
Loops

Unit 4

Sections 5.2-12

CS 1428
Spring 2019

Jill Seaman

!1

Control Flow
 (order of execution)

!2

• So far, control flow in our programs has
included:
‣ sequential processing (1st statement, then 2nd statement…)

‣ branching (conditionally skip some statements). 

• Chapter 5 introduces loops, which allow us to
conditionally repeat execution of some
statements.
‣ while loop

‣ do-while loop

‣ for loop

5.2 The while loop

!3

! As long as the relational expression is true, repeat
the statement

while syntax and semantics

!4

• The while statement is used to repeat
statements:

• How it works:
‣ expression is evaluated:

‣ If it is true, then statement is executed, then it starts over
(and expression is evaluated again).

‣ If it is false, then statement is skipped  
(and the loop is done).

while (expression)
 statement

while example

!5

• Example:

• Output

int number = 1;

while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1;
}

cout << “Done” << endl;

Student1
Student2
Student3
Done

Hand trace!

5.3 Using while for input validation

!6

• Inspect user input values to make sure they are
valid.

• If not valid, ask user to re-enter value:
int number;

cout << “Enter a number between 1 and 10: “;
cin >> number;

while (number < 1 || number > 10) {
 cout << “Please enter a number between 1 and 10: “;
 cin >> number;
}

// Do something with number here  

Don’t forget to input
the next value

Explain the valid
values in the prompt

This expression is true when
number is OUT of range.

Input Validation

!7

! Checking for valid characters:

char answer;

cout << “Enter the answer to question 1 (a,b,c or d): “;
cin >> answer;

while (answer != ‘a’ && answer != ‘b’ &&
 answer != ‘c’ && answer != ‘d’)
{
 cout << “Please enter a letter a, b, c or d: “;
 cin >> answer;
}

// Do something with answer here  

5.4 Counters

! Counter: a variable that is incremented (or
decremented) each time a loop repeats.

! Used to keep track of the number of iterations
(how many times the loop has repeated).

! Must be initialized before entering loop!!!!

!8

Counters

!9

! Example (how many times does the user enter
an invalid number?):
int number;
int count = 0;

cout << “Enter a number between 1 and 10: “;
cin >> number;

while (number < 1 || number > 10) {
 count = count + 1;
 cout << “Please enter a number between 1 and 10: “;
 cin >> number;
}

cout << count << “ invalid numbers were entered.“ << endl;

// Do something with number here  

Counters

!10

! Example, using the counter to control how
many times the loop iterates:

! Output:

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num = 1; // counter variable
while (num <= 8) {
 cout << num << “ “ << (num * num) << endl;
 num = num + 1; // increment the counter
}

Number Number Squared
------ --------------
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64

5.5 The do-while loop

!11

! Execute the statement(s), then repeat as long as
the relational expression is true.

do-while syntax and semantics

!12

• The do-while loop has the test expression at
the end:

• How it works:
‣ statement is executed.
‣ expression is evaluated:

‣ If it is true, then it starts over (and statement is executed
again).

‣ If (when) it is false, the loop is done.

• statement always executes at least once.

do
 statement
while (expression);

Don’t forget the
semicolon at the end

do-while example

!13

• Example:

• Output

int number = 1;
do
{
 cout << “Student” << number << endl;
 number = number + 1;
} while (number <= 3);

cout << “Done” << endl;

Student1
Student2
Student3
Done

do-while with menu

!14

char choice;

do {
 cout << “A: Make a reservation.” << endl;
 cout << “B: View flight status.” << endl;
 cout << “C: Check-in for a flight.” << endl;
 cout << “D: Quit the program.” << endl;
 cout << “Enter your choice: “;

 cin >> choice;

 switch (choice) {
 case ‘A’: // code to make a reservation
 break;
 case ‘B’: // code to view flight status
 break;
 case ‘C’: // code to process check-in
 break;
 }
} while(choice != ‘D’);

Different ways to control the loop
! Conditional loop: body executes as long as a

certain condition is true
‣ input validation: loops as long as input is invalid

! Count-controlled loop: body executes a specific
number of times using a counter
‣ actual count may be a literal, or stored in a variable.

! Count-controlled loop follows a pattern:
‣ initialize counter to zero (or other start value).

‣ test counter to make sure it is less than count.

‣ update counter during each iteration. !15

5.6 The for loop

!16

• The for statement is used to easily implement a
count-controlled loop.

• How it works:
1. expr1 is executed (initialization)
2. expr2 is evaluated (test)
3. If it is true, then statement is executed,  

then expr3 is executed (update),  
then go to step 2.

4. If (when) it is false, then statement is skipped  
(and the loop is done).

for (expr1; expr2; expr3)
 statement

The for loop flow chart

!17

expr1

expr2 expr3statement

for (expr1; expr2; expr3)
 statement

The for loop and the while loop

!18

• The for statement

• is equivalent to the following code using a while
statement:

for (expr1; expr2; expr3)
 statement

expr1; // initialize
while (expr2) { // test
 statement
 expr3; // update
}

for loop example

!19

• Example:

• Output

int number;
for (number = 1; number <= 3; number++)
{
 cout << “Student” << number << endl;
}

cout << “Done” << endl;

Student1
Student2
Student3
Done

Equivalent to
number = number + 1

Note: no semicolon

Counters: redo

!20

! Example, using the counter to control how
many times the loop iterates:

! Rewritten using a for loop:

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num = 1; // counter variable
while (num <= 8) {
 cout << num << “ “ << (num * num) << endl;
 num = num + 1; // increment the counter
}

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num;
for (num = 1; num <= 8; num++)
 cout << num << “ “ << (num * num) << endl;

Define variable in init-expr

!21

• You may define the loop counter variable inside
the for loop’s initialization expression:

• Do NOT try to access x outside the loop  
(the scope of x is the for loop statement ONLY)

• What is the output of the for loop?

for (int x = 10; x > 0; x=x-2)
 cout << x << endl;

cout << x << endl; //ERROR, can’t use x here

Hand trace!

User-controlled count

!22

• You may use a value input by the user to
control the number of iterations:

• How many times does the loop iterate?

int maxCount;
cout << “How many squares do you want?” << endl;
cin >> maxCount;

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

for (int num = 1; num <= maxCount; num++)
 cout << num << “ “ << (num * num) << endl;

Loops in C++  
(review)

!23

• while  

‣ if expression is true, statement is executed, repeat

• for  

‣ equivalent to:

• do while

while (expression)
 statement

for (expr1; expr2; expr3)
 statement

do
 statement
while (expression);

expr1;
while (expr2) {
 statement
 expr3;
}

statement is executed.
if expression is true, then repeat

statement may be a
compound statement
(a block: {statements})

Common tasks solved 
using loops

!24

! Counting
! Summing
! Calculating an average (the mean value)
! Read input until “sentinel value” is encountered
! Read input from a file until the end of the file is

encountered

Counting
(review)

!25

! set a counter variable to 0
! increment it inside the loop (each iteration)
! after each iteration of the loop, it stores the # of

loop iterations so far
int number;
int count = 0;

cout << “Enter a number between 1 and 10: “;
cin >> number;

while (number < 1 || number > 10) {
 count = count + 1;
 cout << “Please enter a number between 1 and 10: “;
 cin >> number;
}

cout << count << “ invalid numbers entered “ << endl;

// Do something with number here  
!26

! After each iteration of the loop, it stores the sum
of the numbers added so far (running total)

! set an accumulator variable to 0
! add the next number to it inside the loop

int days; //Count for count-controlled loop
float total = 0.0; //Accumulator
float miles; //daily miles ridden

cout << “How many days did you ride your bike? “;
cin >> days;

for (int i = 1; i <= days; i++) {
 cout << “Enter the miles for day “ << i << “: ”;
 cin >> miles;
 total = total + miles;
}

cout << “Total miles ridden: “ << total << endl;

5.7 Keeping a running total
(summing)

total is 0 first time through

Keeping a running total

!27

• Output:

• How would you calculate the average mileage?

How many days did you ride you bike? 3
Enter the miles for day 1: 14.2
Enter the miles for day 2: 25.4
Enter the miles for day 3: 12.2
Total miles ridden: 51.8

!28

! sentinel: special value in a list of values that
indicates the end of the data

! sentinel value must not be a valid value! 
-99 for a test score, -1 for miles ridden

! User does not need to count how many values
will be entered

! Requires a “priming read” before the loop starts
‣ so the sentinel is NOT included in the sum

‣ the loop can be skipped (if first value is the sentinel)

5.8 Sentinel controlled loop

Sentinel example

!29

• Example:

• Output:

float total = 0.0; //Accumulator
float miles; //daily miles ridden

cout << “Enter the miles you rode on your bike each day, “;
cout << “then enter -1 when finished. “ << endl;

cin >> miles; //priming read
while (miles != -1) {
 total = total + miles; //skipped when miles==-1
 cin >> miles; //get the next one
}

cout << “Total miles ridden: “ << total << endl;

Enter the miles you rode on your bike each day,
then enter -1 when finished.
14.2
25.4
12.2
-1
Total miles ridden: 51.8

5.9 Which Loop to use?
! Any loop can work for any given problem
! while loop:
‣ test at start of loop, good for:

‣ validating input, sentinel controlled loops, etc.

! for loop:
‣ initialize/test/update, good for:

‣ count-controlled loops

! do-while loop
‣ always do at least once, good for:

‣ repeating on user request, simple menu processing!30

5.10 Nested loops

!31

! When one loop appears in the body of another
! For every iteration of the outer loop, we do all

the iterations of the inner loop
! Example from “real life”:
! A clock. For each hour in a day (24), we iterate

over 60 minutes.
12:00 1:00 2:00 3:00
12:01 1:01 2:01 .
12:02 1:02 2:02 .
...
12:59 1:59 2:59 .

Print a bar graph

!32

• Input numbers from a file. For each number,
output that many asterisks (*) in a row. 
 
 
 
 

• numbers.txt: Output:  

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);
inputFile >> number; //priming read
while (number!=-1) {
 for (int i = 1; i <= number; i++)
 cout << ‘*’;
 cout << endl;
 inputFile >> number;
}

8
3
6
10
-1

Calculate grades for a class

!33

int numStudents, numTests;
cout << “How many students? “;
cin >> numStudents;
cout << “How many test scores? “;
cin >> numTests;
for (int student=1; student <= numStudents; student++) {
 float total = 0, score;
 cout << “Enter the “ << numTests
 << “ test scores for student ” << student << endl;
 for (int test=1; test <= numTests; test++) {
 cin >> score;
 total = total + score;
 }
 float avgScore = total/numTests;
 cout << “Average for student” << student
 << “ is: “ << avgScore << endl;
}

For each student, input the test scores from the
user and output the average.

Inner loop

Outer loop

Calculate grades for a class

!34

• Output:

How many students? 3
How many test scores? 4
Enter the 4 test scores for student 1
88 90.5 92 77.5
Average for student1 is: 87.0
Enter the 4 test scores for student 2
66.5 70.5 80 86
Average for student2 is: 75.8
Enter the 4 test scores for student 3
99 93.5 80 79
Average for student3 is: 87.9

5.11 More File I/O

!35

• Can test a file stream variable as if it were a
boolean variable to check for various errors.

• After opening a file, if the open operation failed,
the value of file stream variable is false.

• Note: after ANY input operation, if it fails, the value of file stream
variable will then be false.

ifstream infile;
infile.open("test.txt");

if (!infile) {
 cout << "File open failure!";
 return 1; //abort program!
}

Reading data from a file

!36

• Use fin>>x; in a loop
• Problem: when to stop the loop?
• First entry in file could be count of number of

items
‣ problems: maintenance (must update it whenever data is

modified), large files (might be hard to count)

• Could use sentinel value
‣ problem: may not be one (every value is valid),  

maintenance (someone might delete it)

• Want to automatically detect end of file

Using >> to detect end of file

!37

! stream extraction operation (>>) returns true
when a value was successfully read, false
otherwise

! inputFile >> num:
‣ tries to read a value into num

‣ if it was successful, result is true (foundValue is true)

‣ if it failed (non-number char or no more input), result is false
(foundValue is false, but the value in num does not change!)

int num;
ifstream inputFile;
inputFile.open(“numbers.txt”);

bool foundValue = (inputFile >> num);

Using the result of >>

!38

• Example: 
 
 
 

• Can also use directly as relational expression:

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

bool foundValue = (inputFile >> number);

if (foundValue)
 cout << “The data read in was: “ << number << endl;
else
 cout << “Could not read data from file.” << endl;

if (inputFile >> number)
 ...

Sum all the values in the file
without using a count or sentinel value

!39

• Code:

• numbers.txt: Output:  

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

int total = 0;
while (inputFile >> number) {
 total = total + number;
}

cout << “The sum of the numbers in the file: “ << total
 << endl;

The sum of the numbers in the file: 344 84
32
99
77
52

puts the priming read directly
in the test expression

5.12 Breaking and Continuing

!40

• Sometimes we want to abort (exit) a loop before
it has completed.

• The break statement can be used to terminate
the loop from within: 
 
 
 
 

• Don’t do this. It makes your code hard to read
and debug.

cout << “Guess a number between 1 and 10” << endl;
int number;
while (true) {
 cin >> number;
 if (number == 8)
 break;
}
cout << “You got it.” << endl;

Stopping a single iteration

!41

• Sometimes we want to abort an iteration (skip
to the end of loop body) before it is done.

• The continue statement can be used to
terminate the current iteration: 
 
 
 

• Output:
• Don’t do this either. It makes your code hard to

read and debug.

for (int i=1; i <= 6; i++) {
 if (i == 4)
 continue;
 cout << i << “ “;
}

1 2 3 5 6

