
Introduction to the Java programming language

CS 4354

Summer II 2014

!
Jill Seaman

1

Free Java textbook available online

• "Thinking in Java" by Bruce Eckel, 4th edition, 2006, ISBN
0131872486, Pearson Education

!

• The third edition is a free electronic book:

2

http://www.mindview.net/Books/TIJ/

A simple java program

3

//This program prints Welcome to Java! !
!
public class Welcome {!!
 public static void main(String[] args) { !
 System.out.println("Welcome to Java!");!
 }!
}!

Welcome.java

Compilation

• To compile the program enter at the prompt (Unix or Dos):

!

!

✦javac is the java compiler

✦If successful, this command creates the file Welcome.class in the same

directory

✦Welcome.class contains platform-independent bytecode

✦bytecode is interpreted (executed) by a Java Virtual Machine (JVM), and

will run on a JVM installed on any platform

✦The program does NOT need to be recompiled to run on another platform.

4

javac Welcome.java

Execution

• To run the program enter at the prompt (Unix or Dos):

!

!

!

!

✦This runs the java bytecode on a Java Virtual Machine.

✦The java tool launches a Java application. It does this by starting a Java

runtime environment, loading a specified class, and invoking that class's
main method.

✦The main method must be declared public and static, it must not return
any value, and it must accept a String array as a parameter.

5

workspace jill$ java Welcome!
Welcome to Java!!
workspace jill$

Java Platform

• a bundle of related programs that allow for developing and running
programs written in the Java programming language

• two distributions:

✦Java Runtime Environment (JRE) contains the part of the Java platform

required to run Java programs (the JVM)

✦Java Development Kit (JDK) is for developers and includes development

tools such as the Java compiler, Javadoc, Jar, and a debugger.

6

Editions of Java

• Different editions of java target different application environments

✦Java Card for smartcards.

✦Java Platform, Micro Edition (Java ME) — targeting environments with

limited resources.

✦Java Platform, Standard Edition (Java SE) — targeting workstation

environments.

✦Java Platform, Enterprise Edition (Java EE) — targeting large distributed

enterprise or Internet environments.

• Each edition offers slightly different libraries (APIs) suited for the
given environment.

• API: Application Programming Interface: the specification of the
interface.

7

Releases of Java

• Different releases of Java

✦JDK 1.0 (1996) Codename: Oak

✦JDK 1.1 (1997)

✦J2SE 1.2 (1998)

✦J2SE 1.3 (2000)

✦J2SE 1.4 (2002)

✦J2SE 5.0 (2004) (1.5)

✦Java SE 6 (2006) (1.6)

✦Java SE 7 (2011) (1.7) (I have this one)

✦Java SE 8 (2014)

8

Principles

• There were five primary goals in the creation of the Java language:

✦It should be "simple, object-oriented and familiar"

✦It should be "robust and secure"

✦It should be "architecture-neutral and portable"

✦It should execute with "high performance"

✦It should be "interpreted, threaded, and dynamic"

9

Features

• Interesting features of Java

✦Object-oriented: everything is an object

✦Inheritance

✦Polymorphism: can use a subclass object in place of the superclass

✦Garbage collection (dynamic memory allocation)

✦Exception handling: built-in error handling

✦Concurrency: built-in multi-threading

✦Persistence: support for saving objects’ state between executions

✦Platform independence: supports web programming

10

Characteristics of
Pure object-oriented programming

• Everything is an object.

✦attributes + operations

• A program is a bunch of objects telling each other what to do by
sending messages

✦a message as a request to call a method that belongs to a particular object

• Each object has its own memory made up of other objects.

✦this is how to represent complex systems

• Every object has a type.

✦its type is a class, the class specifies the methods of the object

• All objects of a particular type can receive the same messages.

✦Even the instances of the subclasses

11

All objects in Java are really references [TIJ ch 2]

• Everything is treated as an object, using a single consistent syntax.

• However, the identifier you manipulate is actually a “reference” to

an object 

• Safer to initialize a reference when you create it:

!

!

• Usually you use “new” to create new objects:

!

!

• Note: references are on the run-time stack, objects are in heap.
12

String s; //this is just a ref, a pointer

String s = “asdf”;

String s = new String(“asdf”);

• These are NOT references, not objects

• They are stored on the run-time stack

• Size is not machine-dependent, always the same

Special case: primitive types

13

Wrapper: object that
contains the primitive

!
char c = 'x';!
Character C = !
new Character(c);

Arrays in Java

• An array is ALWAYS initialized to default values (see slide 16)

✦cannot access uninitialized elements by mistake

• Arrays have bounds checking

✦unable to access memory outside its block (using the array): runtime error

• This is to enforce safety (though it requires overhead)

• Arrays are objects, contain primitives or references to objects

✦member length returns size of array

✦can access elements using [x]

14

Weeble[] c = new Weeble[4];!
for(int i = 0; i < c.length; i++)!
 if(c[i] == null) // test for null reference!
 c[i] = new Weeble();

Classes in Java, fields

• A Class defines a type with fields (data) and methods (operations)

• Fields can be objects or primitives

!

!

!

• Can create an object of this class using new:

!

• Fields are accessible using dot operator

15

class ClassA { !
 int i;!
 Weeble w;!
}

ClassA a = new ClassA();

a.i = 11;!
a.w = new Weeble();

Default values for fields

• If you provide no explicit initialization to instance variables, they will
be assigned the following default initial values

!

!

!

!

!

!

!

• These apply to fields (and array elements), not to local variables.

16

Classes in Java, methods

• Methods in Java determine the messages an object can receive.

• They are functions that the object can execute on itself

• Syntax is very similar to C++

!

!

!

!

• Methods are accessible using dot operator

17

class ClassA { !
 int i;!
 Weeble w;!
 int mult (int j) {!
 return i*j;!
 }!
}

ClassA a = new ClassA();!
a.i = 10;!
int x = a.mult(4);

Accessing classes from libraries

• In Java libraries, elements are grouped into packages

• Packages have dotted path names (like internet domains)

• To use a class from a package, import the qualified class name:

!

• Or import the entire package:

18

import java.util.ArrayList;

import java.util.*;

static keyword

• When a field or method is declared static, it means that data or
method is not tied to any particular object instance of that class

• Instances of the class share the same static fields

• Static methods may not access non-static fields

!

!

!

• Static fields and methods may be accessed without instantiating
any objects by using the class name, or from an existing object.

19

StaticFun.i = 100;!
StaticFun sf = new StaticFun();!
sf.incr();

class StaticFun {!
 static i = 11;!
 static void incr () { i++; }!
}

A Java program

!

!

!

!

!

!

• Standalone program: one class must have same name as file. that
class must have a main method with signature as above.

• args are for command line arguments.

• public means method is available outside the file

• comments: /* ... */ or //...to end of line

20

// HelloDate.java!
import java.util.*;!
!
public class HelloDate {!
 public static void main(String[] args) {!
 System.out.println("Hello, it's: ");!
 System.out.println(new Date());!
 }!
}

Java library documentation

• Online documentation for Java 1.7 API

!

• java.lang is always implicitly loaded

✦System class, contains out field (a static PrintStream)

✦PrintStream has overloaded println methods

• Look for Date in the online documentation

✦java.util.Date

✦shows constructor and other methods in documentation

21

http://docs.oracle.com/javase/7/docs/api/

Javadoc

• javadoc: a tool to extract comments embedded in source code and
put them in a useful form:

✦HTML files, viewable from a browser.

✦Can regenerate the HTML files whenever the comments/code change.

• Uses a special comment syntax to mark the documentation inside
the source code

• javadoc also pulls out the class name or method name that adjoins
the comment(s).

• html files are similar to the online Java API documentation.

• Purpose is to document the public interface: the class names and

public methods.

22

Javadoc syntax

• The javadoc commands occur only within /** … */ comments

✦Note the initial double asterisks.

• Each javadoc comment must precede the class definition, instance
variable definition or method definition that it is documenting.

/** A class comment */!
public class DocTest {!
 /** A variable comment */!
 public int i;!
 /** A method comment */!
 public void f() {}!
}!

• The javadoc comments may contain the following:

✦embedded html code, especially for lists and formatting code snippets

✦“doc tags”: special keywords that begin with @ that have special meaning

to the javadoc tool.
23

Javadoc tags

• This table summarizes the more commonly used tags.

24

25

/**
 * A Container is an object that contains other objects.
 * @author Trevor Miller
 * @version 1.2
 * @since 0.3
 */
public abstract class Container {
 /**
 * Create an empty container.
 */
 protected Container() { }
 /**
 * Return the number of elements contained in this container.
 * @return The number of objects contained
 */
 public abstract int count();
 /**
 * Accept the given visitor to visit all objects contained.
 * @param visitor The visitor to accept
 */
 public abstract void accept(final Visitor visitor);
 /**
 * Determine whether this container is empty or not.
 * @return <CODE>true</CODE> if the container is empty:
 * <CODE>count == 0</CODE>, <CODE>false</CODE> otherwise
 */
 public boolean isEmpty() {
 return (this.count() == 0);
 }
}

Javadoc: generating the html files

• Use the javadoc command (from the JDK) to produce the html files:

javadoc -d api Container.java!

• The -d option indicates a target directory for the html files

• Generates multiple .html files

• click on api/Container.html to see the result. 
 
 
 

• For more details on javadoc, follow the javadoc links on the class
website “readings” page: 

26

http://cs.txstate.edu/~js236/cs4354/readings.html

Operators in Java [TIJ ch 3]

• Mathematical operators, same as C++

!

!

✦integer division truncates, like C++

• Relational operators yield boolean result (not int)

!

✦== over objects tests the value of the reference (the pointers)

• Logical operators

!

• String + is concatenation: 
this yields a new String object:

27

< > <= >= == !=

+ - * / %!
++ --!
+= -= *= /= %=

&& || !

“abc” + “def”

“abcdef”

Assignment in Java

• Assignment in Java is like in C++

✦For primitive types, values are copied

!

!

✦For objects, the reference is copied so both variables refer to the same
object.

!

!

!

✦changes to a will also affect b

• Objects are passed by reference by default

28

Weeble b = new Weeble();!
Weeble a;!
a = b; // a and b refer to same Weeble object

int a;!
a = 10;

Control flow in Java (same as C++)

• if-else

!

!

• while, do-while, and for

!

!

!

!

• break and continue (also with labels)

• switch statement like C++

29

if(Boolean-expression)!
 statement!
else!
 statement

if(Boolean-expression)!
 statement

while(Boolean-expression)!
 statement

do!
 statement!
while(Boolean-expression);

for(initialization; Boolean-expression; step)!
 statement

String

• The String class represents character strings.

• All string literals in Java programs, such as "abc", are implemented

as instances of this class.

• Methods (many more available):

✦length() Returns the length of this string.

✦charAt(int i) Returns the char value at the specified index (but this cannot

appear on the left of an assignment, you cannot change the string).

✦ + for string concatenation

30

String str = “abc”;!
for (int i=0; i<str.length(); i++)!
 System.out.println(str.charAt(i));!
System.out.println(str+”def”);

toString

• toString is a method that is defined by default for every class

!

• The String value returned should represent the data in the object.

• This makes it easy to output an object to the screen. The following

are generally equivalent:

!

• You can override the default definition by redefining toString for
your class.

31

System.out.println(w);

public String toString();

System.out.println(w.toString());

class ClassA { !
 private int i;!
 private double x;!
 public String toString() {!
 return (“i: “+i+” x: “+x);!
 }!
}

Constructors [TIJ ch 4]

• Like C++:

✦ classes can have constructor functions to initialize their fields.

✦ these are named the same as the class, they have no return

type, and can be overloaded.

✦ they are called automatically (primarily when “new” is used to

create an instance of a class).

✦ if you don’t create one for your class, a default (no-arg)

constructor is created for you (initializes fields to default values).

• Unlike C++:

✦ you can call a constructor from within another constructor (see
next slide)

32

this

• The this keyword—which can be used only inside a method—
produces a reference to the object the method has been called on.

✦ in Java it’s a reference, not a pointer

!

!

!

• It can also be used to call a constructor from another constructor
(Unlike C++):

!

33

class ClassA { !
 int i;!
 void seti(int i) {!
 this.i = i;!
 }!
}

class ClassA { !
 int i;!
 ClassA(int i) !
 { this.i = i; }!
 ClassA() !
 { this(0); } // calls ClassA(0)!
}

ClassA x = new ClassA();!
x.seti(10);!
//inside seti, “this” is equal to x

Packages [TIJ ch 5]

• Classes can be grouped into packages:

!

!

!

✦Declares these classes to belong to a package called “myPackage”

✦package statement must come first in the file.

✦Other classes (outside of myPackage) wanting access to SmallBrain must

import myPackage, or fully specify it: myPackage.SmallBrain.

✦This is a mechanism to manage name spaces: this code will work with

another package that has its own SmallBrain class.

✦Anytime you create a package, you implicitly specify a directory structure:

this file should be in a directory named “myPackage”
34

package myPackage;!
!
import!
!
public class SmallBrain {

Packages: example

• To put your classes in a package called xx.myPackage:

✦Declare the package on the first line of each java file

!

!

!

✦Put all the files in package xx.myPackage in the following directory: 
...src/xx/myPackage

✦Make src the current directory:

✦To compile:

✦To run:

35

package xx.myPackage;!
!
import!
!
public class SmallBrain {

javac xx/myPackage/*.java

java xx.myPackage.ClassA

Assuming ClassA contains a main method

cd ...src

Access specifiers

• keywords that control access to the definitions they modify

✦public: accessible to all other classes

✦protected: accessible to classes derived from (subclasses of) the class

containing this definition as well as other classes in the same package.

✦package (unspecified, default): accessible only to other classes in the

same package

✦private: accessible only from within the class in which it is defined

!

!

36

The final keyword

• Java’s final keyword has slightly different meanings depending on
the context, but in general it says “This cannot be changed.”

• Data

✦To create named constants (primitive type):

!

✦Use static so the class does not recreate it for each instance

✦If you create an object that is final, it only means the reference cannot

change, but the contents of the object itself could

!

✦Cannot assign v2 to something else, but you could change its fields

37

public static final int VAL_THREE = 39;

private final Value v2 = new Value(22);

v2.setValue(25);

ArrayList class [New]

• Must specify the element types (base type) when declaring:

!

✦20 is the initial capacity

✦The base type must be a class (NOT primitive type).

• Basic methods:

✦add(BaseType x) Appends the specified element to the end of this list.

Starts at position 0, increases capacity as necessary.

✦get(int i) Returns the element at the specified position in this list.

✦size() Returns the number of elements in this list (not the capacity).

✦remove(int i) Removes the element at the specified position in this list, and

closes the gap.

38

ArrayList<String> list = new ArrayList<String>(20);

array vs. ArrayList

• array elements can be any type, ArrayList must contain objects.

• ArrayList can increase in size as needed (array size cannot be

changed).

• ArrayList implements a “partially filled array” automatically. For an

array, you must manage the size and implement “add” and
“remove” operations yourself.

• ArrayList can be iterated over using a “for-each” loop:

!

!

!

✦General syntax is: for (BaseType var : arrayList) stmt

39

ArrayList<String> list = new ArrayList<String>(20);!
//Some code here to fill the list!
for (String s : list)!
 System.out.println(s); //does this for each String in list

