Symbolic Evaluation/Execution

Today's Reading Material

- L. A. Clarke and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems and Software, 5 (1), January 1985, pp.15-35.

Symbolic Evaluation/Execution

- Creates a functional representation of a path of an executable component
- For a path Pi
- $\mathrm{D}[\mathrm{Pi}]$ is the domain for path Pi
- $C[\mathrm{Pi}]$ is the computation for path Pi

Functional Representation of an Executable Component
$P: X \rightarrow Y$
P is composed of partial functions corresponding to the executable paths

$$
\begin{aligned}
P= & \left\{P_{1}, \ldots, P_{r}\right\} \\
& P_{i}: X_{i} \rightarrow y
\end{aligned}
$$

Functional Representation

 of an Executable ComponentX_{i} is the domain of path P_{i} Denoted $D\left[P_{i}\right]$

$$
\begin{aligned}
& X=D\left[P_{1}\right] \cup \ldots \cup D\left[P_{r}\right]=D[P] \\
& \quad D\left[P_{i}\right] \cap D\left[P_{j}\right]=\varnothing, i \neq j
\end{aligned}
$$

Representing Computation

- Symbolic names represent the input values
- the path value PV of a variable for a path describes the value of that variable in terms of those symbolic names
- the computation of the path $C[P]$ is described by the path values of the outputs for the path

Representing Conditionals

- an interpreted branch condition or interpreted predicate is represented as an inequality or equality condition
- the path condition PC describes the domain of the path and is the conjunction of the interpreted branch conditions
- the domain of the path $D[P]$ is the set of imput values that satisfy the PC for the path

Example program

procedure Contrived is X, Y, Z : integer;
1 read X, Y;
2 if $X \geq 3$ then
$3 \quad \mathrm{Z}$:= $\mathrm{X}+\mathrm{Y}$;
else
$4 \quad \mathrm{Z}$:= 0; endif;
5 if $\mathrm{Y}>0$ then
$6 \quad \mathrm{Y}:=\mathrm{Y}+5$;
endif;
7 if $X-Y<0$ then
8 write Z;
else
$9 \quad$ write Y ;
endif;
end Contrived;

Stmt PV PC
$1 \quad \mathrm{X} \leftarrow \mathrm{x} \quad$ true

2,3 $\quad Z \leftarrow x+y \quad$ true $\wedge x \geq 3=x \geq 3$
5,6 $\quad Y \leftarrow y+5 \quad x \geq 3 \wedge y>0$
7,9
$x \geq 3 \wedge y>0 \wedge x-(y+5) \geq 0$
$=x \geq 3 \wedge y>0 \wedge(x-y) \geq 5$

Presenting the results

Statements
PC
procedure Contrived is
X, Y, Z : integer;
read X, Y;
if $X \geq 3$ then
$Z:=X+Y$;
else
Z := 0;
endif;
if $Y>0$ then
$\mathrm{Y}:=\mathrm{Y}+5$;
endif;
if $X-Y<0$ then
write \mathbf{Z};
else
write \mathbf{Y};
endif
end Contrived

$$
\begin{array}{cll}
1 & X \leftarrow x & \text { true } \\
& Y \leftarrow y & \\
2,3 & Z \leftarrow x+y & \text { true } \wedge x \geq 3=x \geq 3 \\
5,6 & Y \leftarrow y+5 & x \geq 3 \wedge y>0 \\
7,9 & & x \geq 3 \wedge y>0 \wedge x-(y+5
\end{array}
$$

$$
\begin{aligned}
& P=1,2,3,5,6,7,9 \\
& D[P]=\{(x, y) \mid x \geq 3 \wedge y>0 \wedge x-y \geq 5\} \\
& C[P]=P V . y=y+5
\end{aligned}
$$

Results (feasible path)

Evaluating another path

procedure Contrived is X, Y, Z : integer;
1 read X, Y;
2 if $X \geq 3$ then
$3 \quad \mathrm{Z}$:= $\mathrm{X}+\mathrm{Y}$; else
$4 \quad \mathrm{Z}$:= 0; endif;
5 if $\mathrm{Y}>0$ then Y:= Y + 5; endif;
7 if $\mathrm{X}-\mathrm{Y}<0$ then
8 write Z;
else
$9 \quad$ write Y ;
endif;
end Contrived;

Stmts PV PC
$1 \quad \mathrm{X} \leftarrow \mathrm{x} \quad$ true

2,3 $\quad Z \leftarrow x+y \quad$ true $\wedge x \geq 3=x \geq 3$
5,7
$x \geq 3 \wedge y \leq 0$
7,8
$x \geq 3 \wedge y \leq 0 \wedge x-y<0$
procedure EXAMPLE is
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: integer;
$1 \quad \operatorname{read} X, Y$;
2 if $X \geq 3$ then
write Y ;
endif
end EXAMPLE

Stmts PV PC
$1 \quad \begin{array}{ll}\mathrm{X} \leftarrow \mathrm{x} & \text { true } \\ & \mathrm{Y} \leftarrow \mathrm{y}\end{array}$
2,3 $\quad Z \leftarrow x+y \quad$ true $\wedge x \geq 3=x \geq 3$

5,7
$x \geq 3 \wedge y \leq 0$
$x \geq 3 \wedge y \leq 0 \wedge x-y<0$
$P=1,2,3,5,7,8$
$D[P]=\{(x, y) \mid x \geq 3 \wedge y \leq 0 \wedge x-y<0\}$ infeasible path!

Results (infeasible path)

what about loops?

- Symbolic evaluation requires a full path description
-Example Paths

$$
\begin{aligned}
& \cdot P=1,2,3,5 \\
& \cdot P=1,2,3,4,2,3,5 \\
& \cdot P=1,2,3,4,2,3,4,2,3,5
\end{aligned}
$$

-Etc.

Symbolic Testing

- Path Computation provides [concise] functional representation of behavior for entire Path Domain
- Examination of Path Domain and Computation often useful for detecting program errors
- Particularly beneficial for scientific applications or applications w/o oracles

Simple Symbolic Evaluation

- Provides symbolic representations given path Pi
- path condition PC =
- path domain
- path values
$D[P i]=\{(x 1, x 1, \ldots, x 1) \mid p c$ true $\}$ PV. $\mathrm{X} 1=$
- path computation $C[\mathrm{Pi}]=$

$$
\begin{aligned}
& P=1,2,3,5,6,7,9 \\
& D[P]=\{(x, y) \mid x \geq 3 \wedge y>0 \wedge x-y \geq 5\} \\
& C[P]=P V . y=y+5
\end{aligned}
$$

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Simplification

- Reduces path condition to a canonical form
- Simplifier often determines consistency

$$
P C=(x>=5) \text { and }(x<0)
$$

- May want to display path computation in simplified and unsimplified form

$$
\begin{aligned}
\text { PV.X } & =x+(x+1)+(x+2)+(x+3) \\
& =4 * x+6
\end{aligned}
$$

Path Condition Consistency

- strategy = solve a system of constraints
- theorem prover
- consistency
- algebraic, e.g., linear programming
- consistency and find solutions
- solution is an example of automatically generated test data
... but, in general we cannot solve an arbitrary system of constraints!

Fault Detection

- Implicit fault conditions
- E.g. Subscript value out of bounds
- E.g. Division by zero e.g., Q:=N/D
- Create assertion to represent the fault and conjoin with the pc
- Division by zero assert(divisor $\neq 0$)
- Determine consistency

$$
P C_{P} \text { and }(P V \text {.divisor }=0)
$$

- if consistent then error possible
- Must check the assertion at the point in the path where the construct occurs

Checking user-defined assertions

- example
- Assert (A > B)
- PC and (PV.A) $\leq P V . B$)
- if consistent then assertion not valid

Comparing Fault Detection Approaches

- assertions can be inserted as executable instructions and checked during execution
- dependent on test data selected (dynamic testing)
- use symbolic evaluation to evaluate consistency
- dependent on path, but not on the test data
- looks for violating data in the path domain

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Path Selection

- User selected
- Automated selection to satisfy some criteria - e.g., exercise all statements at least once
- Because of infeasible paths, best if path selection done incrementally

Incremental Path Selection

- PC and PV maintained for partial path
- Inconsistent partial path can often be salvaged

Path Selection (continued)

Can be used in conjunction with other static analysis techniques to determine path feasibility

- Testing criteria generates a path that needs to be tested
- Symbolic evaluation determines if the path is feasible
- Can eliminate some paths from consideration

Additional Features:

- Simplification
- Path Condition Consistency
- Fault Detection
- Path Selection
- Test Data Generation

Test Data Generation

- Simple test date selection: Select test data that satisfies the path condition pc
- Error based test date selection
- Try to select test cases that will help reveal faults
- Use information about the path domain and path values to select test data
- e.g., PV.X = $a^{*}(b+2)$;
$a=1$ combined with min and max values of b
$b=-1$ combined with min and max values for a

Enhanced Symbolic Evaluation Capabilities

- Creates symbolic representations of the Path Domains and Computations
- "Symbolic Testing"
- Determine if paths are feasible
- Automatic fault detection
- system defined
- user assertions
- Automatic path selection
- Automatic Test Data Generation

An Enhanced Symbolic Evaluation System

Problems

- Information explosion
- Impracticality of all paths
- Path condition consistency
- Aliasing
- elements of a compound type e.g., arrays and records
- pointers

Alias Problem

Escalating problem

- Read I
- $X:=A[I]$
- $Y:=X+Z$

$$
\begin{aligned}
\text { PV. } X & =\text { unknown } \\
\text { PV. } Y & =\text { unknown }+ \text { PV. } Z \\
& =\text { unknown }
\end{aligned}
$$

Can often determine array element

Symbolic Evaluation Approaches

- symbolic evaluation
- With some enhancements
- Data independent
- Path dependent
- dynamic symbolic evaluation
- Data dependent--> path dependent
- global symbolic evaluation
- Data independent
- Path independent

Dynamic Symbolic Execution

- Data dependent
- Provided information
- Actual value:

$$
x:=25.5
$$

- Symbolic expression:

$$
X:=Y *(A+1.9) ; Y(5.1)
$$

- Derived expression:

Dynamic Analysis combined with

 Symbolic Execution- Actual output values
- Symbolic representations for each path executed
- path domain
- path computation
- Fault detection
- data dependent
- path dependent (if accuracy is available)

Dynamic Symbolic Execution

- Advantages
- No path condition consistency determination
- No path selection problem
- No aliasing problem (e.g., array subscripts)
- Disadvantages
- Test data selection (path selection) left to user
- Fault detection is often data dependent
- Applications
- Debugging
- Symbolic representations used to support path and data selection

Symbolic Evaluation Approaches

- simple symbolic evaluation
- dynamic symbolic evaluation
- global symbolic evaluation
- Data and path independent
- Loop analysis technique classifies paths that differ only by loop iterations
- Provides global symbolic representation for each class of paths

Global Symbolic Evaluation

- Loop Analysis
- creates recurrence relations for variables and loop exit condition
- solution is a closed form expression representing the loop
- then, loop expression evaluated as a single node

Global Symbolic Evaluation

2 classes of paths:

$$
\begin{aligned}
& P_{1}:(s,(1,2), 4,(5,(6,7), 8), f) \\
& P_{2}:(s, 3,4,(5,(6,7), 8), f)
\end{aligned}
$$

global analysis
case
$D\left[P_{1}\right]: C\left[P_{1}\right]$
$D\left[P_{2}\right]: C\left[P_{2}\right]$
Endcase

- analyze the loops first
- consider all partial paths up to a node

Loop analysis example

Loop Analysis Example

- Recurrence Relations

AREA $_{k}=$ AREA $_{k-1}+A_{0}$
$X_{k}=X_{k-1}+1$

- Loop Exit Condition lec $(k)=\left(X_{k}>B_{0}\right)$

Loop Analysis Example (continued)

- solved recurrence relations
$\operatorname{AREA}(\mathrm{k})=\operatorname{AREA}_{0}+\sum_{\mathrm{i}=\mathrm{X}_{0}}^{\mathrm{X}_{\mathbf{x}}+\mathrm{k}-1} \mathbf{A}_{\mathbf{0}}$
- solved loop exit condition

$$
\operatorname{lec}(k)=\left(X_{0}+k>B_{0}\right)
$$

- loop expression

$$
\begin{aligned}
& k_{e}=\min \left\{k \mid X_{0}+k>B_{0} \text { and } k \geq 0\right\} \\
& \text { AREA: }=A R E A_{0}+ \\
& x:=X_{0}+k_{e} \quad \sum_{x_{0}+x_{0}-1} \mathbf{A}_{0}
\end{aligned}
$$

- loop expression
$k_{e}=\min \left\{k \mid X_{0}+k>B_{0}\right.$ and $\left.k \geq 0\right\}$

AREA : $=$ AREA $_{0}+\sum_{0_{0}+k_{e} 1}$
$X:=X_{0}+k_{e} \quad \sum_{i=X_{0}} A_{0}$

- global representation for input (a, b)

$$
X_{0}=a, A_{0}=a, B_{0}=b, \operatorname{AREA}_{0}=0
$$

$a+k_{e}>b==>k_{e}>b-a$
$K_{e}=b-a+1$
$X=a+(b-a+1)=b+1$
AREA $=$

$$
=(b-a+1) a \quad \square
$$

$$
\sum_{i=a}^{b} \mathbf{a}
$$

Loop analysis example

Find path computation and path domain for all classes of paths

- P1 = (1, 2, 3, 4, 7)
- $D[P 1]=a>b$
- $C[P 1]=(A R E A=0)$ and (X=a)

Find path computation and path domain for all classes of paths

- $\mathrm{P} 2=(1,2,3,4,(5,6), 7)$
- $D[P 2]=(b>a)$
- $C[P 2]=($ AREA $=(b-a+1) a)$
$k_{e}=b-a+1$
$x:=b+1$

$$
\begin{aligned}
& X_{0}=a \\
& B_{0}=b \\
& A_{0}=\mathbf{a} \\
& K_{e}=b-a+1 \\
& X=b+1 \\
& \text { AREA = (b-a+1) a }
\end{aligned}
$$

Example

procedure RECTANGLE (A, B : in real; H : in real range $-1.0 \ldots 1.0$; F : in array [0..2] of real; AREA: out real; ERROR: out boolean) is
-- RECTANGLE approximates the area under the quadratic equation
-- $F[0]+F[1]^{*} X+F[2]^{*} X^{\star *} 2$ From $X=A$ to $X=B$ in increments of H. X, Y : real;
begin

- --check for valid input
if $H>B-A$ then ERROR := true:
- else

ERROR := false;
X := A;
AREA := $F[0]+F[1]^{\star} X+F[2]^{*} X^{\star} 2$;
while $X+H \leq B$ loop
$X:=X+H$;
$Y:=F[0]+F[1]^{\star} X+F[2]^{\star} X^{* *} 2 ;$
AREA := AREA + Y : end loop;
AREA := AREA* H :
endif:
end RECTANGLE

Symbolic Representation of Rectangle

P_{1}	(s,1,2, $)^{\text {) }}$
$\mathrm{D}\left[\mathrm{P}_{1}\right]$	($\mathrm{a}-\mathrm{b}+\mathrm{h}>0.0$)
$\mathbf{C}\left[\mathbf{P}_{1}\right]$	$\begin{aligned} & \text { AREA = ? } \\ & \text { ERROR = true } \end{aligned}$
\mathbf{P}_{2}	(s,1,3,4,5,6,10,f)
$\mathrm{D}\left[\mathrm{P}_{2}\right]$	$\begin{aligned} & (\mathrm{a}-\mathrm{b}+\mathrm{h}<=\mathbf{0 . 0}) \text { and }(\mathrm{a}-\mathrm{b}+\mathrm{h}>0.0) \\ & ==\text { false } \\ & * * * \text { infeasible path } * * * \end{aligned}$
\mathbf{P}_{3}	(s,1,3,4,5,(6,7,8,9),10,11,f)
D $\left[\mathbf{P}_{3}\right]$	($\mathrm{a}-\mathrm{b}+\mathrm{h}<=0.0$)
$\mathrm{C}\left[\mathrm{P}_{3}\right]$	ERROR = false

Global Symbolic Evaluation

- Advantages
- global representation of routine
- no path selection problem
- Disadvantages
- has all problems of
- Symbolic Execution PLUS
- inability to solve recurrence relations
- (interdependencies, conditionals)
- Applications
- has all applications of
- Symbolic Execution plus
- Verification
- Program Optimization

Why hasn't symbolic evaluation become widely used?

- expensive to create representations
- expensive to reason about expressions
- imprecision of results
- current computing power and better user interface capabilities may make it worth reconsidering

Partial Evaluation

- Similar to (Dynamic) Symbolic Evaluation
- Provide some of the input values
- If input is x and y, provide a value for x
- Create a representation that incorporates those values and that is equivalent to the original representation if it were given the same values as the preset values
- $P(x, y)=P^{\prime}\left(x^{\prime}, y\right)$

Partial Evaluator

Why is partial evaluation useful?

- In compilers
- May create a faster representation
- E.g., if you know the maximum size for a platform or domain, hardcode that into the system
- More than just constant propagation
- Do symbolic manipulations with the computations

Example with Ackermann's function

- $A(m, n)=$ if $m=0$ then $n+1$ else if $n=0$ then $A(m-1,1)$ else $A(m-1, A(m, n-1))$
- $A O(n)=n+1$
- $A 1(n)=$ if $n=0$ then $A O(1)$ else
- $A 2(n)=$ if $n=0$ then $A 1(1)$ else

Specialization using partial evaluation

Why is Partial Evaluation Useful in Analysis

- Often can not reason about dynamic information
- Instantiates a particular configuration of the system that is easier to reason about
- E.g., the number of tasks in a concurrent system: the maximum size of a vector
- Look at several configurations and try to generalize results
- Induction
- Often done informally

Reference on Partial Evaluation

- Neil Jones, An Introduction to Partial Evaluation, ACM Computing Surveys, September 1996

