
Reinforcement Learning Approaches for Racing and
Object Avoidance on AWS DeepRacer

Jacob McCalip
Texas State University
jsm246@txstate.edu

Mandil Pradhan
Texas State University
jns176@txstate.edu

Kecheng Yang
Texas State University

yangk@txstate.edu

Abstract—Developing autonomous driving models through re-
inforcement learning is gaining widespread prominence. However,
a pervasive problem is developing obstacle avoidance systems.
Specifically, optimizing path completion times while avoiding
objects is an underdeveloped area of research. AWS DeepRacer’s
platform provides a powerful architecture for engineering and an-
alyzing autonomous models. Using AWS DeepRacer, we integrate
two pathfinding algorithms, A* and Line-of-Sight (LoS), into this
paradigm of autonomous driving. LoS is a novel algorithm that
incrementally updates the model’s heading angles to amply reach
its destination. We trained three types of models: Centerline,
A*, and LoS. The Centerline model utilizes logic from AWS
and is practically the only model used by the AWS DeepRacer
community that avoids objects. We developed models from A*
and LoS that outperformed the default models in time per lap
while maintaining commensurate stability.

I. INTRODUCTION

Autonomous robots have revolutionized numerous sectors
of our economy and are utilized in a wide range of industries
and applications, including manufacturing, warehouses, and
healthcare. These machines are capable of performing tasks
without direct human supervision, relying on a combination
of sensors, learning-enabled algorithms, computer vision tech-
niques for perceptions, and real-time data to make decisions
and execute tasks. Among these autonomous machines, au-
tonomous vehicles have accentuated focus for both research
and development. Self-driving cars are a prime example of
autonomous vehicles that navigate through traffic, utilizing
sensors, cameras, and other technologies to detect objects
and obstacles, determine optimal routes, and make safe and
efficient decisions on the road.

While still facing many challenges to overcome towards
full-scale adoption, autonomous driving is poised to bring
substantial benefits to our society. One of the most significant
benefits of deploying self-driving cars is the potential to largely
reduce traffic accidents. Over 90 percent of road accidents are
caused by some degree of human error, including distraction,
impaired driving, and poor decision-making. It is believed
that, with the advances in autonomous driving technologies,
the number of accidents should plummet [9]. Therefore, reli-
able, effective, and efficient learning-enabled algorithms and
software implementation are essential to autonomous driving,
which can revolutionize the transportation industry. In this
paper, our objective is to optimize collision avoidance through
the lens of reinforcement learning.

This work is supported in part by NSF grants CNS-2104181 and CNS-
2149950, and a REP grant from Texas State University.

Related work. Learning-based autonomous driving can be
traced back to 1991, when artificial neural networks are ap-
plied in the ALVINN system [7]. More recently, A*-like path-
finding algorithms in continuous environments for autonomous
vehicles were investigated [3]. To enable comparative research,
benchmark suites for autonomous driving, such as KITTI [4],
were developed. In the AWS League, the main goal among the
thousands of competitors is to design a model which circles a
lap around a given track in the shortest amount of time pos-
sible. A fairly common approach among the AWS DeepRacer
Community is to use the K1999 Path-Optimization Algorithm.
This algorithm is not commonly used in machine learning or
autonomous driving and has little documentation. However,
“It works by iteratively decreasing the line’s curvature” [5];
this helps racers to cut down the overall time per lap. A less
commonly used approach is to use a path-finding program that
increases the radius around curves. Zhu et al. created a path-
finding algorithm to implement this concept, however, it is not
clear how to reproduce their work [11].
Contributions. In this research, we prototype and evaluate
collision avoidance approaches on the AWS DeepRacer plat-
form. The AWS DeepRacer platform provides a simulation
environment for training models, which can be deployed on
physical model cars. We focus on investigating reinforcement
learning models, which are trained by exploring the envi-
ronment and striving for optimal results with respect to the
rewards that are defined differently in different models. In
particular, we

• design and implement A* and Line-of-Sight (LoS) ap-
proaches to train models that attempt to provide optimal
paths;

• enhance their navigational capabilities by integrating ob-
ject avoidance methods; and

• demonstrate that the models trained by these approaches
outperform those by the AWS DeepRacer default ap-
proach in terms of learning efficiency and racing quality.

II. BACKGROUND

This research focuses on reinforcement learning, which is
based on the concept of reward. Intuitively, a model learns
through a trial-and-error process to maximize its reward. Over
time, it is expected to yield a model that is adapted to its
environment, as the learning process favors the actions and
behaviors that lead to the highest reward in a reinforced man-
ner. A key concept in reinforcement learning is the distinction



between exploratory and exploitative behaviors. Exploration
involves taking random actions regardless of whether the re-
sults would be favorable or not. On the other hand, exploitation
involves using information already gathered in prior attempts
to move towards desirable results.
AWS DeepRacer. AWS DeepRacer is an ecosystem for in-
vestigation and research on autonomous driving technologies.
Developed by AWS, DeepRacer is centered around a 1/18th
scale racing car as shown in Fig. 1(a). The racing of AWS
DeepRacer can be done either in the simulation or on a
physical track. Fig. 1(b) shows an example physical track
we built in our research lab. Furthermore, having been open-
sourced, DeepRacer has fostered a number of projects beyond
its default framework.

Our efforts mainly focus on the DeepRacer simulation envi-
ronment. Further, we used the simulation to concentrate more
on the computation and control approaches, while limiting
unpredictable impacts of the physical world. This isolation of
variables is imperative for conducting systematic experiments
and data analysis. The official simulation environment is via
the AWS DeepRacer console provided by AWS. However, in
recent years, a community simulation environment has been
developed and widely adopted, which is called DeepRacer for
Cloud (DRFC). This tool is a loosely bound set of scripts
that allows for model training compatible with AWS’s official
server and league. An advantage of DRFC is that we have
more freedom to adjust the simulation to suit our desires.
DRFC uses Docker to house Minio, Robomaker Sagemaker,
RL Coach, and Gazebo, of which the simulation environment
is composed. The function of each of these components is
briefly explained as follows.

• Minio is an object storage system.
• AWS Robomaker provides service to develop and test

robotic applications.
• AWS Sagemaker provides infrastructure for building

learning models.
• RL Coach is developed by Intel for fine-tuning algorithm

development.
• Gazebo provides simulation of 3D physics.

Simulation environment. Hyperparameters are critical for
training models. In the simulation, hyperparameters are de-
fined from the outset, instead of being learned from data,
and help to shape the model’s behaviors. In the context of
DeepRacer, we have the following major hyperparameters [2].

• batch_size: gradient descent batch size, which de-
termines sample size that is taken into consideration for
updating the training model.

• num_epochs: number of times the training data set will
be processed in loop to update the learning parameters.

• discount_factor: determines the importance of im-
mediate vs future rewards.

• beta_entropy: randomness of policy distribution.
• lr: the step function of gradient descent.
• loss_type: provides the difference between actual and

predicted results of a model.

(a) Physical car (b) Physical track

Fig. 1. Physical environment.

• num_episodes_between_training: defines how
frequently to update the policy of the agent.

Using local simulation via DRFC, there is a greater degree
of control. To illustrate, in local training, we may switch the
direction of the car (clockwise vs counterclockwise), change
the lighting of the simulation, change the location, type,
and amount of objects on the track, etc. Moreover, Amazon
is restrictive of Python packages, such as the time library.
Consequently, local simulation is a standard practice among
the AWS DeepRacer community. Thus, we utilized a local
simulation environment for this study.
Models and rewards functions. A model is mainly comprised
of action space, reward function, and metadata information.
The action space is the set of all possible actions the agent may
take. In our context, we have the option of choosing a discrete
or continuous action space. A discrete action space means that
the possible actions are finite and countable. Conversely, a
continuous action space can take on an infinity of values within
a certain range. It is well known that continuous action spaces
tend to take longer to converge, however, they are also less
prone to human bias.

The reward function is at the core of reinforcement learning.
The reward function maps the behavior of the model’s state
and action to an associated reward. which indicates the agent’s
performance. DeepRacer utilizes Python to write a reward
function and possess simulation parameters used to feed the
model information about its environment. This information, in
a vague sense, can be used to incentive the model to produce
desired outcomes. For instance, a parameter of the simulation
called “distance from center” returns the distance in meters
from the center of the track. The reward function serves as the
fundamental logic guiding the nature of the model.
Physical build: Sim2Real. Models trained from simulation
can be uploaded to the physical car and used on an actual track
such as the one we built in Fig. 1. DeepRacer is fairly unique
in that we can take models trained in simulation to a physical
counterpart; other popular autonomous driving simulations
such as CARLA have no physical counterparts. Moreover,
work done by Revell et al. describes procedures to optimize
the bridging of the Sim2Real gap on AWS DeepRacer [8].

III. INVESTIGATED APPROACHES

In addition to DeepRacer’s default approach (Centerline),
we develop, implement, and investigate two new approaches
(A-Star and Line-of-Sight) to obtain models that are capable



(a) Holistic path generation (b) Zoom-in

Fig. 2. A-Star path generation.

(a) Holistic path generation (b) Zoom-in

Fig. 3. Line-of-Sight path generation.

of racing when obstacles are present. We briefly explain the
three approaches as follows.
Centerline. The Centerline algorithm created by Amazon
utilizes the centerline of the track and the location of objects to
guide the model; the further the model is from the centerline,
the less reward; on the other hand, if the model is in the same
lane as the object and the model gets too close to the object,
the car gets progressively less reward [1].
A-Star. One of the approaches used is the A* path-finding
algorithm, which generates a predefined path that avoids
obstacles in the track. It serves as a guide to incentivize the
model to follow the path. In Fig. 2, the cyan ‘X’ points are the
searched nodes in the grid; the outermost two dots represent
the track border, and the black box represents an object.
Moreover, the red line is Fig. 2 is the final path calculated from
A*. It should be noted that in Fig. 2 there is a small gap in
the line, however, this gap is only for present in visualization,
not in the actual path file generated. The object locations
used in Fig. 2 is representative of our training. Related, we
have Fig. 4, a heatmap, the brighter, more dense clusters
of orange colors here highlight a higher reward for a given
area. This approach is considered static because the generated
path remains unchanged throughout the training period. By
incorporating this approach into our training process, the
model converges faster, ultimately resulting in reduced training
time.
Line-of-Sight. The Line-of-Sight (LoS) algorithm utilizes the
vehicle’s field of vision to identify the furthest destination on
the race track and then generates a path and heading angle
toward that location. In our experiment, we set a limit on how
far the vehicle could see. As the vehicle progresses, it receives

updated paths and heading angles to guide its movements. This
approach is considered dynamic because it provides regular
updates to the model during the training period. However, one
limitation of this approach is that it may take longer for the
model to converge since the path and heading angle depend
on the vehicle’s location and field of vision, which may vary.
The current location of the vehicle plays a significant role in
determining the heading angle and destination point on the
track.

IV. EXPERIMENTS AND EVALUATION

Experiment settings. To standardize our finding, we trained
each model for 0.5 hours, 1.5 hours, and 3 hours; with
each using 4 workers; training with multiple workers enables
parallelization of the training process, thus, a trained model
will converge faster in a given period.

All models were trained with the stereo camera and a
continuous action space on the “re:invent 2018” track:

• speed: 1.0 ∼ 1.5
• steering angle: −20 ∼ 20

The hyperparameters in our experiments are summarized as
follows:

batch_size = 64 stack_size = 1
num_epochs = 3 epsilon_steps = 10000
discount_factor = 0.985 e_greedy_ value = 0.0003
beta_entropy = 0.01 term_cond_max_episodes = 1000
lr = 0.0003 term_cond_avg_score = 350
loss_type = huber exploration_type = categorical
num_episodes_between_training = 32

These settings are slightly modified from the default in order
to synergize better with continuous models [10].

• The Centerline models utilize reward 4 in the DeepRacer
developer’s guide which involves avoiding stationary ob-
jects [1].

• The A-Star models utilize a custom reward we made de-
signed to follow A*’s path, with python helper functions
borrowed from Daniel Gonzalez [5].

• The Line-of-Sight models utilize a line-of-sight algo-
rithm to dynamically determine the vehicle’s optimal
path, destination, and heading angle to follow.

All models were trained with three stationary cars, which
act as obstacles for the model to avoid.

Once the training was complete, we ran an evaluation for
50 iterations on each model, this data is used for our analysis.
It should be noted that the evaluation was performed on the
best checkpoint of each model, which here is defined as the
checkpoint with the highest reward. Fig. 4 illustrates this
process by showing an example heat map of event rewards
during the training of A-Star models.
Results and evaluation. We first report the training time for
each model to converge, which is defined as the training time
for a model to reach its best mean lap completion time as
follows:

• Centerline converges at 3 hours of training with a mean
lap completion time of 14.27 seconds;



Fig. 4. Heatmap of the accumulation of event rewards during training.

Fig. 5. Time spent on completed laps to show the racing speed of models.

• A-Star converges at 1.5 hours of training with a mean
lap completion time of 11.98 seconds;

• Line-of-Sight converges at 0.5 hours of training with a
mean lap completion time of 13.08 seconds.

These results demonstrate that our proposed approaches need
less training time to reach a model with optimal performance
than the default Centerline approach.

In Fig. 5 we show each type of model trained on 0.5 hours,
1.5 hours, and 3 hours of training (x-axis). We did not incre-
ment one training to the next, instead, each model was trained
independently. With 0.5 hours of training, Centerline could
not complete the evaluation, A-Star had only 3 completed laps
within the evaluation, but Line-of-Sight had a complete 50 out
of 50 completed laps at this time; this small amount of training
also proved to be Line-of-Sight’s fastest time compared to
longer training sessions as shown in Fig. 5. The nature of
Line-of-Sight promotes rapid adaptation to the model’s local
environment. In Fig. 5, we show that models from A-Star and
Line-of-Sight outperformed the standard models in speed in
every instance. We have included a video playlist showing all
the evaluations conducted in this study for demonstration [6].

V. CONCLUSION

In this work, we leverage the AWS DeepRacer platform
to investigate reinforcement-learning-based approaches for au-
tonomous driving. The goal is to create models that are able
to reach faster racing speeds while maintaining reasonably
reliable performance. In addition, objects may exist in the
track and should be avoided by the racing car. By integrating
the concepts of A* and LoS algorithms, we created novel

Fig. 6. Percentage of laps that are perfectly completed by models.

solutions inside DeepRacer’s environment that we believe has
the potential to transcend to other domains of reinforcement
learning. We developed models from these two algorithms that
have similar stability to the default models but achieved faster
performance.
Future work. In subsequent work, we aim to delve deeper into
the hyperparameter settings, and how that impacts the training
behavior of the model. This future research should display how
each setting affects the model’s performance. Furthermore,
we plan to investigate the application of the trained model
in the physical environment. Namely, we have observed that
there is performance variability between the simulation and
the physical environment. This discrepancy warrants further
investigation to identify the factors that contribute to bridging
the Sim2Real gap.

REFERENCES
[1] Amazon. Aws deepracer developer guide. Online at https:

//docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-
reward-function-examples.html.

[2] Siddhartha Banerjee. Aws deepracer — looking under the hood for
design of the reward function and adjusting hyperparameters. Online at
https://medium.com/analytics-vidhya/aws-deepracer-looking-under-the-
hood-for-design-of-the-reward-function-and-adjusting-e9dd3805ebbf.

[3] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Path planning for autonomous vehicles in unknown semi-
structured environments. volume 29, page 485–501, USA, apr 2010.
Sage Publications, Inc.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 3354–
3361, 2012.

[5] Daniel Gonzalez. An advanced guide to aws deepracer. Online
at https://towardsdatascience.com/an-advanced-guide-to-aws-deepracer-
2b462c37eea.

[6] Jacob Mccalip. Playlist of model evalauations. Online at https://www.
youtube.com/playlist?list=PLh53BF3bZA6rR2tk3GCcLMVeN8Cy-
95Rc.

[7] Dean A. Pomerleau. Efficient training of artificial neural networks for
autonomous navigation, 1991.

[8] Jacob Revell, Dominic Welch, and James Hereford. Sim2real: Issues in
transferring autonomous driving model from simulation to real world.
In SoutheastCon 2022, pages 296–301. IEEE, 2022.

[9] Santokh Singh. Critical reasons for crashes investigated in the national
motor vehicle crash causation survey, Feb 2015.

[10] Boltron Racing Team. Continuous action space, reward func, and
hyperparameters for top 15 finish in deepracer! Online at https:
//youtu.be/11Sta3idwZI.

[11] Wenjie Zhu, Haikuo Du, Moyan Zhu, Yanbo Liu, Chaoting Lin, Shaobo
Wang, Weiqi Sun, and Huaming Yan. Application of reinforcement
learning in the autonomous driving platform of the deepracer. In 2022
41st Chinese Control Conference (CCC), pages 5345–5352. IEEE, 2022.


