
Modeling with UML
Chapter 2, part 3

CS 4354

Summer II 2014

!
Jill Seaman

1

Activity Diagrams

• Describe the behavior of a system in terms of activities

• Represent the sequencing and coordination of actions or steps.

!

• Rounded rectangles represent actions and activities.

• Edges between activities represent control flow.

✦branching, looping, concurrency

• Activity diagrams can be hierarchical:

✦A given activity in a rounded rectangle could be further detailed in its own

separate activity diagram.

2

3

Activity Diagrams: control nodes

• Decisions (branches, alternates)

✦Diamond with one incoming arrow two or more outgoing arrows.

✦Outgoing edges labeled with guards (conditions) that select that arrow.

✦Merge nodes (diamond with many incoming, one outgoing arrow) to mark

the end of the branching, are often omitted.

• Fork nodes and Join nodes (concurrency)

✦Fork: denotes splitting control into multiple threads

✦Join: denotes synchronizing threads back into one

✦Denotes activities that may be done in any order (they are not required to

be done concurrently).

4

Decision in the Handle Incident process.

5

Concurrency in incident management process.

6

Fork
Join

Activity Diagrams: swimlanes

• Swimlanes (activity partitions)

✦Rectangles enclosing a group of activities

✦Denotes object of subsystem that implements the activities

✦Edges may cross swimlane boundaries

7

Swimlanes in incident management process.

8

When and how to use Activity Diagrams

• When developing use cases

✦activity diagrams are good at capturing business (and other) processes

(also called workflows).

• During Object-Oriented design

✦deciding what objects perform which activities (once you already have an

activity diagram).

• When designing complicated operations/methods.

✦use to model the control flow through a single method (like a flowchart or

control flow diagram).

9

State diagrams

• Describe the dynamic behavior of an individual object

!

• Describes the sequence of states an object goes through in
response to external events

✦A graph: states are nodes, transitions are edges

!

• Transitions from one state to another occur as a result of external
events

!

10

State diagram for the watch display

11

• small black circle: start state
• small black circle inside another circle: finish state

button1Pressed

States and Transitions

• A state is a value of an attribute of an object that is changed by an
external event.

✦An Incident can exist in four states: Active, Inactive, Closed and Archived

✦These are nodes in the graph

✦A node can have some activity that is performed when the node is entered.

• A transition represents a change of state triggered by events,
conditions, or time.

✦Transitions are directed edges in the graph

✦labelled by the event causing the transition:  

 Event [Guard] / Action 
Each part is optional, Guard must be true to transition, Action is performed
when transition occurs.

12

State Machine diagram for 2Bwatch

13

/beep is the action that happens
when both buttons are pressed

Nested State Machine example: SetTime state

14

a separate state diagram to describe setTime of previous slide

b1 = pressButton1 b2 = pressButton2

State diagram with nested state and guards

15

When and how to use State Diagrams

• When designing a class that has an attribute that responds to
external events (and determining which state the object is in is not
trivial)

✦Use the state diagram to document the transitioning behavior

• During testing

✦If you have a state diagram, you can develop tests that perform a

sequence of events and then verify that the object is in the correct state
with respect to the diagram

• If your object (or system) does not have an attribute that responds
to external events, do not use state diagrams!

• User Interface objects often have behavior that is useful to depict
with a state diagram

16

