
If/else & switch

Unit 3

Sections 4.1-6, 4.8-12, 4.14-15

CS 1428
Spring 2019

Jill Seaman

!1

Straight-line code  
(or IPO: Input-Process-Output)

! So far all of our programs have followed this
basic format:
‣ Input some values

‣ Do some computations

‣ Output the results

! The statements are executed in a sequence,
first to last.

!2

Decisions

!3

• Sometimes we want to be able to decide
which of two statements to execute:

monthly sales
> $3,000

fee is 2.5%fee is 2.9%

YN

Relational Expressions

!4

! Making decisions require being able to ask “Yes”
or “No” questions.

! Relational expressions allow us to do this.
! Relational expressions evaluate to true or false.
! Also called:
‣ logical expressions

‣ conditional expressions

‣ boolean expressions

Relational Expressions

!5

! Boolean literals:

! Boolean variables

bool isPositive = true;
bool found = false;

true

false

true evaluates to true

isPositive evaluates to true
found evaluates to false

false evaluates to false

4.1 Relational Operators

!6

! Binary operators used to compare expressions:
< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equals (note: do not use =) !!

!= Not Equals

Relational Expressions

!7

! Examples:

! Can assign relational expressions to variables:
bool isPositive;
int x;
cin >> x;
isPositive = x > 0;

int x=6;
int y=10;

a. x == 5 evaluates to ___false___
b. 7 <= x + 2 evaluates to __________
c. y – 3 > x evaluates to __________
d. x != y evaluates to __________
d. true evaluates to ___true____

if the user types: 25
isPositive stores the value ______

Relational Operator Precedence

!8

! Relational operators are LOWER than
arithmetic operators:

! Relational operators are HIGHER than
assignment:
int x, y;
...
bool t1 = x > 7; // > then =
bool t2 = x * 5 >= y + 10; // *, +, >=, =

int x, y;

... x < y -10 ... // minus happens first

... x * 5 >= y + 10 ... // mult, then plus, then >=

4.2 The if statement

!9

• The if statement can be used to execute a
statement only under certain conditions:

• expression is evaluated
‣ If it is true, then statement is executed. 

‣ If it is false, then statement is skipped  

if (expression)
 statement

if statement example

!10

! Example: An employee gets a $100 bonus if their
hours are over 40.

double rate = 14.50;
double hours, pay;

cout << “Enter the hours you worked: ”;
cin >> hours;

pay = hours * rate;
if (hours > 40)
 pay = pay + 100;

cout << “Your pay is: $“ << pay << endl;

4.3 The block statement

!11

! a block (or a compound statement) is a set of
statements inside braces: 
 
 

 

! This groups several statements into a single
statement.

! This allows us to use multiple statements when by
rule only one is allowed.

{ int x;
 cout << “Enter a value for x: “ << endl;
 cin >> x;
 cout << “Thank you.” << endl;
}

if with a block

!12

! We can use a block to conditionally execute more
than just one statement:

double rate = 14.50;
double hours, pay;

cout << “Enter the hours you worked: ”;
cin >> hours;

pay = hours * rate;
if (hours > 40) {
 pay = pay + 100;
 cout << “Your pay includes a bonus.” << endl;
}

cout << “Your pay is: $“ << pay << endl;

4.4 The if/else statement

!13

• if/else statement is used to decide which of two
statements to execute:

• expression is evaluated
‣ If it is true, then statement1 is executed. 

(statement2 is skipped).

‣ If it is false, then statement2 is executed  
(statement1 is skipped).

if (expression)
 statement1 (or block)
else
 statement2 (or block)

statement1 and statement2
 are called branches

if/else example

!14

double monthlySales;
double price;
double rate;

cout << "Enter monthly sales last month: " ;
cin >> monthlySales;
cout << "Enter selling price of item: " ;
cin >> price;

if (monthlySales > 3000)
 rate = .025;
else
 rate = .029;

double commission = price * rate;
cout << "Commission: $" << commission << endl;

Enter monthly sales last month: 3025
Enter selling price of item: 100
Commission: $2.50

if/else structure

!15

Notice:

• relational expression is in parentheses
• NO semi-colon after expression, nor the else
• Good style: indent the statements in each

branch!!

if (monthlySales > 3000)
 rate = .025;
else
 rate = .029;

4.5 Nested if statements

!16

! if-else is a statement. It can occur as a branch
of another if-else statement.

Nested if statements

!17

! if-else is a statement. It can occur as a branch
of another if-else statement.

char bornInUSA;
int age;
cout << “Were you born in the USA (Y/N)?: “ ;
cin >> bornInUSA;
cout << “Please enter your age: “;
cin >> age;

if (bornInUSA == 'Y')
 if (age >= 35)
 cout << “You qualify to run for President\n”;
 else
 cout << “You are too young to run for President\n”;
else
 cout << “You must have been born in the US in order “
 << “to run for President” << endl;

Nested if statements

!18

! if-else is a statement. It can occur as a branch
of another if-else statement.

char bornInUSA;
int age;
cout << “Were you born in the USA (Y/N)?: “ ;
cin >> bornInUSA;
cout << “Please enter your age: “;
cin >> age;

if (bornInUSA == 'Y')
 if (age >= 35)
 cout << “You qualify to run for President\n”;
 else
 cout << “You are too young to run for President\n”;
else
 cout << “You must have been born in the US in order “
 << “to run for President” << endl;

Testing a series of conditions

!19

! Decision structure to determine a grade

Common nested if pattern

!20

! Determine letter grade from test score:

! Note the braces are actually optional here!

if (testScore >= 90)
 grade = 'A';
else {
 if (testScore >= 80)
 grade = 'B';
 else {
 if (testScore >= 70)
 grade = 'C';
 else {
 if (testScore >= 60)
 grade = 'D';
 else
 grade = 'F';
 }
 }
 }

If we are in this
else branch, what
do we know about
the value of
testScore?

4.6 The if/else if Statement

!21

! Not really a different statement, just a different
way of indenting the nested if statement from
the previous slide:

! removed braces, put “if (…)” on previous line
! eliminated nested indentation.

if (testScore >= 90)
 grade = 'A';
else if (testScore >= 80)
 grade = 'B';
else if (testScore >= 70)
 grade = 'C';
else if (testScore >= 60)
 grade = 'D';
else
 grade = 'F';

4.8 Logical Operators

!22

! Used to create relational expressions from other
relational expressions:
‣ && AND (binary operator)

a && b is true only when both a and b are true 

‣ || OR (binary operator)

a || b is true whenever either a or b is true 

‣ ! NOT (unary operator)

!a is true when a is false

Logical Operators

!23

! Examples
int x=6;
int y=10;

a. x == 5 && y <= 3 false && false is false
b. x > 0 && x < 10 true && true is true
c. x == 10 || y == 10 false || true is true
d. x == 10 || x == 11 ___ || ___ is ____
e. !(x > 0) !true is _____
f. !(x > 6 || y == 10) !(false || true) is ____

bool flag;
flag = (x > 0 && x < 25);
g. !flag
h. flag || x < 100

Logical Operator Precedence

!24

! ! is higher than most operators, so use
parentheses: 

! && is higher than ||
 
 
 

! && and || are lower than arithmetic+relational
operators: parens not usually needed

int x, y;
bool flag;

... flag || x * 5 >= y + 10 && x == 5

 // which op is first? second? etc?

int x;

... !(x < 0 && x > -10) ... // <, >, &&, !

4.9 Checking Numeric Ranges

!25

! We want to know if x is in the range from 1 to 10
(inclusive)
a. if (1 <= x <= 10) //as in math class
 cout << “YES” << endl;  

 //THIS DOES NOT WORK IN C++:
 // ((1<=x) <=10) (assume x is -5)
 // => (false <= 10)
 // => (0<=10) is true, but should be false
 
b. if (1 <= x && x <= 10)
 cout << “YES” << endl;

 -check: x=0? (1<=0 && 0<=10) => false && true

 -check: x=5? (1<=5 && 5<=10) => true && true

 -check: x=100? (1<=100 && 100<=10) => ??

4.10 Menus

! Menu-driven program: program controlled by
user selecting from a list of actions

! Menu: list of choices on the screen
! Display list of numbered/lettered choices
! Prompt user to make a selection
! Test the selection in nested if/else or switch
‣ Match found: execute corresponding code

‣ Else: error message (invalid selection).

!26

Sample menu code

!27

 int choice;
 double charges;
 int months = 12;

 // Display the menu and get a choice.
 cout << "Health Club Membership Menu\n\n";
 cout << "1. Standard Adult Membership\n";
 cout << "2. Child Membership\n";
 cout << "3. Senior Citizen Membership\n";
 cout << "Enter your choice: ";
 cin >> choice;

 // Respond to the user's menu selection.
 if (choice==1) {
 charges = months * 40.0;
 cout << "The total charges are $" << charges << endl;
 } else if (choice==2) {
 charges = months * 20.0;
 cout << "The total charges are $" << charges << endl;
 } else if (choice==3) {
 charges = months * 30.0;
 cout << "The total charges are $" << charges << endl;
 } else {
 cout << “ERROR: The valid choices are 1 through 3.“ << endl;
 }

4.11 Validating User Input

!28

• Input validation: inspecting input data to
determine whether it is acceptable

• Invalid input is an error that should be treated
as an exceptional case.
‣ The program can ask the user to re-enter the data
‣ The program can exit with an error message

cout << “Enter a positive number: ”;
cin >> x;
if (x > 0) {
 //do something with x here

} else {
 cout << “You entered a negative number or 0.” << endl;
 cout << “The program is ending.” << endl;
}

4.12 Comparing Characters and
Strings

!29

! Characters are compared using their ASCII values

‣ This is true. 
ASCII value of 'A' (65) is less than the ASCII value of ‘B’(66) 

‣ This is true. 
ASCII value of '1' (49) is less than the ASCI value of '2' (50) 

! Lowercase letters have higher ASCII codes than
uppercase letters, so 'a' > 'Z'

‘A’<‘B’

‘1’<‘2’

Comparing string objects

!30

! Like characters, strings are compared using their
ASCII values

string name1 = "Mary";
string name2 = "Mark";

name1 > name2 // true
name1 <= name2 // false
name1 != name2 // true

name1 < "Mary Jane" // true

The characters in each
string must match exactly
in order to be equal

Otherwise, use first non-
equal character as basis
of the comparison (‘y’>’k’)

If a string is a prefix of the
other, then it is less than
the other

4.14 The switch statement

!31

• Like a nested if/else, used to select one of
multiple alternative code sections.

• tests one integer/char expression against
multiple constant integer/char values: 

switch (expression) {
 case const1: statements
 ...
 case constn: statements
 default: statements
}

switch statement behavior

!32

• expression is evaluated to an int/char value
• execution starts at the case labeled with that

int/char value
• execution starts at default if the int/char value

matches none of the case labels

switch (expression) {
 case const1: statements
 ...
 case constn: statements
 default: statements
}

switch statement syntax

!33

• expression must have int/char type
• const1, constn must be constants! 

a literal or named constant
• statements is one or more statements  

(braces not needed and not recommended!)
• default: is optional

switch (expression) {
 case const1: statements
 ...
 case constn: statements
 default: statements
}

switch statement example

!34

! Example:

int quarter;
...
switch (quarter) {
 case 1: cout << “First”;
 break;
 case 2: cout << “Second”;
 break;
 case 3: cout << “Third”;
 break;
 case 4: cout << “Fourth”;
 break;
 default: cout << “Invalid choice”;
}

The break Statement

!35

! The break statement causes an immediate exit
from the switch statement. 

! Without a break statement, execution continues
on to the next set of statements (the next case). 

! Sometimes this is useful: the textbook has
some nice examples. 

Multiple labels

!36

! if ch is ‘a’, it falls through to output “Option A” 
(then it breaks)

char ch;
...
switch (ch) {
 case ‘a’:
 case ‘A’: cout << “Option A”;
 break;
 case ‘b’:
 case ‘B’: cout << “Option B”;
 break;
 case ‘c’:
 case ‘C’: cout << “Option C”;
 break;
 default: cout << “Invalid choice”;
}

4.15 More about blocks and scope

!37

! The scope of a variable is the part of the
program where the variable may be used.

! The scope of a variable is the innermost block
in which it is defined, from the point of definition
to the end of that block.

! Note: the body of the main function is just one
big block.

Scope of variables in blocks

!38

int main()
{
 double income; //scope of income is red + blue
 cout << "What is your annual income? ";
 cin >> income;

 if (income >= 35000) {
 int years; //scope of years is blue;
 cout << "How many years at current job? ";
 cin >> years;
 if (years > 5)
 cout << "You qualify.\n";
 else
 cout << "You do not qualify.\n";
 }
 else
 cout << "You do not qualify.\n";
 cout << “Thanks for applying.\n”;
 return 0;
}

Cannot access years
down here

Variables with the same name

!39

! In an inner block, a variable is allowed to have
the same name as a variable in the outer block.

! When in the inner block, the outer variable is
not available (it is hidden).

! Not good style: difficult to trace code and find
bugs

! See example next slide

Variables with the same name

!40

int main()
{
 int number;
 cout << "Enter a number greater than 0: ";
 cin >> number;
 if (number > 0) {
 int number; // another variable named number
 cout << "Now enter another number ";
 cin >> number;
 cout << "The second number you entered was ";
 cout << number << endl;
 }
 cout << "Your first number was " << number << endl;
}

Enter a number greater than 0: 88
Now enter another number 2
The second number you entered was 2
Your first number was 88

