L. A. Clarke and D. J. Richardson,
"Applications of Symbolic Evaluation," Journal
of Systems and Software, 5 (1), January
1985, pp.15-35.

Symbolic Evaluation/Execution

• Creates a functional representation of a path
of an executable component

• For a path Pi
• D[Pi] is the domain for path Pi
• C[Pi] is the computation for path Pi

Functional Representation
of an Executable Component

P : X → Y

P is composed of partial functions
corresponding to the executable paths

P = {P1,...,Pr }
Pi : Xi → Y

P

Functional Representation
of an Executable Component

Xi is the domain of path Pi
Denoted D[Pi]

X = D[P1] ∪...∪D[Pr] = D[P]
D[Pi] ∩ D[Pj] = Ø, i ≠ j

Pj

Pl

Pi

Pk

Xi

Xk
Xl

Xj

Representing Computation

• Symbolic names represent the input values
• the path value PV of a variable for a path
describes the value of that variable in terms
of those symbolic names

• the computation of the path C[P] is described
by the path values of the outputs for the
path

Representing Conditionals

• an interpreted branch condition or
interpreted predicate is represented as an
inequality or equality condition

• the path condition PC describes the domain
of the path and is the conjunction of the
interpreted branch conditions

• the domain of the path D[P] is the set of
imput values that satisfy the PC for the path

Example program

procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmt PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,6 Y ← y+5 x≥3 ∧ y>0

7,9 x≥3 ∧ y>0 ∧ x-(y+5)≥0
= x≥3 ∧ y>0 ∧ (x-y)≥5

procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end Contrived

Statements PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,6 Y ← y+5 x≥3 ∧ y>0

7,9 x≥3 ∧ y>0 ∧ x-(y+5)≥0 =
x≥3 ∧ y>0 ∧ (x-y)≥5

Presenting the results

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y) | x≥3 ∧ y>0 ∧ x-y≥5}
C[P] = PV.Y = y +5

Results (feasible path)

y

y>0

x≥3 (x-y) ≥ 5

x

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y)|x≥3∧y>0∧x-y≥5}
C[P] = PV.Y = y +5

Evaluating another path
procedure Contrived is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif;
end Contrived;

Stmts PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,7 x≥3 ∧ y≤0

7,8 x≥3 ∧ y≤0 ∧ x-y < 0

Stmts PV PC

1 X← x true
Y ← y

2,3 Z ← x+y true ∧ x≥3 = x≥3

5,7 x≥3 ∧ y≤0

7,8 x≥3 ∧ y≤0 ∧ x-y < 0

procedure EXAMPLE is
X, Y, Z : integer;

1 read X, Y;
2 if X ≥ 3 then
3 Z := X+Y;

else
4 Z := 0;

endif;
5 if Y > 0 then
6 Y := Y + 5;

endif;
7 if X - Y < 0 then
8 write Z;

else
9 write Y;

endif
end EXAMPLE

P = 1, 2, 3, 5, 7, 8
D[P] = { (x,y) | x≥3 ∧ y≤0 ∧ x-y<0}

infeasible path!

Results (infeasible path)

y

y ≤ 0

x ≥ 3 (x-y) < 0

x

what about loops?

• Symbolic evaluation requires a full path
description

1

2

3

4

5

•Example Paths

•P= 1, 2, 3, 5

•P= 1, 2, 3, 4, 2, 3, 5

•P= 1, 2, 3, 4, 2, 3, 4, 2, 3, 5

•Etc.

Symbolic Testing

• Path Computation provides [concise] functional
representation of behavior for entire Path
Domain

• Examination of Path Domain and Computation
often useful for detecting program errors

• Particularly beneficial for
scientific applications
or applications w/o
oracles •

Simple Symbolic Evaluation

• Provides symbolic representations given path Pi
• path condition PC =
• path domain D[Pi] ={(x1, x1, ... ,x1)|pc true }
• path values PV.X1=
• path computation C[Pi] =

P = 1, 2, 3, 5, 6, 7, 9
D[P] = { (x,y) | x≥3 ∧ y>0 ∧ x-y≥5}
C[P] = PV.Y = y +5

Additional Features:

• Simplification
• Path Condition Consistency
• Fault Detection
• Path Selection
• Test Data Generation

Simplification

• Reduces path condition to a canonical form

• Simplifier often determines consistency

PC = (x >= 5) and (x < 0)

• May want to display path computation in
simplified and unsimplified form

PV.X = x + (x +1) + (x + 2) + (x + 3)
= 4 * x + 6

Path Condition Consistency

• strategy = solve a system of constraints
• theorem prover

• consistency
• algebraic, e.g., linear programming

• consistency and find solutions
• solution is an example of automatically
generated test data

... but, in general we cannot solve an arbitrary
system of constraints!

Fault Detection
• Implicit fault conditions

• E.g. Subscript value out of bounds
• E.g. Division by zero e.g., Q:=N/D

• Create assertion to represent the fault and
conjoin with the pc

• Division by zero assert(divisor ≠ 0)
• Determine consistency

PCP and (PV.divisor = 0)
• if consistent then error possible

• Must check the assertion at the point in the path
where the construct occurs

Checking user-defined assertions

• example
• Assert (A > B)
• PC and (PV.A) ≤ PV.B)
• if consistent then assertion not valid

Comparing Fault Detection Approaches
• assertions can be inserted as executable
instructions and checked during execution

• dependent on test data selected
(dynamic testing)

• use symbolic evaluation to evaluate
consistency

• dependent on path, but not on the test data
• looks for violating data in the path domain

Additional Features:

• Simplification
• Path Condition Consistency
• Fault Detection
• Path Selection
• Test Data Generation

Path Selection

• User selected

• Automated selection to satisfy some criteria
• e.g., exercise all statements at least once

• Because of infeasible paths, best if path
selection done incrementally

Incremental Path Selection
• PC and PV maintained for partial path
• Inconsistent partial path can often be salvaged

PC•
•
•

↓
T

FT

FX>0

X>3
pc’’’= pc’ and (x>3)

= pc and (x≤0) and (x>3)
INCONSISTENT!
infeasible path

pc” = pc’ and (x≤3)
= pc and (x≤0) and (x≤3)

CONSISTENT [if pc’ is consistent]

pc’ = pc and (x≤0)

Path Selection (continued)

 Can be used in conjunction with other static analysis
techniques to determine path feasibility

• Testing criteria generates a path that needs to
be tested

• Symbolic evaluation determines if the path is
feasible

• Can eliminate some paths from consideration

Additional Features:

• Simplification
• Path Condition Consistency
• Fault Detection
• Path Selection
• Test Data Generation

Test Data Generation

• Simple test date selection: Select test data
that satisfies the path condition pc

• Error based test date selection
• Try to select test cases that will help reveal
faults

• Use information about the path domain and path
values to select test data

• e.g., PV.X = a * (b + 2);

a = 1 combined with min and max values of b
b = -1 combined with min and max values for a

Enhanced Symbolic Evaluation Capabilities

• Creates symbolic representations of the Path
Domains and Computations

• “Symbolic Testing”
• Determine if paths are feasible
• Automatic fault detection

• system defined
• user assertions

• Automatic path selection
• Automatic Test Data Generation

An Enhanced Symbolic Evaluation System

fault
conditions

path
condition

path
values

simplified
path values

fault
report path

domain
test
data

path
computation

Symbolic
Execution

Path
Selection

Inequality
Solver

Simplifier

component User input

Detect inconsistency

Detect inconsistency

Problems

• Information explosion

• Impracticality of all paths

• Path condition consistency

• Aliasing
• elements of a compound type
e.g., arrays and records

• pointers

Alias Problem

Indeterminate subscript

constraints on
subscript value due
to path conditionY:=A(I) Z:=A(I)

I > 2

read I, A(I)

A(2) := 5

X := A(2)

Escalating problem

• Read I
• X := A[I] PV.X = unknown
• Y := X + Z PV.Y = unknown + PV.Z

= unknown

Can often determine array element

Y:=A(I)

I:= I+1

I≤3

I:= 0

. subscript value

. is constant

.

Symbolic Evaluation Approaches

• symbolic evaluation
• With some enhancements
• Data independent
• Path dependent

• dynamic symbolic evaluation
• Data dependent--> path dependent

• global symbolic evaluation
• Data independent
• Path independent

Dynamic Symbolic Execution

• Data dependent
• Provided information

• Actual value:
X := 25.5

• Symbolic expression:
X := Y * (A + 1.9);

• Derived expression:

A 1.9

Y

X

+

*(25.5)

(5.1)

(3.1)

=

Dynamic Analysis combined with
Symbolic Execution
• Actual output values
• Symbolic representations for each path
executed

• path domain
• path computation

• Fault detection
• data dependent
• path dependent (if accuracy is available)

Dynamic Symbolic Execution
• Advantages

• No path condition consistency determination
• No path selection problem
• No aliasing problem (e.g., array subscripts)

• Disadvantages
• Test data selection (path selection) left to user
• Fault detection is often data dependent

• Applications
• Debugging
• Symbolic representations used to support path and
data selection

Symbolic Evaluation Approaches

• simple symbolic evaluation
• dynamic symbolic evaluation
• global symbolic evaluation

• Data and path independent
• Loop analysis technique classifies paths that
differ only by loop iterations

• Provides global symbolic representation for each
class of paths

Global Symbolic Evaluation

• Loop Analysis
• creates recurrence relations for variables
and loop exit condition

• solution is a closed form expression
representing the loop

• then, loop expression evaluated as a single
node

Global Symbolic Evaluation

2 classes of paths:
P1:(s,(1,2),4,(5,(6,7),8),f)
P2: (s,3,4,(5,(6,7),8),f)

global analysis
case

D[P1]: C[P1]
D[P2]: C[P2]

Endcase

• analyze the loops first
• consider all partial

paths up to a node

s

1

2
3

4

5

6

7

8

f

Loop analysis example

read A, B

Area := 0

X := A

X ≤ B
f t

write AREA AREA:= AREA+A

X:= X+1

Loop Analysis Example

• Recurrence Relations
AREAk = AREAk-1 + A0

Xk = Xk-1 + 1

• Loop Exit Condition
lec(k)= (Xk > B0) X ≤ B

T

AREA:= AREA+A

X:= X+1

Loop Analysis Example (continued)

• solved recurrence relations
AREA(k) = AREA0 +
X(k) = X0 + k

• solved loop exit condition
lec(k) = (X0 + k > B0)

• loop expression
ke = min {k | X0 + k > B0 and k≥0}

AREA : = AREA0 +
X : = X0 + ke

Σ
X0 + k - 1

i = X 0

A0

0

0
Σ
X + ke - 1

i = X
A0

• loop expression
ke = min {k | X0 + k > B0 and k≥0}

AREA : = AREA0 +
X : = X0 + ke

• global representation for input (a,b)
X0 = a, A0=a, B0 = b, AREA0 = 0
a + ke > b ==> ke > b - a
Ke = b - a +1
X = a +(b-a+1) = b+1

AREA = = (b-a+1) a

Σ
X0 + ke- 1

i = X0

A0

Σ
b

i = a

a

read A,B

AREA :=0

X :=A

write AREA

Loop analysis example

read A, B

Area:= 0

X:= A

X ≤ B
f t

write AREA AREA:= AREA+A

X:= X+1

Find path computation and path domain for all
classes of paths
• P1 = (1, 2, 3, 4, 7)
• D[P1] = a > b
• C[P1] = (AREA=0) and (X=a)

read A,B

AREA :=0

X :=A

write AREA

X ≤ B

Find path computation and path domain for all
classes of paths
• P2 = (1, 2, 3, 4, (5, 6), 7)

• D[P2] = (b>a)
• C[P2] = (AREA = (b-a+1) a)
ke =b - a +1
X : = b + 1

X0 = a
B0 = b
A0 = a
Ke = b - a +1
X = b+1
AREA = (b-a+1) a read A, B

Area:= 0

X:= A

X ≤ B
f t

write AREA AREA:= AREA+A

X:= X+1

Example
procedure RECTANGLE (A,B: in real; H: in real range -1.0 ... 1.0;
F: in array [0..2] of real; AREA: out real; ERROR: out boolean) is
-- RECTANGLE approximates the area under the quadratic equation
-- F[0] + F[1]*X + F[2]*X**2 From X=A to X=B in increments of H.

X,Y: real;
s begin

• --check for valid input
1 if H > B - A then
2 ERROR := true;

• else
3 ERROR := false;
4 X := A;
5 AREA := F[0] + F[1]*X + F[2]*X*2;
6 while X + H ≤ B loop
7 X := X + H;
8 Y := F[0] + F[1]*X + F[2]*X**2;
9 AREA := AREA + Y;

end loop;
10 AREA := AREA*H;

endif;
end RECTANGLE

s

1

2

3

4

5

6

7

8

9

10

f

H > B - A

ERROR := false;

X := A;

ERROR := true;

AREA := F[0] + F[1]*X + F[2]*X**2

X + H ≤ B

X := X + H;

Y := F[0] + F[1]*X + F[2]*X**2;

AREA := AREA + Y;

AREA := AREA*H

Symbolic Representation of Rectangle
(s,1,2,f)

(a - b + h > 0.0)

AREA = ?
ERROR = true

(s,1,3,4,5,6,10,f)

(a - b + h <= 0.0) and (a - b + h > 0.0)
= = false
*** infeasible path ***

(s,1,3,4,5,(6,7,8,9),10,11,f)

(a-b+h <= 0.0)

AREA = a*f[1]*j+2.0*a*f[2]*h+f[0]*h
 +sum < i :=1 ... int (-a/h+b/h) |
 (a*f[1]*h+a**2*f[2]*h
 +2.0*a*f[2]*h**2*i+f[0]*h
 +f[1]*h**2*i+f[2]*h**3*i**2) >
ERROR = false

P1

D[P1]

C[P1]

P2

D[P2]

P3

D[P3]

C[P3]

s

1

2

3

4

5

6

7

8

9

10

f

H > B - A

ERROR := false;

X := A;

ERROR := true;

AREA := F[0] + F[1]*X + F[2]*X**2

X + H ≤ B

X := X + H;

Y := F[0] + F[1]*X + F[2]*X**2;

AREA := AREA + Y;

AREA := AREA*H

Global Symbolic Evaluation

• Advantages
• global representation of routine
• no path selection problem

• Disadvantages
• has all problems of

• Symbolic Execution PLUS
• inability to solve recurrence relations

• (interdependencies, conditionals)
• Applications

• has all applications of
• Symbolic Execution plus

• Verification
• Program Optimization

Why hasn’t symbolic evaluation become widely used?

• expensive to create representations
• expensive to reason about expressions
• imprecision of results

• current computing power and better user
interface capabilities may make it worth
reconsidering

Partial Evaluation

• Similar to (Dynamic) Symbolic Evaluation
• Provide some of the input values

• If input is x and y, provide a value for x
• Create a representation that incorporates
those values and that is equivalent to the
original representation if it were given the
same values as the preset values

• P(x, y) = P’(x’, y)

Partial Evaluator

Partial evaluator

static input

program

Specialized programDynamic input output

Why is partial evaluation useful?

• In compilers
• May create a faster representation
• E.g., if you know the maximum size for a
platform or domain, hardcode that into the
system

• More than just constant propagation
• Do symbolic manipulations with the
computations

Example with Ackermann’s function

• A(m,n) = if m = 0 then n+1 else
if n = 0 then A(m-1, 1) else
A(m-1,A(m,n-1))

• A0(n) = n+1
• A1(n) = if n = 0 then A0(1) else

A0(A1(n-1))
• A2(n) = if n = 0 then A1(1) else

A1(A2(n-1))

Specialization using partial evaluation

Y:=A(I) Z:=A(2)

I > 2

read I, A(I)

A(2) := 5

Y:=A(I) Z:=5

?

read I, A(I)

A(2) := 5

I>2

I=2
I<2

Z:=eval(A(2))

Why is Partial Evaluation Useful in Analysis

• Often can not reason about dynamic
information

• Instantiates a particular configuration of the
system that is easier to reason about

• E.g., the number of tasks in a concurrent system;
the maximum size of a vector

• Look at several configurations and try to
generalize results

• Induction
• Often done informally

Reference on Partial Evaluation

• Neil Jones, An Introduction to Partial
Evaluation, ACM Computing Surveys,
September 1996

	Symbolic Evaluation/Execution
	Today’s Reading Material
	Symbolic Evaluation/Execution
	Functional Representation of an Executable Component
	Functional Representation of an Executable Component
	Representing Computation
	Representing Conditionals
	Example program
	Presenting the results
	Results (feasible path)
	Evaluating another path
	Results (infeasible path)
	what about loops?
	Symbolic Testing
	Simple Symbolic Evaluation
	Additional Features:
	Simplification
	Path Condition Consistency
	Fault Detection
	Checking user-defined assertions
	Comparing Fault Detection Approaches
	Additional Features:
	Path Selection
	Incremental Path Selection
	Path Selection (continued)
	Additional Features:
	Test Data Generation
	Enhanced Symbolic Evaluation Capabilities
	An Enhanced Symbolic Evaluation System
	Problems
	Alias Problem
	Escalating problem
	Can often determine array element
	Symbolic Evaluation Approaches
	Dynamic Symbolic Execution
	Dynamic Analysis combined with Symbolic Execution
	Dynamic Symbolic Execution
	Symbolic Evaluation Approaches
	Global Symbolic Evaluation
	Global Symbolic Evaluation
	Loop analysis example
	Loop Analysis Example
	Loop Analysis Example (continued)
	
	Loop analysis example
	Find path computation and path domain for all classes of paths
	Find path computation and path domain for all classes of paths
	Example
	Symbolic Representation of Rectangle
	Global Symbolic Evaluation
	Why hasn’t symbolic evaluation become widely used?
	Partial Evaluation
	Partial Evaluator
	Why is partial evaluation useful?
	Example with Ackermann’s function
	Specialization using partial evaluation
	Why is Partial Evaluation Useful in Analysis
	Reference on Partial Evaluation

