
Java - Threads

CS 4354

Summer II 2014

!
Jill Seaman

1

Threads

• What is a process?

✦a self-contained running program with its own address space.

✦processes are controlled by the operating system.

• What is a thread?

✦A thread is an execution stream within a process.

• A thread is also called a lightweight process.

✦Has its own execution stack, local variables, and program counter.

✦Very much like a process, but it runs within a process.

• There may be more than one thread in a process.

✦Is called a multithreaded process.

2

Multithreading

• Multithreading:

✦Provides the capability to run tasks in parallel for a process.

✦All threads share with each other resources allocated to the process.

✦In fact, they compete with each other.

• Threads allow the programmer to turn a program into separate,
independently running subtasks

• In all cases, thread programming:

1. Seems mysterious and requires a shift in the way you think about

programming

2. Looks similar to thread support in other languages, so when you

understand threads, you understand a common tongue

3

Threads in Java

• “In general, you’ll have some part of your program tied to a
particular event or resource, and you don’t want that to hold up the
rest of your program. So, you create a thread associated with that
event or resource and let it run independently of the main program.”

• java.lang.Thread has all the wiring necessary to create and run
threads.

• The run() method contains the code that will be executed
“simultaneously” with the other threads in a program

• The Java Thread class implements a generic thread that, by default,
does nothing.

✦Its run() method is empty.

4

Threads in Java

• There are two techniques to implement threads in Java:

✦To subclass Thread and override run().

✦To implement the Runnable interface (by defining run()) and embed class

instances in a Thread object.

!

!

• Once a Thread/Runnable instance is created, call the start() method
to make it run.

✦ This causes the run() method to be executed in a separate thread.

✦ The code following the call to start() will execute concurrently with the

thread’s run method.

5

This allows a class to have a superclass other
than Thread, but still implement a thread.

Subclassing Thread: example

6

public class YinYang extends Thread {!
 private String word; // what to say!
!
 public YinYang(String whatToSay) {!
 word = whatToSay;!
 }!
!
 public void run() {!
 for (int i = 0; i < 10; i++) {!
 System.out.print(word + " ");!
 yield(); // to give another thread a chance!
 }!
 }!
!
 public static void main(String[] args) {!
 YinYang yin = new YinYang("Yin"); // to create Yin thread!
 YinYang yang = new YinYang("Yang"); // to create Yang thread!
 yin.start(); // to start Yin thread!
 yang.start(); // to start Yang thread!
 }!
 }

Yin Yang Yang Yang Yin Yang Yin Yang Yin Yang
Yin Yang Yin Yang Yin Yang Yin Yang Yin Yin

output:

Implementing Runnable: example

7

public class YangYin implements Runnable {!
 private String word; // what to say!
 public YangYin(String whatToSay) {!
 word = whatToSay;!
 }!
 public void run() {!
 for (int i = 0; i < 10; i++) {!
 System.out.print(word + " ");!
 Thread.yield(); // to give another thread a chance!
 }!
 }!
 public static void main(String[] args) {!
 Runnable rYang = new YangYin("Yang"); // to instantiate YangYin!
 Runnable rYin = new YangYin("Yin"); // to instantiate again!
!
 Thread yang = new Thread(rYang); // to create Yang thread!
 Thread yin = new Thread(rYin); // to create Yin thread!
 yang.start(); // to start Yang thread!
 yin.start(); // to start Yin thread!
 }!
}

Yin Yin Yang Yin Yang Yin Yang Yang Yin Yang Yin
Yang Yang Yin Yang Yin Yang Yin Yang Yin

output:

Thread methods

• run()

✦The code that will be run concurrently (in its own thread)

• start()

✦Causes the run method to execute in a separate thread, continues

execution.

• yield()

✦Causes the currently executing thread object to temporarily pause and

allow other threads to execute.

• sleep(long milllis)

✦Causes the currently executing thread to sleep (temporarily cease

execution) for the specified number of milliseconds

8

Thread methods

• join()

✦Causes the calling thread to wait for this thread to complete before

proceeding.

• getName()

✦Returns this thread's name (set in the constructor).

• interrupt()

✦Called from outside the thread.

✦interrupts a thread that is paused via sleep(), or join().

✦InterruptedException is generated in the sleep/join

✦Calls to sleep/join must be in a try/catch block

9

public final void join()!
 throws InterruptedException

10

class Sleeper extends Thread {
 private int duration;
 public Sleeper(String name, int sleepTime) {
 super(name);
 duration = sleepTime;
 start(); //starts itself
 }
 public void run() {
 try {
 sleep(duration);
 } catch (InterruptedException e) {
 System.out.println(getName() + " was interrupted.");
 return;
 }
 System.out.println(getName() + " has awakened");
 }
}
!
class Joiner extends Thread {
 private Sleeper sleeper;
 public Joiner(String name, Sleeper sleeper) {
 super(name);
 this.sleeper = sleeper;
 start(); //starts itself
 }
 public void run() {
 try {
 sleeper.join();
 } catch (InterruptedException e) {
 System.out.println(getName() + " was interrupted. “);
 return;
 }
 System.out.println(getName() + " join completed");
 }
}

public class Joining {
 public static void main(String[] args) {
 Sleeper
 sleepy = new Sleeper("Sleepy", 1500),
 grumpy = new Sleeper("Grumpy", 1500);
 Joiner
 dopey = new Joiner("Dopey", sleepy),
 doc = new Joiner("Doc", grumpy);
 grumpy.interrupt();
 // doc.interrupt();
 }
}

Grumpy was interrupted.
Doc join completed
Sleepy has awakened
Dopey join completed

Doc was interrupted.
Sleepy has awakened
Grumpy has awakened
Dopey join completed

interrupt() example

Thread synchronization

• We now have the possibility of two or more threads trying to use
the same limited resource at once.

✦i.e. two threads trying to access the same bank account at the same time

!

11

public class Account{ !
 private float balance = 0; !
 public float getBalance(){ return balance; } !
 public void incrBalance(float value){ balance = balance + value; } !
}

public class Demo {!
 public static void main(String[] args) {!
 Account a = new Account();!
 Teller t1 = new Teller(a);!
 Teller t2 = new Teller(a);!
 t1.start();!
 t2.start();!
 System.out.println(a.getBalance());!
}

class Teller extends Thread {!
 Account a;!
 public Teller(Account a) {!
 this.a = a;!
 }!
 public void run() {!
 a.incrBalance(100.00);!
 }!
}

Thread synchronization

• The output of the previous Demo should be 200.00

✦But depending on timing of t1 and t2, it could be 100.00

• Note that (in assembly/byte code) incrBalance is really 2 steps:

!

!

!

• So either one of these sequences of events is possible:

12

t1 gets a balance of 0!
t1 sets the balance to 100!
t2 gets a balance of 100!
t2 sets the balance to 200

public void incrBalance(float value){ !
 float f = getbalance; //get!
 setbalance (f + value); } //set!
}

t1 gets a balance of 0!
t2 gets a balance of 0!
t1 sets the balance to 100!
t2 sets the balance to 100

Thread synchronization

• If a certain method should not be called from two threads at the
same time, you can use the keyword “synchronized”.

✦If a thread is inside one of the synchronized methods, all other threads are

blocked from entering any of the synchronized methods of the class until
the first thread returns from its call

!

13

public class Account{ !
 private float balance = 0; !
 public float synchronized getBalance(){ return balance; } !
 public void synchronized incrBalance(float value){ !
 balance = balance + value; !
 } !
}

