
Arrays

Unit 5

Gaddis: 7.1-4,6

CS 1428
Fall 2019

Jill Seaman

!1

7.1 Array Data Type

!2

! Array: a variable that contains multiple values of
the same type.

! Values are stored consecutively in memory.
! An array variable declaration statement in C++: 
 

! This creates an array called numbers which
contains 5 integer values (ints).

int numbers[5];

Array - Memory Layout

!3

• The definition:  
 
allocates the following memory: 
(values are stored consecutively in memory)

int numbers[5];

first
element

second
element

third
element

fourth
element

fifth
element

Array Terminology

!4

! Given the following array definition:

! numbers is the name of the array
! int is the data type of the array elements
! 5 is the size declarator:  

the number of elements (values) in the array.

int numbers[5];

Size Declarator

!5

• The size declarator must be an integer and a
constant.
‣ it must be greater than 0

‣ IT CANNOT BE A VARIABLE!*

• It can be a literal or a named constant. 
 

• Named constants ease program maintenance
when the size of the array must be changed.

*Unless you are using a special compiler (mine is not special).

const int SIZE = 40;
double grades[SIZE];

7.2 Accessing Array Elements

!6

! Each element of the array has a unique
subscript (or index) that indicates its position in
the array.

! The subscripts are 0-based
‣ the first element has subscript 0

‣ the second element has subscript 1

‣ . . .

‣ the last element has subscript (size -1)

the last element’s subscript is n-1 where n is the number of elements in the array

Accessing Array Elements

!7

• Given this array declaration:

• The syntax to access one element is:  

• Pronounced “numbers at 2” or “numbers sub 2”

numbers[2] //the third element of numbers array

int numbers[5];

Array subscripts

!8

• The subscript is ALWAYS an integer
‣ regardless of the type of the array elements. 

• the subscript can be ANY integer expression

‣ literal: 2

‣ variable: i

‣ expression: (i+2)/2

numbers[2]

numbers[i]

numbers[(i+2)/2]

Inputting array contents

!9

• Most array operations must be done one
element at a time.

• Input programming assignment grades for a
student in CS1428:

• Is there a better way?

const int NUM_SCORES = 7;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;
cin >> scores[0];
cin >> scores[1];
cin >> scores[2];
cin >> scores[3];
cin >> scores[4];
cin >> scores[5];
cin >> scores[6];

Array input using a loop

!10

• We can use a for loop to input into the array
• The subscript/index can be the loop variable:

• i starts at 0, the first valid subscript
• loop ends when i is 7, the first invalid subscript
• This code is equivalent to the code on the

previous slide.

const int NUM_SCORES = 7;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;  

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

Array output using a loop

!11

• We can also use a for loop to output the
elements of the array: 
const int NUM_SCORES = 7;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

cout << “You entered these values: “;
for (int i=0; i < NUM_SCORES; i++) {
 cout << scores[i] << “ “;
}
cout << endl;

7.3 C++: No bounds checking

!12

• C++ does not check it to make sure an array
subscript is valid (between 0 and size-1)

• If you use a subscript that is outside the bounds
of the array you may not get a warning or error.

• You may unintentionally change memory
allocated to other variables.
const int SIZE = 3;
int values[SIZE];

for (int i=0; i < 5; i++) {
 values[i] = 100;
}

This code defines a three-
element array and then writes
five values to it (changing the
memory after the array).

7.4 Array initialization

!13

• You can initialize arrays when they are defined. 
 

• Values are assigned in order:
scores[0] = 86.5
scores[1] = 92.1
scores[2] = 77.5

• NOTE: uninitialized arrays have GARBAGE
values stored in them (not necessarily 0). 

const int NUM_SCORES = 3;
float scores[NUM_SCORES] = {86.5, 92.1, 77.5};

86.5 92.1 77.5

Partial Array Initialization

!14

• When you initialize, you don’t need to specify a
value for every position.

• In this case, the first 3 elements are initialized
to the specified values.

• The uninitialized values WILL be set to 0!!!! 
 
 
 

float scores[7] = {86.5, 92.1, 77.5};

86.5 92.1 77.5 0 0 0 0

Implicit array sizing

!15

• When you initialize, you don’t need to specify
the size declarator.

• In this case, the compiler determines the size of
the array from the number of elements listed. 
 
 
 

float scores[] = {86.5, 92.1, 77.5};

86.5 92.1 77.5

7.6 Processing Array Contents

!16

• Given the following array definition: 
 
 
the expression may be used exactly
like any variable of type double.

double tests[10];

tests[i]

tests[0] = 79;
cout << tests[0];
cin >> tests[1];
tests[4] = tests[0] + tests[1];

Using array elements:

!17

double values[3]; //array definition

values[0] = 22.3; //assignment to array element
values[1] = 11.1;

cout << “Enter a number: “;
cin >> values[2];

double sum = values[0] + values[1] + values[2];
double avg = sum/3.0;

cout << “Values at zero: “ << values[0] << endl;

int i=2;
if (values[i] > 32.0)
 cout << “Above freezing” << endl;

Operations over Entire Arrays

!18

• Generally there are NO operations that you can
perform over an entire array.

• Some operations may appear to work (no
errors) but you don’t get the desired results. 
 
 
 
 

int numbers1[] = {1, 2, 3};
int numbers2[] = {4, 5, 6};

cin >> numbers1; //input, won’t work
cout << numbers1 << endl; //output, won’t work
numbers1 = numbers2; //assignment, won’t work
if (numbers1==numbers2) //comparison, won’t work
 ...
numbers3 = numbers1 + numbers2; //addition, won’t work

Summing values in an array

!19

• We can use a for loop to sum the elements of
the array (the running total)  
const int NUM_SCORES = 7;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

int total = 0; //initialize accumulator
for (int i=0; i < NUM_SCORES; i++) {
 total = total + scores[i];
}

How do you get the average programming assignment score?

Finding the maximum value
in an array

!20

• We can use a for loop to find the max value:
• Note: keep track of the maximum value

encountered so far (the running maximum)
const int NUM_SCORES = 7;
int scores[NUM_SCORES];
cout << “Enter the “ << NUM_SCORES
 << “ programming assignment scores: “ << endl;

for (int i=0; i < NUM_SCORES; i++) {
 cin >> scores[i];
}

int maximum = scores[0]; //init max to first elem
for (int i=1; i < NUM_SCORES; i++) { //start i at 1
 if (scores[i] > maximum)
 maximum = scores[i]; //save the new maximum
} // no else needed

Array assignment

!21

• To copy/assign one array to another, you must
assign element by element.

• Note: this does not work in all compilers:

const int SIZE = 4;
int values1[SIZE] = {100, 200, 300, 400};
int values2[SIZE];

// values2 = values1; WRONG, won’t work correctly

for (int i = 0; i < SIZE; i++) {
 values2[i] = values1[i];
}

values2 = {3,6,9,27};
 //may or may not work for assignment

