
Expressions & I/O

Unit 2

Sections 2.14, 3.1-10, 5.1, 5.11a

CS 1428
Fall 2019

Jill Seaman

!1

3.1 The cin Object

!2

! cin: short for “console input”
‣ a stream object: represents the contents of the screen that are

entered/typed by the user using the keyboard.

‣ requires iostream library to be included

! >>: the stream extraction operator
‣ use it to read data from cin (entered via the keyboard)

‣ when this instruction is executed, it waits for the user to type,
it reads the characters until space or enter (newline) is typed,
then it stores the value in the variable.

‣ right-hand operand MUST be a variable.

cin >> height;

Console Input

!3

• Output a prompt (using cout) to tell the user
what type of data to enter BEFORE using cin:

• You can input multiple values in one statement:

‣ the user may enter them on one line (separated by a space)
or on separate lines.

float diameter;

cout << “What is the diameter of the circle? ”;
cin >> diameter;

int x, y;
cout << “Enter two integers: “ << endl;
cin >> x >> y;

Example program using cin
#include <iostream>
using namespace std;

int main() {
 int length, width, area;
 cout << "This program calculates the area of a ";
 cout << "rectangle.\n";
 cout << "Enter the length and width of the rectangle ";
 cout << "separated by a space.\n";
 cin >> length >> width;
 area = length * width;
 cout << "The area of the rectangle is " << area << endl;
 return 0;
}

!4

This program calculates the area of a rectangle.
Enter the length and width of the rectangle
separated by a space.
10 20
The area of the rectangle is 200

output screen:

2.14 Arithmetic Operators

! An operator is a symbol that tells the computer
to perform specific mathematical or logical
manipulations (called operations).

! An operand is a value used with an operator to
perform an operation.

! C++ has unary and binary operators:
‣ unary (1 operand) -5
‣ binary (2 operands) 13 - 7

!5

Arithmetic Operators
! Unary operators:

! Binary operators:

!6

SYMBOL OPERATION EXAMPLE

+ addition x + y
- subtraction index - 1
* multiplication hours * rate
/ division total / count
% modulus count % 3

SYMBOL OPERATION EXAMPLES

+ unary plus +10, +y
- negation -5, -x

Integer Division

!7

• If both operands are integers, / (division)
operator always performs integer division.
The fractional part is lost!!

• If either operand is floating point, the result is
floating point.

cout << 13 / 5; // displays 2
cout << 91 / 7; // displays 13

cout << 13 / 5.0; // displays 2.6
cout << 91.0 / 7; // displays 13

Modulus

!8

•% (modulus) operator computes the
remainder resulting from integer division

•% requires integers for both operands

cout << 13 % 5; // displays 3
cout << 91 % 7; // displays 0

cout << 13 % 5.0; // error
cout << 91.0 % 7; // error

3.2 Mathematical Expressions

!9

• An expression is a program component that
evaluates to a value.

• An expression can be
– a literal,
– a variable, or
– a combination of these using operators and parentheses.

• Examples: 
 

• Each expression has a type, which is the data type
of the result value.

4
num
x + 5
8 * x * x – 16 * x + 3

x * y / z
'A'
-15e10
2 * (l + w)

Where can expressions occur?

!10

• The rhs (right-hand-side) of an assignment
statement:

• The rhs of a stream insertion operator (<<) (cout):

• More places we don’t know about yet . . .

x = y * 10 / 3;
y = 8;
x = y;
aLetter = 'W';
num = num + 1;

cout << “The pay is “ << hours * rate << endl;
cout << num;
cout << 25 / y;

Operator Precedence
(order of operations)

!11

• Which operation does the computer perform first?

• Precedence Rules specify which happens first, in
this order:

• If the expression has multiple operators from the
same level, they associate left to right or right to
left:

answer = 1 + x + z;
result = x + 5 * y;

- (negation)
* / %
+ -

- (negation) Right to left
* / % Left to right
+ - Left to right

Parentheses

!12

! You can use parentheses to override the
precedence or associativity rules:

! Some examples:

a + b / 4
(a + b) / 4
(4 * 17) + (3 – 1)
a – (b - c)

5 + 2 * 4
10 / 2 - 3
8 + 12 * 2 - 4
4 + 17 % 2 -1
6 - 3 * 5 / 2 - 1

Exponents

• There is no operator for exponentiation in C++
• There is a library function called “pow”

• The expression pow(x,3.0) is a “call to the pow
function with arguments x and 3.0”.

• Arguments can have type double or int and the
result is a double.

• If x is 2.0, then 8.0 will be stored in y.  
The value stored in x is not changed.

• #include <cmath> is required to use pow.
!13

y = pow(x, 3.0); // x to the third power

3.3 Type Conversion

!14

! The computer (ALU) cannot perform operations
between operands of different data types.

! If the operands of an expression have different
types, the compiler will convert one to be the
type of the other

! This is called an implicit type conversion, or a
type coercion.

! Usually, the operand with the  
lower ranking type is converted to  
the type of the higher one.

double
float
long
int
char

Order of types:

Type Conversion Rules

!15

• Binary ops: convert the operand with the lower
ranking type to the type of the other operand. 

• Assignment ops: rhs is converted to the type of
the variable on the lhs.

int years;
float interestRate, result;
. . .
result = years * interestRate;
// years is converted to float before being multiplied

int x, y = 4;
float z = 2.7;
x = 4 * z;
//4 is converted to float,
//then 10.8 is converted to int (10)
cout << x << endl;

OUTPUT:

10

Always safe

Not always safe,
information loss

3.5 Type Casting

!16

• Type casting is an explicit (or manual) type
conversion.

• mainly used to force floating-point division 
 
 
 

• why not: 
?

int hits, atBats;
float battingAvg;
. . .
cin >> hits >> atBats; // assume: 3 8
battingAvg = static_cast<float>(hits)/atBats;

y = static_cast<int>(x); // converts x to int

battingAvg = static_cast<float>(hits/atBats);

Result:

0.375

3.4 Overflow/Underflow

!17

• Happens when the value assigned to a variable
is too large or small for its type (out of range).

• integers tend to wrap around, without warning:

• floating point value overflow/underflow:
‣ may or may not get a warning

‣ result may be 0 or random value

short testVar = 32767;
cout << testVar << endl; // 32767, max value
testVar = testVar + 1;
cout << testVar << endl; //-32768, min value

3.6 Multiple Assignment

!18

• You can assign the same value to several
variables in one statement:

• is equivalent to:

a = b = c = 12;

a = 12;
b = 12;
c = 12;

3.6 Combined Assignment

!19

• Assignment statements often have this form:

• C/C++ offers shorthand for these:

number = number + 1; //add 1 to number
total = total + x; //add x to total
y = y / 2; //divide y by 2

int number = 10;
number = number + 1;
cout << number << endl;

number += 1; // short for number = number+1;
total -= x; // short for total = total-x;
y /= 2; // short for y = y / 2;

5.1 Increment and Decrement

!20

• C++ provides unary operators to increment and
decrement.
‣ Increment operator: ++

‣ Decrement operator: --

• can be used before (prefix) or after (postfix) a
variable

• Examples:
int num = 10;
num++; //equivalent to: num = num + 1;
num--; //equivalent to: num = num - 1;
++num; //equivalent to: num = num + 1;
--num; //equivalent to: num = num - 1;

Prefix vs Postfix

!21

• ++ and -- operators can be used in expressions
• In prefix mode (++val, --val) the operator

increments or decrements, then returns the new
value of the variable

• In postfix mode (val++, val--) the operator returns
the original value of the variable, then increments
or decrements
int num, val = 12;
cout << val++; // cout << val; val = val+1;
cout << ++val; // val = val + 1; cout << val;
num = --val; // val = val - 1; num = val;
num = val--; // num = val; val = val -1;

It’s confusing, don’t do this!

3.9 More Math Library Functions

!22

• These require cmath header file
• These take double argument, return a double
• Commonly used functions:

pow y = pow(x,d); returns x raised to the power d

abs y = abs(x); returns absolute value of x

sqrt y = sqrt(x); returns square root of x

ceil y = ceil(x); returns the smallest integer >= x

sin y = sin(x); returns the sine of x (in radians)

etc.

3.10 Hand Tracing a Program

!23

• You be the computer. Track the values of the
variables as the program executes.
‣ step through and ‘execute’ each statement, one-by-one

‣ record the contents of variables after each statement
execution, using a hand trace chart (table) or boxes.

int main() {
 double num1, num2;
 cout << “Enter first number”;
 cin >> num1;
 cout << “Enter second number”;
 cin >> num2;

 num1 = (num1 + num2) / 2;
 num2++;

 cout << “num1 is ” << num1 << endl;
 cout << “num2 is “ << num2 << endl;
}

num1 num2
? ?
? ?
10 ?
10 ?
10 20
15 20
15 21
15 21
15 21

3.7 Formatting Output

! Formatting: the way a value is printed:
‣ spacing

‣ decimal points, fractional values, number of digits

! cout has a standard way of formatting values
of each data type

! use “stream manipulators” to override this
! they require #include <iomanip>

!24

Formatting Output: setw

!25

• setw is a “stream manipulator”, like endl
• setw(n)specifies the minimum width for the

next item to be output
‣ cout << setw(6) << age << endl;
‣ specifies to display age in a field at least 6 spaces wide.

‣ value is right justified (padded with spaces on left).

‣ if the value is too big to fit in 6 spaces, it is printed in full,
using more positions.

setw: examples

!26

• Example with no formatting:

• Example using setw:

cout << 2897 << “ “ << 5 << “ “ << 837 << endl;
cout << 34 << “ “ << 7 << “ “ << 1623 << endl;

cout << setw(6) << 2897 << setw(6) << 5
 << setw(6) << 837 << endl;
cout << setw(6) << 34 << setw(6) << 7
 << setw(6) << 1623 << endl;

2897 5 837
34 7 1623

 2897 5 837
 34 7 1623

Prog 3-12 and 3-13
output in the book is
not exactly correct.

Formatting Output:  
fixed and setprecision

!27

These apply to outputting floating point values:
• by default, 6 total significant digits are output.
•when fixed and setprecision(n) are used

together, the n specifies the number of digits
to be displayed after the decimal point.

• it remains in effect until it is changed
cout << 123456.78901 << endl;
cout << fixed << setprecision(2);
cout << 123456.78901 << endl;
cout << 123.45678 << endl;

123457
123456.79
123.46

Note: there is no need for showpoint
when using setprecision with fixed

output:

Formatting Output: right and left

!28

• left causes all subsequent output to be left
justified in its field

• right causes all subsequent output to be right
justified in its field. This is the default.

 double x = 146.789, y = 24.2, z = 1.783;
 cout << setw(10) << x << endl;
 cout << setw(10) << y << endl;
 cout << setw(10) << z << endl;

 146.789
 24.2
 1.783

 double x = 146.789, y = 24.2, z = 1.783;
 cout << left << setw(10) << x << endl;
 cout << setw(10) << y << endl;
 cout << setw(10) << z << endl;

146.789
24.2
1.783

3.8 Working with characters and
string objects

!29

! Using the >> operator to input strings can
cause problems:

! It skips over any leading whitespace chars
(spaces, tabs, or line breaks)

! It stops reading strings when it encounters the
next whitespace character!
string name;
cout << “Please enter your name: “;
cin >> name;
cout << “Your name is “ << name << endl;

Please enter your name: Kate Smith
Your name is Kate

Using getline to input strings

!30

! To work around this problem, you can use a  
C++ function named getline.

! getline(cin,var); reads in an entire line,
including all the spaces, and stores it in a string
variable. (the ‘\n’ is not stored)

string name;
cout << “Please enter your name: “;
getline(cin, name);
cout << “Your name is “ << name << endl;

Please enter your name: Kate Smith
Your name is Kate Smith

Mixing >> with getline

!31

! Mixing cin>>x with getline(cin,y) in the
same program can cause input errors that are
VERY hard to detect
int number;
string name;
cout << "Enter a number: ";
cin >> number; // Read an integer
cout << "Enter a name: ";
getline(cin,name); // Read a string, up to end of line
cout << “Name “ << name << endl;

Enter a number: 100
Enter a name: Name

getline(cin,name) then reads
the \n and immediately stops
(name is empty)

The program did not
allow me to type a name

Using cin>>ws

!32

! cin>>ws skips whitespace characters (space, tab,
newline), until a non-whitespace character is found.

! Use it after cin>>var and before getline to consume the
newline so it will start reading characters on the next line.
int number;
string name;
cout << "Enter a number: ";
cin >> number; // Read an integer
cin >> ws; // skip the newline
cout << "Enter a name: ";
getline(cin,name); // Read a string
cout << “Name “ << name << endl;

Enter a number: 100
Enter a name: Jane Doe
Name Jane Doe

5.11 Using Files for Data Storage

!33

! Variables are stored in Main Memory/RAM
‣ values are lost when program is finished executing

! To preserve the values computed by the
program: save them to a file

! Files are stored in Secondary Storage
! To have your program manipulate values stored

in a file, they must be input into variables first.

File Stream Variables

!34

! File stream data types:
‣ ifstream

‣ ofstream

! use #include <fstream> for these
! variables of type ofstream can be used to

output (write) values to a file. (like cout)
! variables of type ifstream can be used to 

 input (read) values from a file. (like cin)

Define and open file stream objects

!35

! To input from a file, declare an ifstream
variable, and open a file by its name:

‣ If the file “mydatafile.txt” does not exist, it will cause an error.

! To output to a file, declare an ofstream
variable, and open a file by its name:

‣ If the file “myoutputfile.txt” does not exist, it will be created.

‣ If it does exist, it will be overwritten

ifstream fin;
fin.open(“mydatafile.txt”);

ofstream fout;
fout.open(“myoutputfile.txt”);

Writing to Files

!36

• Use the stream insertion operator (<<) on the
file output stream variable:
#include <iostream>
#include <fstream>
using namespace std;

int main() {
 ofstream fout;
 fout.open(“demofile.txt”);

 int age;
 cout << “Enter your age: “;
 cin >> age;

 fout << “Age is: “ << age << endl;
 fout.close();
 return 0;
}

Age is: 20

Output
demofile.txt:

Reading from Files

!37

• Use the stream extraction operator (>>) on the
file input stream variable:
#include <iostream>
#include <fstream>
using namespace std;

int main() {
 string name;

 ifstream fin;
 fin.open(“Names.txt”);
 fin >> name;

 cout << name << endl;
 fin.close();
}

Tom
Dick
Harry

Names.txt:

TomScreen output:

Closing file stream objects

!38

! To close a file stream when you are done
reading/writing:

! Not required, but good practice.

fin.close();
fout.close();

Reading from files

!39

• When opened, the file stream's read position
points to first character in file.

• The stream extraction operator (>>) starts at the
read position and skips whitespace to read data
into the variable.

• The read position then points to whitespace after
the value it just read.

• The next extraction (>>) starts from the new read
position.

• This is how cin works as well.

