Functions

Unit 6

CS 1428
Spring 2019

Jill Seaman

Gaddis: 6.1-5,7-10,13,15-16 and 7.8

6.1 Modular Programming

* Modular programming: breaking a program up
into smaller, manageable components (modules)

» Function: a collection of statements that perform
a task, grouped into a single named unit.

* Why is modular programming important?

» Improves maintainability/readability of programs by giving
structure and organization to the code

» Simplifies the process of writing programs: programmer can
write one small function at a time

This program has one long, complex
function containing all of the statements
necessary to solve a problem.

l

int main()

{

statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;
statement;

In this program the problem has been
divided into smaller problems, each of
which is handled by a separate function.

l

int main()

{
statement;
statement;
statement;

}

main function

void function2()
{
statement;

statement;
statement;
}

statement; function 2
statement;

}

void function3()

{
statement; i
statement; function 3
statement;

}

void function4()

{
statement; Hnetontt

6.2 Defining and Calling Functions

» Function definition: statements that make up a
function, along with its name, parameters and
return type.

return-type function-name (parameters)

{
}

statements

 Function call: statement (or expression) that
causes a function to execute

function-name (arguments)

Function Definition

A Function definition includes:

* return type: data type of the value that the function
returns to the part of the program that called it.

e function-name: name of the function. Function
names follow same rules as variables.

» parameters: optional list of variable definitions.
These will be assigned values each time the
function is called.

* body: statements that perform the function’s task,
enclosed in { }.

Function Definition

return-type function-name (parameters)

statements
}
Return type Parameter list (This one is empty)
Function header Function name
(in the box) Function body

--—"“‘~b1inc main () | ’///
1

cout << "Hello World\n";
return 0;

Function Return Type

« If a function computes and returns a value, the
type of the value it returns must be indicated as

the return type: @getRate()

return 8;

}

 |f a function does not return a value, its return
type is void:

void printHeading()

{
cout << "Monthly Sales\n";

}

Calling a Function

* To execute the statements in a function, you must
“call” it from within another function (like main).

» To call a function, use the function name followed
by a list of expressions (arguments) in parens:

printHeading();

» Whenever called, the program executes the body of
the called function (it runs the statements).

« After the function terminates, execution resumes in
the calling function after the function call.

Functions in a program

* Example:

#include <iostream>
using namespace std;

void displayMessage()
{
cout << “Hello from the function displayMessage.\n”;

}

int main()

{
cout << “Hello from Main.\n”;
displayMessage();
cout << “Back in function Main again.\n”;
return 0;

Functions in a program

* C)UtpUtZ Hello from main.
Hello from the function displayMessage.
Back in function main again.

» Flow of Control (order of statements):

void displayMessage()
{
cout << "Hello from the function displayMessage.\n";

}

Control always <
starts at main {

cout << "Hello from main.\n"
displayMessage();

cout << "Back in function main again.\n";
return 0;

\

Calling Functions: rules

« A program is a collection of functions, one of
which must be called “main”.

* Function definitions can contain calls to other
functions.

» A function must be defined before it can be
called

» In the program text, the function definition must occur before
all calls to the function

» Unless you use a “prototype”

6.3 Function Prototypes

« Compiler must know the following about a
function before it can process a function call:
» name, return type and

» data type (and order) of each parameter

» Not necessary to have the body of the function
before the call.

« Sufficient to put just the function header before
all functions containing calls to that function

» The complete function definition must occur later in the
program.

» The header alone is called a function prototype 12

#include <iostream> PFOtOtypeS |n a program

using namespace std;

// function prototypes
void first();
void second();

int main() {

}

cout << "I am starting in function main.\n";
first(); // function call

second(); // function call

cout << "Back in function main again.\n";
return 0;

// function definitions
void first() {

}

cout << "I am now inside the function first.\n";

void second() {

}

cout << "I am now inside the function second.\n";

Prototype Style Notes

» Place prototypes near the top of the program
(before any other function definitions)--good
style.

» Using prototypes, you can place function
definitions in any order in the source file

« Common style: all function prototypes at
beginning, followed by definition of main,
followed by other function definitions.

6.4 Sending Data into a Function

You can pass (or send) values to a function in
the function call statement.

This allows the function to work over different
values each time it is called.

Arguments: Expressions (or values) passed to
a function in the function call.

Parameters: Variables defined in the function
definition header that are assigned the values
passed as arguments.

A Function with a Parameter

void displayValue(int num)

{
}

cout << "The value is " << num << endl;

* num is the parameter.

+ Calls to this function must provide an argument
(expression) that has an integer value:

‘displayValue(S);

* 5 is the argument.

Function with parameter in program

#include <iostream>
using namespace std;

// Function Prototype
void displayValue(int);

int main() {
cout << "I am passing 5 to displayValue.\n";
displayValue(5);
cout << "Back in function main again.\n”;
displayValue(8); //call again with diff. argument
return 0;

}

// Function definition
void displayValue(int num) {

cout << "The value is " << num << endl;
}

Output: | I am passing 5 to displayValue.
The value is 5

Back in function main again.
The value is 8

Parameter Passing Semantics

 Given this function call, with the argument of 5:
displayValue(5);
» Before the function body executes, the

parameter (num) is initialized to the argument (5),
like this:

int num = 5; //this stmt is executed implicitly

» Then the body of the function is executed, using
num as a regular variable:

cout << "The value is " << num << endl;

Parameters in Prototypes and
Function Definitions
» The prototype must include the data type of

each parameter inside its parentheses:
‘void evenOrOdd(int); //prototype‘

» The definition must include a definition for each
parameter in its parens

void evenOrOdd(int num) //header
{ if (num%2==0) cout << “even”;
else cout << *odd”; }

» The call must include an argument (expression)
for each parameter, inside its parentheses
‘evenOrOdd(x+10); //call‘

19

Passing Multiple Arguments

When calling a function that has multiple
parameters:

‘Void power (int, int); //prototype

* the following must all match:

» the number and order of data types in the prototype
» the number and order of parameters in the function definition
» the number and order of arguments in the function call

« the first argument will be used to initialize the first

parameter, the second argument to initialize the
second parameter, etc.

» they are assigned in order.

20

Example: function calls function

void deeper() {
cout << “I am now in function deeper.\n”;

}

void deep() {
cout << “Hello from the function deep.\n”;
deeper();
cout << “Back in function deep.\n”;

}

int main() {
cout << “Hello from Main.\n”;
deep();
cout << “Back in function Main again.\n”;
return 0;

Output; | Hello from Main.

Hello from the function deep.
I am now in function deeper.
Back in function deep.

Back in function Main again. 21

Example: call function more than once

#include <iostream>
#include <cmath>
using namespace std;

void pluses(int count) {
for (int i = 0; i < count; i++)
cout << |l+v|;
cout << endl;

}

int main() {
int x = 2;
pluses(4); Output:

pluses(x); T+t
pluses(x+5); ++

pluses(pow(x,3.0)); S
return 0; St

22

Example: multiple parameters

#include <iostream>
#include <cmath>
using namespace std;

void pluses(char ch, int count) {

}

int main()

for (int i=0; i < count; i++)
cout << ch;
cout << endl;

) {
int x = 2;

char cc s Output:
pluses('#',4); P ##H##
pluses('*',x); * %
pluses(cc,x+5); NN
pluses('x',pow(x,3.0)); XXXXXXXX

return 0;

23

6.7 The return statement

return;
Used to stop the execution of a void function
Can be placed anywhere in the function body

» the function immediately transfers control back to the
statement that called it.

Statements that follow the return statement will
not be executed

In a void function with no return statement,
the compiler adds a return statement before the
last }

24

The return statement: example

void someFunc (int x) {

if (x < 0)
cout << “x must not be negative.” << endl;
else {
// Continue with lots of statements, indented
/] ...

// so many it’s hard to keep track of matching {}
}
}
void someFunc (int x) { This is equivalent, easier to read
if (x < 0) {
cout << “x must not be negative.” << endl;
return;

}

// Continue with lots of statements, less indentation,
// no brackets to try to match ...
} 25

6.8 Returning a value from a
function

* You can use the return statement in a non-void
function to send a value back to the function
call:

return expr;

» The value of the expr will be sent back.

» The data type of expr must be placed in the
function header:
Return type:
int doubleIt(int x) {
return x*2;
} ™\ Value being returnezcz

Calling a function that returns a
value

* If the function returns void, the function call is a
statement:
pluses(4);

* If the function returns a value, the function call is
an expression:

int y = doublelIt(4);

* The value of the function call (underlined) is the
value of the expr returned from the function,
and you should do something with it.

Returning the sum of two ints

#include <iostream>
using namespace std;

int sum(int,int);

int main() { Output:
int valuel; Enter 2 numbers:
int value2; 20 40 .
int total; The sum is 60
cout << "Enter 2 numbers: " << endl;

cin >> valuel >> value2;
total = sum(valuel, value2);
cout << "The sum is " << total << endl;

}

int sum(int x, int y) {
return x + y;

} 28

Data transfer

total = sum(valuel, value2);

|
40
IZO[
m int sum(int X , int Yy)

{

return X + Yy ;

}
* The function call from main: sum(valuel, value2)

passes the values stored in vailue1 and value2 (20

and 40) to the function, assigning them to x and y.

* The result, x+y (60), is returned to the call and
stored in total.

29

Function call expression

* When a function call calls a function that returns
a value, it is an expression.

» The function call can occur in any context
where an expression is allowed:

» assign to variable (or array element)

total = sum(x,y);

» output via cout cout << sum(x,y);

» use in a more complicated expression cout << sum(x,y)*.1

» pass as an argument to another function z = pow(sum(x,y),2);

» The value of the function call is determined by
the value of the expression returned from the
function. 3

.
’

r

6.9 Returning a boolean value

bool isvValid(int number)
{
bool status;
if (number >=1 && number <= 100)
status = true;
else
status = false;
return status;

}
 the above function is equivalent to this one:

bool isValid (int number) {
return (number >=1 && number <= 100);

}

31

Returning a boolean value

* You can call the function in an if or while:

bool isValid(int);

int main() {
int val;
cout << “Enter a value between 1 and 100: ”
cin >> val;

while (!isvValid(val)) {
cout << “That value was not in range.\n”;
cout << “Enter a value between 1 and 100: ”
cin >> val;

32

6.5 Passing Data by Value

(review)

« Pass by value: when an argument is passed to
a function, its value is copied into the
parameter.

« Parameter passing is implemented using
variable initialization (behind the scenes):

int param = argument;

» Changes to the parameter in the function
definition cannot affect the value of the
argument in the call

33

Example: Pass by Value

#include <iostream>
using namespace std;

Output: | number is 12
myValue is 200
Back in main, number is 12

void changeMe(int);

int main() {
int number = 12;
cout << "number is " << number << endl;
changeMe (number) ;
cout << "Back in in, number is " << number << endl;
return 0;
} int myValue = number;

void changeMe(int myValue) {
myValue = 200;
cout << "myValue is " << myValue << endl;
}
changeMe failed! 34

Pass by Value notes

When the argument is a variable (as in f(x)):

» The parameter is initialized to a copy of the
argument’s value.

« Even if the body of the function changes the
parameter, the argument in the function call is
unchanged.

* The parameter and the argument are stored in
separate variables, separate locations in
memory.

35

6.13 Passing Data by Reference

» Pass by reference: when an argument is
passed to a function, the function has direct
access to the original argument.

» Pass by reference in C++ is implemented using
a reference parameter, which has an
ampersand (&) in front of it:

void changeMe (int &myValue);
» Areference parameter acts as an alias to its
argument.

» Changes to the parameter in the function DO
affect the value of the argument 3

Example: Pass by Reference

#include <iostream> Output:
using namespace std;

number is 12
myValue is 200
Back in main, number is 200

void changeMe(int &);

int main() {
int number = 12;
cout << "number is " << number << endl;
changeMe (number) ;

cout << "Back in in, number is " << number << endl;

return 0;

myValue is an alias for number,
only one shared variable

void changeMe(int &myValue) {
myValue = 200;
cout << "myValue is " << myValue << endl;

this statement changes number

37

Using Pass by Reference for input

double square(double number) {
return number * number;

}

void getRadius(double &rad) {

cout << "Enter the ra of the circle: ";
cin >> rad;
} During the function execution,
rad is an alias to radius in the

int main() { main program.

const double PI = 3.14159;
double radius;
double area;
cout << fixed <<
getRadius (radius);

etprecision(2);

area = PI * square(radius);
cout << "The area is " << area << endl;
return 0; 38

Pass by Reference notes

« Changes made to a reference parameter are
actually made to its argument

» The & must be in the function header AND the
function prototype.

» The argument passed to a reference parameter
must be a variable — it cannot be a constant or
contain an operator (like +)

» Use when appropriate — don’t use when:

» the argument should not be changed by function (!)

» the function returns only 1 value: use return stmt!
39

6.10 Local and Global Variables

» Variables defined inside a function are local to
that function.

» They are hidden from the statements in other functions,
which cannot access them.

» Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.

» This is not bad style. These are easy to keep straight

* Parameters are also local to the function in
which they are defined.

40

Local variables are hidden from
other functions

#include <iostream>

using namespace std;

Output: | In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

void anotherFunction();

int main() {

}

void anotherFunction() {

This num variable is visible
only in main

int num = 1; <«

cout << "In main, num is " << num << endl;
anotherFunction();
cout << "Back in main, num is "

return 0;

<< num << endl;

This num variable is visible
only in anotherFunction

int num = 20; <

cout << "In anotherFunction, num is " << num << endl;

41

Local Variable Lifetime

» Afunction’s local variables and parameters

exist only while the function is executing.

When the function begins, its parameters and
local variables (as their definitions are
encountered) are created in memory, and when
the function ends, the parameters and local
variables are destroyed.

This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

42

Global Variables

A global variable is any variable defined outside
all the functions in a program.

The scope of a global variable is the portion of
the program starting from the variable definition
to the end of the file

This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined

A local variable may have the same name as a
global variable. The global variable is hidden in
that variable’s block. #

Global Variables: example

#include <iostream>

using namespace std;

void anotherFunction();
int num = 2;

Output: | In main, num is 2
In anotherFunction, num is 2
But now it is changed to 50
Back in main, num is 50

int main() {

}

cout << "In main, num is "
anotherFunction();

cout << "Back in main, num is "
return 0;

<< num << endl;

<< num << endl;

void anotherFunction() {

}

cout << "In anotherFunction, num is "
num = 50;

<< num << endl;

cout << "But now it is changed to " << num << endl;

44

Global Variables/Constants

Do not use global variables!!! Because:
» They make programs difficult to debug.

» If the wrong value is stored in a global var, you must scan
the entire program to see where the variable is changed

» Functions that access globals are not self-
contained
» cannot easily reuse the function in another program.

» cannot understand the function without understanding how
the global is used everywhere
It is ok (and good) to use global constants
because their values do not change.

45

Global Constants: example

const double PI = 3.14159;
Output:

double getArea(double number) { Enter the radius of the circle: 2.2
return PI * number * number; The area is 15.21
} The perimeter is 13.82

double getPerimeter (double number) {
return PI * 2 * number;

}

int main() {
double radius;
cout << fixed << setprecision(2);
cout << "Enter the radius of the circle: "
cin >> radius;

’

cout << "The area is " << getArea(radius) << endl;
cout << "The perimeter is " << getPerimeter(radius) f& endl;

Functions and Array Elements

* An array element can be passed to any
parameter of the same (or compatible) type:

double square (double);

int main() {
double numbers[5] = {2.2, 3.3, 5.11, 7.0, 3.2};

for (int i=0; i<5; i++)

cout << square(numbers[i]) << " ";
cout << endl;
return 0;
} Output:

4.84 10.89 26.1121 49 10.24
double square (double x) {

return x * Xx;
47

}

Functions and Array Elements

* An array element can be passed by reference.
What is output by this program?

void changeMe(int &myValue) {
myValue = 200;

}

int main() {
int numbers[5] = {2, 3, 5, 7, 3};

for (int i=0; i<5; i++)
changeMe (numbers[i]);

for (int i=0; i<5; i++)
cout << numbers[i] << " ";
cout << endl;

7.8 Arrays as Function Arguments

* An entire array can(!) be passed to a function
that has an array parameter

void showArray(int[], int);

int main() {
int numbers[5] = {2, 3, 5, 7, 3};
showArray (numbers,5);
return 0;

}

void showArray(int values[], int size) ({ Output:
. i20. i<size: it++
for (int i=0; i 51?e, i)" 23573
cout << values[i] << " ";

cout << endl;

Passing arrays to functions

* In the function definition, the parameter type is a
variable name with an empty set of brackets: []

» Do NOT give a size for the parameter

void showArray(int values[], int size) {..}

* In the prototype, empty brackets go after the
element datatype.
void showArray(int[], int);
* |In the function call, use the variable name for the
array (no brackets!).

showArray (numbers, 5); 50

Passing arrays to functions

« An array is always passed by reference.

* The parameter name is an alias to the array
being passed in, even though it has no &.

« Changes made to the array (elements) inside
the function DO affect the array in the function
call.

51

Passing arrays to functions

» Changing an array inside a function:

void incrArray(int[], int);
void showArray(int[], int);

int main() {
int numbers[5] = {2, 3, 5, 7, 3}; Output:
incrArray(numbers,5); 34684
showArray (numbers,5);
return 0;

}

void incrArray(int values[], int size) {
for (int i=0; i<size; i++)
(values[i])++; //values[i]=values[i]+1;

} 52

Passing arrays to functions

» Usually functions that have an array parameter
also have an int parameter for the count of the
number of elements in the array.

» so the function knows how many elements to process.

* The count parameter is just a regular int
parameter and must be included in the
parameter list and a corresponding argument
value must appear in the function call.

53

